1
|
Cayer LGJ, Roberts J, Raju J, Aukema HM. Bioactive lipids are altered in the heart, kidney, and serum of male and female F344 rats sub-chronically exposed to dietary 2-MCPD. Food Chem Toxicol 2024; 193:115004. [PMID: 39284412 DOI: 10.1016/j.fct.2024.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 11/13/2024]
Abstract
Chloropropanols have been identified as processing-induced food contaminants that occur as by-products of the manufacturing of refined food oils and hydrolyzed vegetable protein. There has been a paucity of research on the 2-monochloropropane-1,3-diol (2-MCPD) isomer, thus forming a data gap for regulatory risk assessment. Previous studies suggest 2-MCPD causes adverse cardiotoxic, nephrotoxic, and myotoxic effects, but were inconclusive for hazard identification; thus a dose-response OECD TG-408-compliant study was conducted by Health Canada. Our study profiled the effects of 2-MCPD on oxylipins and oxidized phosphatidylcholines, using HPLC-MS/MS, in heart, kidney, serum, and skeletal muscle of male and female F344 rats orally exposed to 2-MCPD (40 mg/kg BW/d) for 90 days. Cardiac n-3 polyunsaturated fatty acid-derived oxylipins, particularly DHA-derived oxylipins, were lower with 2-MCPD exposure, coincident with cardiac lesions. Lipoxygenase-derived oxylipins were decreased in the serum with a greater effect in the male 2-MCPD treatment group. Few oxylipin alterations were seen in the kidney and there was an absence of alterations in the tibialis anterior. Oxidized phosphatidylcholines and isoprostanes were not altered in this study, indicating that oxidative stress was not elevated by 2-MCPD. These findings add to the weight of the evidence for 2-MCPD toxicity and support the use of serum oxylipins as potential biomarkers of 2-MCPD exposure.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jennifer Roberts
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Jayadev Raju
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada.
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Taneja G, Leontieva L. Tug of war between clozapine and CYP450 inducers: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241283262. [PMID: 39371390 PMCID: PMC11456182 DOI: 10.1177/2050313x241283262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024] Open
Abstract
The management of schizoaffective disorder bipolar type often involves a combination of pharmacotherapy and psychotherapy. Clozapine, an effective antipsychotic for treatment-resistant schizophrenia, and oxcarbazepine, a mood stabilizer, is a commonly prescribed medication. We present a case report of a 56-year-old male with schizoaffective disorder bipolar type who experienced subtherapeutic clozapine levels despite dose adjustments, leading to deteriorating symptoms. Oxcarbazepine, a weak CYP450 inducer, likely contributed to the subtherapeutic levels. Additionally, the pharmacogenetic analysis revealed a CYP1A2 *1F/*1F genotype, indicating normal activity with a potential for decreased serum levels and adverse events in the presence of inducers. The patient was eventually stabilized on a regimen of lithium, paliperidone, and quetiapine, avoiding oxcarbazepine. This case highlights the importance of considering individual patient factors, including pharmacogenetics when managing treatment-resistant patients. Monitoring serum clozapine levels and assessing enzyme activity before initiating therapy may help optimize treatment outcomes and minimize adverse events.
Collapse
Affiliation(s)
- Gaurav Taneja
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Luba Leontieva
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Lei JJ, Li S, Dong BX, Yang J, Ren Y. Acute intermittent porphyria: a disease with low penetrance and high heterogeneity. Front Genet 2024; 15:1374965. [PMID: 39188285 PMCID: PMC11345236 DOI: 10.3389/fgene.2024.1374965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Acute intermittent porphyria (AIP) is caused by mutations in the gene encoding hydroxymethylbilane synthase (HMBS), a key enzyme in the heme biosynthesis pathway. AIP is an autosomal dominant disorder characterized by low penetrance and a highly heterogenous clinical presentation. The estimated prevalence of AIP is 5-10 cases per 100,000 persons, with acute attacks manifesting in less than 1% of the at-risk population. This low frequency of attacks suggests significant roles for oligogenic inheritance and environmental factors in the pathogenesis of the disease. In recent years, identification of several modifier genes has advanced our understanding of the factors influencing AIP penetrance and disease severity. This review summarizes these factors including the impact of specific HMBS mutations, oligogenic inheritance, mitochondrial DNA copy number, age, sex, the influence of sex hormones, and the role of environmental factors. Further studies into the etiology of AIP disease penetrance should inform pathogenesis, potentially allowing for the development of more precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia-Jia Lei
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Shuang Li
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Bai-Xue Dong
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jing Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Ren
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Qusa M, Qosa H, Volpe DA. Evaluation of In Vitro Metabolism- and Transporter-Based Drug Interactions with Sunscreen Active Ingredients. Pharm Res 2024; 41:1613-1620. [PMID: 39044045 DOI: 10.1007/s11095-024-03746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE The aim of this study was to examine the ability of sunscreen active ingredients to inhibit in vitro drug metabolism via cytochrome P450 (CYP) enzymes and drug uptake transporters. METHODS Metabolism assays with human liver microsomes were conducted for CYP2C9, CYP2D6 and CYP3A4 using probe substrates warfarin, bufuralol and midazolam, respectively. Uptake transporter assays with transfected cell lines were conducted for OAT3, OCT2 and OATP1B1 with probe substrates estrone-3-sulfate, metformin and rosuvastatin, respectively. Six sunscreen active ingredients, avobenzone, enzacamene, oxybenzone, octinoxate, trolamine, and homosalate, were evaluated up to their aqueous solubility limits in the assays. RESULTS None of the sunscreen active ingredients inhibited CYP2D6 or CYP3A4 activities in the microsomes at concentration ranges up to tenfold higher than their known clinical total plasma levels. Only enzacamene, oxybenzone and trolamine were found to be inhibitory to CYP2C9 activity with IC50 values of 14.76, 22.46 and 154.7 µM, respectively. Avobenzone, enzacamene, homosalate and octinoxate were not inhibitory to the uptake transporters at the evaluated concentrations. Oxybenzone was inhibitory to OAT3 and OCT2 with IC50 values of 39.93 and 42.77 µM, respectively. Trolamine also inhibited uptake in OAT3 and OCT2 transfected cells with IC50 values of 448.1 and 1376 μM, respectively. CONCLUSIONS Although enzacamene, oxybenzone and trolamine inhibited CYP2C9 and the renal transporters OAT3 and OCT2 in vitro, their IC50 values exceeded total plasma levels found in clinical studies. Therefore, it is unlikely that these sunscreen active ingredients in sunscreen products will inhibit the metabolism or transport of co-administered drugs in consumers.
Collapse
Affiliation(s)
- Mohammed Qusa
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA
| | - Hisham Qosa
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA.
| |
Collapse
|
5
|
Puça MCSDB, Rodrigues DF, Salazar YEAR, Louzada J, Fontes CJF, Daher A, Pereira DB, Fernandes Vieira JL, Carvalho LH, Alves de Brito CF, Gil JP, Nobrega de Sousa T. Monoamine oxidase-A (MAO-A) low-expression variants and increased risk of Plasmodium vivax malaria relapses. J Antimicrob Chemother 2024; 79:1985-1989. [PMID: 38870082 PMCID: PMC11290872 DOI: 10.1093/jac/dkae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES Primaquine is essential for the radical cure of Plasmodium vivax malaria and must be metabolized into its bioactive metabolites. Accordingly, polymorphisms in primaquine-metabolizing enzymes can impact the treatment efficacy. This pioneering study explores the influence of monoamine oxidase-A (MAO-A) on primaquine metabolism and its impact on malaria relapses. METHODS Samples from 205 patients with P. vivax malaria were retrospectively analysed by genotyping polymorphisms in MAO-A and cytochrome P450 2D6 (CYP2D6) genes. We measured the primaquine and carboxyprimaquine blood levels in 100 subjects for whom blood samples were available on the third day of treatment. We also examined the relationship between the enzyme variants and P. vivax malaria relapses in a group of subjects with well-documented relapses. RESULTS The median carboxyprimaquine level was significantly reduced in individuals carrying low-expression MAO-A alleles plus impaired CYP2D6. In addition, this group experienced significantly more P. vivax relapses. The low-expression MAO-A status was not associated with malaria relapses when CYP2D6 had normal activity. This suggests that the putative carboxyprimaquine contribution is irrelevant when the CYP2D6 pathway is fully active. CONCLUSIONS We found evidence that the low-expression MAO-A variants can potentiate the negative impact of impaired CYP2D6 activity, resulting in lower levels of carboxyprimaquine metabolite and multiple relapses. The findings support the hypothesis that carboxyprimaquine may be further metabolized through CYP-mediated pathways generating bioactive metabolites that act against the parasite.
Collapse
Affiliation(s)
- Maria Carolina Silva De Barros Puça
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Danielle Fonseca Rodrigues
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Yanka Evellyn Alves Rodrigues Salazar
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Jaime Louzada
- Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Cor Jesus Fernandes Fontes
- Universidade Federal do Mato Grosso, Faculdade de Medicina, Departamento de Medicina Interna, Cuiabá, Mato Grosso, Brazil
| | - André Daher
- Vice Presidency of Research and Biological Collections, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dhélio Batista Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia, CEPEM, Porto Velho, Rondônia, Brazil
| | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Pihlaja T, Oksanen T, Vinkvist N, Sikanen T. Many human pharmaceuticals are weak inhibitors of the cytochrome P450 system in rainbow trout ( Oncorhynchus mykiss) liver S9 fractions. FRONTIERS IN TOXICOLOGY 2024; 6:1406942. [PMID: 39077557 PMCID: PMC11284600 DOI: 10.3389/ftox.2024.1406942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Pharmaceutical residues are widely detected in aquatic environment and can be taken up by nontarget species such as fish. The cytochromes P450 (CYP) represent an important detoxification mechanism in fish, like in humans. In the present study, we assessed the correlation of the substrate selectivities of rainbow trout CYP1A and CYP3A homologues with those of human, through determination of the half-maximal inhibitory concentrations (IC50) of a total sixteen human pharmaceuticals toward CYP1A-like ethoxyresorufin O-deethylase (EROD) and CYP3A-like 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (RT-S9). Methods The inhibitory impacts (IC50) of atomoxetine, atorvastatin, azelastine, bimatoprost, clomethiazole, clozapine, desloratadine, disulfiram, esomeprazole, felbinac, flecainide, orphenadrine, prazosin, quetiapine, sulpiride, and zolmitriptan toward the EROD and BFCOD activities in RT-S9 were determined using the IC50 shift assay, capable of identifying time-dependent inhibitors (TDI). Additionally, the nonspecific binding of the test pharmaceuticals to RT-S9 was assessed using equilibrium dialysis. Results Most test pharmaceuticals were moderate to weak inhibitors of both EROD and BFCOD activity in RT-S9, even if most are noninhibitors of human CYP1A or CYP3A. Only bimatoprost, clomethiazole, felbinac, sulpiride, and zolmitriptan did not inhibit either activity in RT-S9. EROD inhibition was generally stronger than that of BFCOD and some substances (atomoxetine, flecainide, and prazosin) inhibited selectively only EROD activity. The strongest EROD inhibition was detected with azelastine and esomeprazole (unbound IC50 of 3.8 ± 0.5 µM and 3.0 ± 0.8 µM, respectively). None of the test substances were TDIs of BFCOD, but esomeprazole was a TDI of EROD. Apart from clomethiazole and disulfiram, the nonspecific binding of the test pharmaceuticals to the RT-S9 was extensive (unbound fractions <0.5) and correlated well (R 2 = 0.7135) with their water-octanol distribution coefficients. Discussion The results indicate that the P450 interactions in RT-S9 cannot be explicitly predicted based on human data, but the in vitro data reported herein can shed light on the substrate selectivity of rainbow trout CYP1A1 and CYP3A27 in comparison to their human homologues. The IC50 concentrations are however many orders of magnitude higher than average environmental concentrations of pharmaceuticals. The time-dependent EROD inhibition by esomeprazole could warrant further research to evaluate its possible interlinkages with hepatotoxic impacts on fish.
Collapse
Affiliation(s)
- Tea Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Timo Oksanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Netta Vinkvist
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Roy P, Maturano J, Hasdemir H, Lopez A, Xu F, Hellman J, Tajkhorshid E, Sarlah D, Das A. Elucidating the Mechanism of Metabolism of Cannabichromene by Human Cytochrome P450s. JOURNAL OF NATURAL PRODUCTS 2024; 87:639-651. [PMID: 38477310 PMCID: PMC11061835 DOI: 10.1021/acs.jnatprod.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Cannabichromene (CBC) is a nonpsychoactive phytocannabinoid well-known for its wide-ranging health advantages. However, there is limited knowledge regarding its human metabolism following CBC consumption. This research aimed to explore the metabolic pathways of CBC by various human liver cytochrome P450 (CYP) enzymes and support the outcomes using in vivo data from mice. The results unveiled two principal CBC metabolites generated by CYPs: 8'-hydroxy-CBC and 6',7'-epoxy-CBC, along with a minor quantity of 1″-hydroxy-CBC. Notably, among the examined CYPs, CYP2C9 demonstrated the highest efficiency in producing these metabolites. Moreover, through a molecular dynamics simulation spanning 1 μs, it was observed that CBC attains stability at the active site of CYP2J2 by forming hydrogen bonds with I487 and N379, facilitated by water molecules, which specifically promotes the hydroxy metabolite's formation. Additionally, the presence of cytochrome P450 reductase (CPR) amplified CBC's binding affinity to CYPs, particularly with CYP2C8 and CYP3A4. Furthermore, the metabolites derived from CBC reduced cytokine levels, such as IL6 and NO, by approximately 50% in microglia cells. This investigation offers valuable insights into the biotransformation of CBC, underscoring the physiological importance and the potential significance of these metabolites.
Collapse
Affiliation(s)
- Pritam Roy
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| | - Jonathan Maturano
- Roger
Adams Laboratory, Department of Chemistry, Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Hale Hasdemir
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Angel Lopez
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| | - Fengyun Xu
- Judith
Hellman Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143, United States
| | - Judith Hellman
- Department
of Anesthesia and Perioperative Care, University
of California, San Francisco, California 94143, United States
| | - Emad Tajkhorshid
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David Sarlah
- Roger
Adams Laboratory, Department of Chemistry, Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Aditi Das
- School
of Chemistry and Biochemistry, College of Sciences, and Parker H.
Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology (GaTech), Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Trunzer M, Teigão J, Huth F, Poller B, Desrayaud S, Rodríguez-Pérez R, Faller B. Improving In Vitro-In Vivo Extrapolation of Clearance Using Rat Liver Microsomes for Highly Plasma Protein-Bound Molecules. Drug Metab Dispos 2024; 52:345-354. [PMID: 38360916 DOI: 10.1124/dmd.123.001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
It is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold. To explore the hypothesis whether the higher degree of plasma protein binding for acids contributes to the in vitro-in vivo correlation (IVIVC) disconnect, 68 proprietary compounds were incubated with rat liver microsomes in the presence and absence of 5% plasma. A minor impact of plasma on clearance IVIVC was found for moderately bound compounds (fraction unbound in plasma [fup] ≥1%). However, addition of plasma significantly improved the IVIVC for highly bound compounds (fup <1%) as indicated by an increase of the average fold error from 0.10 to 0.36. Correlating fup with the scaled unbound intrinsic clearance ratio in the presence or absence of plasma allowed the establishment of an empirical, nonlinear correction equation that depends on fup Taken together, estimation of the metabolic clearance of highly bound compounds was enhanced by the addition of plasma to microsomal incubations. For standard incubations in buffer only, application of an empirical correction provided improved clearance predictions. SIGNIFICANCE STATEMENT: Application of the well-stirred liver model for clearance in vitro-in vivo extrapolation (IVIVE) in rat generally underpredicts the clearance of acids and the strong protein binding of acids is suspected to be one responsible factor. Unbound intrinsic in vitro clearance (CLint,u) determinations using rat liver microsomes supplemented with 5% plasma resulted in an improved IVIVE. An empirical equation was derived that can be applied to correct CLint,u-values in dependance of fraction unbound in plasma (fup) and measured CLint in buffer.
Collapse
Affiliation(s)
- Markus Trunzer
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Joana Teigão
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Birk Poller
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Bernard Faller
- Pharmacokinetic Sciences, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
9
|
Fluetsch A, Trunzer M, Gerebtzoff G, Rodríguez-Pérez R. Deep Learning Models Compared to Experimental Variability for the Prediction of CYP3A4 Time-Dependent Inhibition. Chem Res Toxicol 2024; 37:549-560. [PMID: 38501689 DOI: 10.1021/acs.chemrestox.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Most drugs are mainly metabolized by cytochrome P450 (CYP450), which can lead to drug-drug interactions (DDI). Specifically, time-dependent inhibition (TDI) of CYP3A4 isoenzyme has been associated with clinically relevant DDI. To overcome potential DDI issues, high-throughput in vitro assays were established to assess the TDI of CYP3A4 during the discovery and lead optimization phases. However, in silico machine learning models would enable an earlier and larger-scale assessment of TDI potential liabilities. For CYP inhibition, most modeling efforts have focused on highly imbalanced and small data sets. Moreover, assay variability is rarely considered, which is key to understand the model's quality and suitability for decision-making. In this work, machine learning models were built for the prediction of TDI of CYP3A4, evaluated prospectively, and compared to the variability of the experimental assay. Different modeling strategies were investigated to assess their influence on the model's performance. Through multitask learning, additional data sets were leveraged for model building, coming from public databases, in-house CYP-related assays, or other pharmaceutical companies (federated learning). Apart from the numerical prediction of inactivation rates of CYP3A4 TDI, three-class predictions were carried out, giving a negative (inactivation rate kobs < 0.01 min-1), weak positive (0.01 ≤ kobs ≤ 0.025 min-1), or positive (kobs > 0.025 min-1) output. The final multitask graph neural network model achieved misclassification rates of 8 and 7% for positive and negative TDI, respectively. Importantly, the presented deep learning-based predictions had a similar precision to the reproducibility of in vitro experiments and thus offered great opportunities for drug design, early derisk of DDI potential, and selection of experiments. To facilitate CYP inhibition modeling efforts in the public domain, the developed model was used to annotate ∼16 000 publicly available structures, and a surrogate data set is shared as Supporting Information.
Collapse
Affiliation(s)
- Andrin Fluetsch
- Novartis Biomedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Markus Trunzer
- Novartis Biomedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Grégori Gerebtzoff
- Novartis Biomedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | | |
Collapse
|
10
|
Wang C, Zhou N, Li M, Chen H. Rehmannioside A inhibits the activity of CYP3A4, 2C9 and 2D6 in vitro. Xenobiotica 2024; 54:195-200. [PMID: 38385556 DOI: 10.1080/00498254.2024.2321969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
To assess the effect of Rehmannioside A on CYP450s activity and to estimate its inhibitory properties.The effect of Rehmannioside A on the activity of major CYP450s in human liver microsomes (HLMs) was assessed with the corresponding substrates and marker reactions, and compared with a blank control and the respective inhibitors. Suppression of CYP3A4, 2C9 and 2D6 was assessed by the dose-dependent assay and fitted with non-competitive or competitive inhibition models. The inhibition of CYP3A4 was determined in a time-dependent manner.Rehmannioside A suppressed the activity of CYP3A4, 2C9, and 2D6 with IC50 values of 10.08, 12.62, and 16.43 μM, respectively. Suppression of CYP3A4 was fitted to a non-competitive model with Ki value of 5.08 μM, whereas CYP2C9 and 2D6 were fitted to a competitive model with Ki values of 6.25 and 8.14 μM. Additionally, the inhibitory effect on CYP3A4 was time-dependent with KI value of 8.47 μM-1 and a Kinact of 0.048 min-1.In vitro suppression of CYP3A, 2C9 and 2D6 by Rehmannioside A indicated that Rehmannioside A or its source herbs may interact with drugs metabolised by these CYP450s, which could guide the clinical application.
Collapse
Affiliation(s)
- Congrong Wang
- Department of Pharmacy Center, Shandong Public Health Clinical Center, Jinan, China
| | - Naixiang Zhou
- Department of Office, Jiyang People's Hospital of Jinan, Jinan, China
| | - Mingcui Li
- Department of Pharmacy, Shanghe T.C.M Hospital, Jinan, China
| | - Haixia Chen
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Jäger J, Vahav I, Thon M, Waaijman T, Spanhaak B, de Kok M, Bhogal RK, Gibbs S, Koning JJ. Reconstructed Human Skin with Hypodermis Shows Essential Role of Adipose Tissue in Skin Metabolism. Tissue Eng Regen Med 2024; 21:499-511. [PMID: 38367122 PMCID: PMC10987437 DOI: 10.1007/s13770-023-00621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Dysregulation of skin metabolism is associated with a plethora of diseases such as psoriasis and dermatitis. Until now, reconstructed human skin (RhS) models lack the metabolic potential of native human skin, thereby limiting their relevance to study human healthy and diseased skin. We aimed to determine whether incorporation of an adipocyte-containing hypodermis into RhS improves its metabolic potential and to identify major metabolic pathways up-regulated in adipose-RhS. METHODS Primary human keratinocytes, fibroblasts and differentiated adipose-derived stromal cells were co-cultured in a collagen/fibrin scaffold to create an adipose-RhS. The model was extensively characterized structurally in two- and three-dimensions, by cytokine secretion and RNA-sequencing for metabolic enzyme expression. RESULTS Adipose-RhS showed increased secretion of adipokines. Both RhS and adipose-RhS expressed 29 of 35 metabolic genes expressed in ex vivo native human skin. Addition of the adipose layer resulted in up-regulation of 286 genes in the dermal-adipose fraction of which 7 were involved in phase I (CYP19A1, CYP4F22, CYP3A5, ALDH3B2, EPHX3) and phase II (SULT2B1, GPX3) metabolism. Vitamin A, D and carotenoid metabolic pathways were enriched. Additionally, pro-inflammatory (IL-1β, IL-18, IL-23, IL-33, IFN-α2, TNF-α) and anti-inflammatory cytokine (IL-10, IL-12p70) secretion was reduced in adipose-RhS. CONCLUSIONS Adipose-RhS mimics healthy native human skin more closely than traditional RhS since it has a less inflamed phenotype and a higher metabolic activity, indicating the contribution of adipocytes to tissue homeostasis. Therefore it is better suited to study onset of skin diseases and the effect of xenobiotics.
Collapse
Affiliation(s)
- Jonas Jäger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Irit Vahav
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function & Regeneration, Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Bas Spanhaak
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael de Kok
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Oda A, Suzuki Y, Sato H, Koyama T, Nakatochi M, Momozawa Y, Tanaka R, Ono H, Tatsuta R, Ando T, Shin T, Wakai K, Matsuo K, Itoh H, Ohno K. Evaluation of the usefulness of plasma 4β-hydroxycholesterol concentration normalized by 4α-hydroxycholesterol for accurate CYP3A phenotyping. Clin Transl Sci 2024; 17:e13768. [PMID: 38465776 PMCID: PMC10926057 DOI: 10.1111/cts.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Plasma 4β-hydroxycholesterol (OHC) has drawn attention as an endogenous substrate indicating CYP3A activity. Plasma 4β-OHC is produced by hydroxylation by CYP3A4 and CYP3A5 and by cholesterol autoxidation. Plasma 4α-OHC is produced by cholesterol autoxidation and not affected by CYP3A activity. This study aimed to evaluate the usefulness of plasma 4β-OHC concentration minus plasma 4α-OHC concentration (4β-OHC-4α-OHC) compared with plasma 4β-OHC concentration and 4β-OHC/total cholesterol (TC) ratio in cross-sectional evaluation of CYP3A activity. Four hundred sixteen general adults were divided into 191 CYP3A5*1 carriers and 225 non-carriers. Twenty-six patients with chronic kidney disease (CKD) with CYP3A5*1 allele were divided into 14 with CKD stage 3 and 12 with stage 4-5D. Area under the receiver operating characteristic curve (AUC) for the three indices were evaluated for predicting presence or absence of CYP3A5*1 allele in general adults, and for predicting CKD stage 3 or stage 4-5D in patients with CKD. There was no significant difference between AUC of 4β-OHC-4α-OHC and AUC of plasma 4β-OHC concentration in general adults and in patients with CKD. AUC of 4β-OHC-4α-OHC was significantly smaller than that of 4β-OHC/TC ratio in general adults (p = 0.025), but the two indices did not differ in patients with CKD. In conclusion, in the present cross-sectional evaluation of CYP3A activity in general adults and in patients with CKD with CYP3A5*1 allele, the usefulness of 4β-OHC-4α-OHC was not different from plasma 4β-OHC concentration or 4β-OHC/TC ratio. However, because of the limitations in study design and subject selection of this research, these findings require verification in further studies.
Collapse
Affiliation(s)
- Ayako Oda
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Haruki Sato
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical SciencesYokohamaKanagawaJapan
| | - Ryota Tanaka
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Hiroyuki Ono
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Ryosuke Tatsuta
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Tadasuke Ando
- Department of Urology, Faculty of MedicineOita UniversityYufu‐shiOitaJapan
| | - Toshitaka Shin
- Department of Urology, Faculty of MedicineOita UniversityYufu‐shiOitaJapan
| | - Kenji Wakai
- Department of Preventive MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and PreventionAichi Cancer CenterNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroki Itoh
- Department of Clinical PharmacyOita University HospitalYufu‐shiOitaJapan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical ResearchMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| |
Collapse
|
13
|
Knauer JF, Schulz C, Zemella A, Wüstenhagen DA, Walter RM, Küpper JH, Kubick S. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform. Sci Rep 2024; 14:1271. [PMID: 38218994 PMCID: PMC10787779 DOI: 10.1038/s41598-024-51781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.
Collapse
Affiliation(s)
- Jan Felix Knauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Christian Schulz
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Sommer J, Wozniak J, Schmitt J, Koch J, Stingl JC, Just KS. Assessment of Substrate Status of Drugs Metabolized by Polymorphic Cytochrome P450 (CYP) 2 Enzymes: An Analysis of a Large-Scale Dataset. Biomedicines 2024; 12:161. [PMID: 38255266 PMCID: PMC10813138 DOI: 10.3390/biomedicines12010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The analysis of substrates of polymorphic cytochrome P450 (CYP) enzymes is important information to enable drug-drug interactions (DDIs) analysis and the relevance of pharmacogenetics in this context in large datasets. Our aim was to compare different approaches to assess the substrate properties of drugs for certain polymorphic CYP2 enzymes. METHODS A standardized manual method and an automatic method were developed and compared to assess the substrate properties for the metabolism of drugs by CYP2D6, 2C9, and 2C19. The automatic method used a matching approach to three freely available resources. We applied the manual and automatic methods to a large real-world dataset deriving from a prospective multicenter study collecting adverse drug reactions in emergency departments in Germany (ADRED). RESULTS In total, 23,878 medication entries relating to 895 different drugs were analyzed in the real-world dataset. The manual method was able to assess 12.2% (n = 109) of drugs, and the automatic method between 12.1% (n = 109) and 88.9% (n = 796), depending on the resource used. The CYP substrate classifications demonstrated moderate to almost perfect agreements for CYP2D6 and CYP2C19 (Cohen's Kappa (κ) 0.48-0.90) and fair to moderate agreements for CYP2C9 (κ 0.20-0.48). CONCLUSION A closer look at different classifications between methods revealed that both methods are prone to error in different ways. While the automated method excels in time efficiency, completeness, and actuality, the manual method might be better able to identify CYP2 substrates with clinical relevance.
Collapse
Affiliation(s)
- Jakob Sommer
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Justyna Wozniak
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Judith Schmitt
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Jana Koch
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| |
Collapse
|
15
|
Dawson AP, Frick CD, Burd M, Conliffe B. Clinical significance of coadministration of moderate to strong CYP enzyme inhibitors with doxorubicin in breast cancer patients receiving AC chemotherapy. J Oncol Pharm Pract 2024:10781552231223125. [PMID: 38196322 DOI: 10.1177/10781552231223125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Cytochrome P450 (CYP) enzyme inhibitors may increase the toxicity of many chemotherapies. Medication databases classify doxorubicin coadministration with CYP2D6 or CYP3A4 inhibitors as either a major interaction or contraindication. This study assessed the incidence of toxicity secondary to doxorubicin given with or without CYP enzyme inhibitors in breast cancer patients receiving doxorubicin and cyclophosphamide. METHODS This retrospective study included female breast cancer patients treated with doxorubicin and cyclophosphamide (AC). Patients were divided into three arms: no moderate or strong CYP inhibitor interactions, moderate or strong CYP2D6 inhibitor interactions, or moderate or strong CYP3A4 inhibitor interactions. Primary outcomes included incidence of doxorubicin-associated toxicity, unplanned medical visits, chemotherapy treatment delays, and doxorubicin dose reductions. The secondary endpoint was time to toxicity. RESULTS There were 171 patients included (n = 20 patients in the CYP2D6 inhibitor group and n = 15 in the CYP3A4 inhibitor group). Neither CYP inhibitor group showed a difference in incidence of hepatotoxicity, cardiotoxicity, myelotoxicity, moderate/severe nausea, or treatment delays. Compared to the no CYP inhibitor group, the CYP2D6 inhibitor group experienced a higher incidence of unplanned medical visits (45% vs. 19.4%; p = 0.023) and more frequent doxorubicin dose reductions (30% vs. 7.2%; p = 0.006). The CYP3A4 inhibitor group did not differ from the no CYP inhibitor group for these outcomes. CONCLUSIONS CYP inhibitors, particularly CYP2D6 inhibitors, may affect doxorubicin tolerability, as seen in this study by an increased incidence of unplanned medical visits and doxorubicin dose reductions.
Collapse
Affiliation(s)
- Amy Priest Dawson
- Department of Pharmacy, UofL Health: University of Louisville Hospital, Louisville, KY, USA
| | - Chrissy D Frick
- Department of Pharmacy, UofL Health: University of Louisville Hospital, Louisville, KY, USA
| | - Megan Burd
- Department of Pharmacy, UofL Health: Brown Cancer Center, Louisville, KY, USA
| | - Brette Conliffe
- Department of Pharmacy, UofL Health: Brown Cancer Center, Louisville, KY, USA
| |
Collapse
|
16
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
17
|
Cuvelier E, Khazri H, Lecluse C, Hennart B, Amad A, Roche J, Tod M, Vaiva G, Cottencin O, Odou P, Allorge D, Décaudin B, Simon N. Therapeutic Drug Monitoring and Pharmacogenetic Testing as Guides to Psychotropic Drug Dose Adjustment: An Observational Study. Pharmaceuticals (Basel) 2023; 17:21. [PMID: 38256855 PMCID: PMC10818858 DOI: 10.3390/ph17010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
To avoid the failures in therapy with psychotropic drugs, treatments can be personalized by applying the results of therapeutic drug monitoring and pharmacogenetic testing. The objective of the present single-center observational study was to describe the changes in psychotropic drug management prompted by therapeutic drug monitoring and pharmacogenetic testing, and to compare the effective drug concentration based on metabolic status with the dose predicted using an in silico decision tool for drug-drug interactions. The study was conducted in psychiatry wards at Lille University Hospital (Lille, France) between 2016 and 2020. Patients with data for at least one therapeutic drug monitoring session or pharmacogenetic test were included. Blood tests were performed for 490 inpatients (mainly indicated by treatment monitoring or failure) and mainly concerned clozapine (21.4%) and quetiapine (13.7%). Of the 617 initial therapeutic drug monitoring tests, 245 (40%) complied with good sampling practice. Of the patients, 51% had a drug concentration within the therapeutic range. Regardless of the drug concentration, the drug management did not change in 83% of cases. Thirty patients underwent pharmacogenetic testing (twenty-seven had also undergone therapeutic drug monitoring) for treatment failure; the plasma drug concentration was outside the reference range in 93% of cases. The patient's metabolic status explained the treatment failure in 12 cases (40%), and prompted a switch to a drug metabolized by another CYP450 pathway in 5 cases (42%). Of the six tests that could be analyzed with the in silico decision tool, all of the drug concentrations after adjustment were included in the range estimated by the tool. Knowledge of a patient's drug concentration and metabolic status (for CYD2D6 and CYP2C19) can help clinicians to optimize psychotropic drug adjustment. Drug management can be optimized with good sampling practice, support from a multidisciplinary team (a physician, a geneticist, and clinical pharmacist), and decision support tools.
Collapse
Affiliation(s)
- Elodie Cuvelier
- CHU Lille, Institut de Pharmacie, F-59000 Lille, France (P.O.); (B.D.); (N.S.)
- GRITA—Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées ULR 7365, CHU Lille, University Lille, F-59000 Lille, France
| | - Houda Khazri
- CHU Lille, Institut de Pharmacie, F-59000 Lille, France (P.O.); (B.D.); (N.S.)
- GRITA—Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées ULR 7365, CHU Lille, University Lille, F-59000 Lille, France
| | - Cloé Lecluse
- CHU Lille, Institut de Pharmacie, F-59000 Lille, France (P.O.); (B.D.); (N.S.)
| | - Benjamin Hennart
- CHU Lille, Pôle de Biologie-Pathologie-Génétique, Unité Fonctionnelle de Toxicologie, F-59000 Lille, France; (B.H.); (D.A.)
| | - Ali Amad
- Inserm, CHU Lille, U1172—LilNcog—Lille Neuroscience & Cognition, University Lille, F-59000 Lille, France; (A.A.); (G.V.)
| | - Jean Roche
- CHU de Lille, Unité de Psychogériatrie, Pôle de Gérontologie, F-59037 Lille, France;
| | - Michel Tod
- UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, F-69622 Lyon, France;
| | - Guillaume Vaiva
- Inserm, CHU Lille, U1172—LilNcog—Lille Neuroscience & Cognition, University Lille, F-59000 Lille, France; (A.A.); (G.V.)
| | - Olivier Cottencin
- CHU de Lille, Service d’addictologie, CNRS, UMR 9193, SCALab, équipe psyCHIC, CS 70001, Université de Lille, F-59037 Lille, France;
| | - Pascal Odou
- CHU Lille, Institut de Pharmacie, F-59000 Lille, France (P.O.); (B.D.); (N.S.)
- GRITA—Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées ULR 7365, CHU Lille, University Lille, F-59000 Lille, France
| | - Delphine Allorge
- CHU Lille, Pôle de Biologie-Pathologie-Génétique, Unité Fonctionnelle de Toxicologie, F-59000 Lille, France; (B.H.); (D.A.)
- CHU Lille, Institut Pasteur Lille, ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Bertrand Décaudin
- CHU Lille, Institut de Pharmacie, F-59000 Lille, France (P.O.); (B.D.); (N.S.)
- GRITA—Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées ULR 7365, CHU Lille, University Lille, F-59000 Lille, France
| | - Nicolas Simon
- CHU Lille, Institut de Pharmacie, F-59000 Lille, France (P.O.); (B.D.); (N.S.)
- GRITA—Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées ULR 7365, CHU Lille, University Lille, F-59000 Lille, France
| |
Collapse
|
18
|
Li Q, Wang J, Wang ZL, Shen Y, Zhou Q, Liu YN, Hu GX, Cai JP, Xu RA. The impacts of CYP3A4 genetic polymorphism and drug interactions on the metabolism of lurasidone. Biomed Pharmacother 2023; 168:115833. [PMID: 37935069 DOI: 10.1016/j.biopha.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
The aim of this study was to investigate the impacts of 24 variants of recombinant human CYP3A4 and drug interactions on the metabolism of lurasidone. In vitro, enzymatic reaction incubation system of CYP3A4 was established to determine the kinetic parameters of lurasidone catalyzed by 24 CYP3A4 variants. Then, we constructed rat liver microsomes (RLM) and human liver microsomes (HLM) incubation system to screen potential anti-tumor drugs that could interact with lurasidone and studied its inhibitory mechanism. In vivo, Sprague-Dawley (SD) rats were applied to study the interaction between lurasidone and olmutinib. The concentrations of the analytes were detected by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). As the results, we found that compared with the wild-type CYP3A4, the relative intrinsic clearances vary from 355.77 % in CYP3A4.15 to 14.11 % in CYP3A4.12. A series of drugs were screened based on the incubation system, and compared to without olmutinib, the amount of ID-14283 (the metabolite of lurasidone) in RLM and HLM were reduced to 7.22 % and 7.59 %, and its IC50 were 18.83 ± 1.06 μM and 16.15 ± 0.81 μM, respectively. At the same time, it exerted inhibitory effects both through a mixed mechanism. When co-administration of lurasidone with olmutinib in rats, the AUC(0-t) and AUC(0-∞) of lurasidone were significantly increased by 73.52 % and 69.68 %, respectively, while CLz/F was observably decreased by 43.83 %. In conclusion, CYP3A4 genetic polymorphism and olmutinib can remarkably affect the metabolism of lurasidone.
Collapse
Affiliation(s)
- Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng-Lu Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhou
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Ping Cai
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Maki J, Hanaki Y, Yanagita RC, Kikumori M, Kovba A, Washizaki A, Tsukano C, Akari H, Irie K. Biological evaluation of a phosphate ester prodrug of 10-methyl-aplog-1, a simplified analog of aplysiatoxin, as a possible latency-reversing agent for HIV reactivation. Biosci Biotechnol Biochem 2023; 87:1453-1461. [PMID: 37682524 DOI: 10.1093/bbb/zbad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
10-Methyl-aplog-1 (10MA-1), a simplified analog of aplysiatoxin, exhibits a high binding affinity for protein kinase C (PKC) isozymes with minimal tumor-promoting and pro-inflammatory activities. A recent study suggests that 10MA-1 could reactivate latent human immunodeficiency virus (HIV) in vitro for HIV eradication strategy. However, further in vivo studies were abandoned by a dose limit caused by the minimal water solubility of 10MA-1. To overcome this problem, we synthesized a phosphate ester of 10MA-1, 18-O-phospho-10-methyl-aplog-1 (phos-10MA-1), to improve water solubility for in vivo studies. The solubility, PKC binding affinity, and biological activity of phos-10MA-1 were examined in vitro, and the biological activity was comparable with 10MA-1. The pharmacokinetic studies in vivo were also examined, which suggest that further optimization for improving metabolic stability is required in the future.
Collapse
Affiliation(s)
- Jumpei Maki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Hanaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Ryo C Yanagita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Masayuki Kikumori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Anastasiia Kovba
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, Japan
| | - Ayaka Washizaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, Japan
| | - Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Sun P, Cao Y, Qiu J, Kong J, Zhang S, Cao X. Inhibitory Mechanisms of Lekethromycin in Dog Liver Cytochrome P450 Enzymes Based on UPLC-MS/MS Cocktail Method. Molecules 2023; 28:7193. [PMID: 37894672 PMCID: PMC10609143 DOI: 10.3390/molecules28207193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Lekethromycin (LKMS) is a synthetic macrolide compound derivative intended for use as a veterinary medicine. Since there have been no in vitro studies evaluating its potential for drug-drug interactions related to cytochrome P450 (CYP450) enzymes, the effect of the inhibitory mechanisms of LKMS on CYP450 enzymes is still unclear. Thus, this study aimed to evaluate the inhibitory effects of LKMS on dog CYP450 enzymes. A cocktail approach using ultra-performance liquid chromatography-tandem mass spectrometry was conducted to investigate the inhibitory effect of LKMS on canine CYP450 enzymes. Typical probe substrates of phenacetin, coumarin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and testosterone were used for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. This study showed that LKMS might not be a time-dependent inhibitor. LKMS inhibited CYP2A6, CYP2B6, and CYP2D6 via mixed inhibition. LKMS exhibited mixed-type inhibition against the activity of CYP2A6 with an inhibition constant (Ki) value of 135.6 μΜ. LKMS inhibited CYP2B6 in a mixed way, with Ki values of 59.44 μM. A phenotyping study based on an inhibition assay indicated that CYP2D6 contributes to the biotransformation of LKMS. A mixed inhibition of CYP2D6 with Ki values of 64.87 μM was also observed. Given that this study was performed in vitro, further in vivo studies should be conducted to identify the interaction between LKMS and canine CYP450 enzymes to provide data support for the clinical application of LKMS and the avoidance of adverse interactions between other drugs.
Collapse
Affiliation(s)
- Pan Sun
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Yuying Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Jicheng Qiu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Jingyuan Kong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Suxia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| |
Collapse
|
21
|
Stemkens R, de Jager V, Dawson R, Diacon AH, Narunsky K, Padayachee SD, Boeree MJ, van Beek SW, Colbers A, Coenen MJH, Svensson EM, Fuhr U, Phillips PPJ, te Brake LHM, Aarnoutse RE. Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 2023; 67:e0068323. [PMID: 37768317 PMCID: PMC10583668 DOI: 10.1128/aac.00683-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
Collapse
Affiliation(s)
- Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | | | - Kim Narunsky
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherman D. Padayachee
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Martin J. Boeree
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stijn W. van Beek
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Uwe Fuhr
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Lindsey H. M. te Brake
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - on behalf of the PanACEA consortium
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- TASK, Cape Town, South Africa
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- UCSF Center for Tuberculosis, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
23
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
24
|
De Abreu IR, Barkdull A, Munoz JR, Smith RP, Craddock TJA. A molecular analysis of substituted phenylethylamines as potential microtubule targeting agents through in silico methods and in vitro microtubule-polymerization activity. Sci Rep 2023; 13:14406. [PMID: 37658096 PMCID: PMC10474033 DOI: 10.1038/s41598-023-41600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Natural phenethylamines are trace amine neurotransmitters associated with dopamine transmission and related illnesses such Parkinson's disease, and addiction. Synthetic phenethylamines can have psychoactive and hallucinogenic effects due to their high affinity with the 5-HT2A receptor. Evidence indicates phenethylamines can directly alter the microtubule cytoskeleton being structurally similar to the microtubule destabilizing agent colchicine, however little work has been done on this interaction. As microtubules provide neuron structure, intracellular transport, and influence synaptic plasticity the interaction of phenethylamines with microtubules is important for understanding the potential harms, or potential pharmaceutical use of phenethylamines. We investigated 110 phenethylamines and their interaction with microtubules. Here we performed molecular docking of these compounds at the colchicine binding site and ranked them via binding energy. The top 10% of phenethylamines were further screened based on pharmacokinetic and physicochemical properties derived from SwissADME and LightBBB. Based on these properties 25B-NBF, 25C-NBF, and DMBMPP were tested in in vitro microtubule polymerization assays showing that they alter microtubule polymerization dynamics in a dose dependent manner. As these compounds can rapidly cross the blood brain barrier and directly affect cytoskeletal dynamics, they have the potential to modulate cytoskeletal based neural plasticity. Further investigations into these mechanisms are warranted.
Collapse
Affiliation(s)
- Isadora Rocha De Abreu
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Allison Barkdull
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - James R Munoz
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert P Smith
- Cell Therapy Institute, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Travis J A Craddock
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Departments of Computer Science, and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
25
|
Schulz C, Herzog N, Kubick S, Jung F, Küpper JH. Stable Chinese Hamster Ovary Suspension Cell Lines Harboring Recombinant Human Cytochrome P450 Oxidoreductase and Human Cytochrome P450 Monooxygenases as Platform for In Vitro Biotransformation Studies. Cells 2023; 12:2140. [PMID: 37681872 PMCID: PMC10486802 DOI: 10.3390/cells12172140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
| | - Natalie Herzog
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Jan-Heiner Küpper
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| |
Collapse
|
26
|
Alsultan A, Alalwan AA, Alshehri B, Jeraisy MA, Alghamdi J, Alqahtani S, Albassam AA. Interethnic differences in drug response: projected impact of genetic variations in the Saudi population. Pharmacogenomics 2023; 24:685-696. [PMID: 37610881 DOI: 10.2217/pgs-2023-0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Ethnicity is known to have an impact on drug responses. This is particularly important for drugs that have a narrow therapeutic window, nonlinearity in pharmacokinetics and are metabolized by enzymes that demonstrate genetic polymorphisms. However, most clinical trials are conducted among Caucasians, which might limit the usefulness of the findings of such studies for other ethnicities. The representation of participants from Saudi Arabia in global clinical trials is low. Therefore, there is a paucity of evidence to assess the impact of ethnic variability in the Saudi population on drug response. In this article, the authors assess the projected impact of genetic polymorphisms in drug-metabolizing enzymes and drug targets on drug response in the Saudi population.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alalwan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bashayer Alshehri
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Majed Al Jeraisy
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Jahad Alghamdi
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
27
|
Tan YZ, Thomsen LR, Shrestha N, Camisasca A, Giordani S, Rosengren R. Short-Term Intravenous Administration of Carbon Nano-Onions is Non-Toxic in Female Mice. Int J Nanomedicine 2023; 18:3897-3912. [PMID: 37483316 PMCID: PMC10361275 DOI: 10.2147/ijn.s414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background A nanoscale drug carrier could have a variety of therapeutic and diagnostic uses provided that the carrier is biocompatible in vivo. Carbon nano-onions (CNOs) have shown promising results as a nanocarrier for drug delivery. However, the systemic effect of CNOs in rodents is unknown. Therefore, we investigated the toxicity of CNOs following intravenous administration in female BALB/c mice. Results Single or repeated administration of oxi-CNOs (125, 250 or 500 µg) did not affect mouse behavior or organ weight and there was also no evidence of hepatotoxicity or nephrotoxicity. Histological examination of organ slices revealed a significant dose-dependent accumulation of CNO aggregates in the spleen, liver and lungs (p<0.05, ANOVA), with a trace amount of aggregates appearing in the kidneys. However, CNO aggregates in the liver did not affect CYP450 enzymes, as total hepatic CYP450 as well as CYP3A catalytic activity, as meased by erythromycin N-demethylation, and protein levels showed no significant changes between the treatment groups compared to vehicle control. CNOs also failed to act as competitive inhibitors of CYP3A in vitro in both mouse and human liver microsomes. Furthermore, CNOs did not cause oxidative stress, as indicated by the unchanged malondialdehyde levels and superoxide dismutase activity in liver microsomes and organ homogenates. Conclusion This study provides the first evidence that short-term intravenous administration of oxi-CNOs is non-toxic to female mice and thus could be a promising novel and safe drug carrier.
Collapse
Affiliation(s)
- Yi Zhen Tan
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Lucy R Thomsen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Nensi Shrestha
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Adalberto Camisasca
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Rhonda Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
28
|
Cronin JM, Yu AM. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Drug Metab Dispos 2023; 51:685-699. [PMID: 36948592 PMCID: PMC10197202 DOI: 10.1124/dmd.122.001008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.
Collapse
Affiliation(s)
- Joseph M Cronin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| |
Collapse
|
29
|
Leow JWH, Gu Y, Chan ECY. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes. Eur J Pharm Sci 2023; 187:106475. [PMID: 37225005 DOI: 10.1016/j.ejps.2023.106475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cardiac cytochrome P450 2J2 (CYP2J2) metabolizes endogenous polyunsaturated fatty acid, arachidonic acid (AA), to bioactive regioisomeric epoxyeicosatrienoic acid (EET) metabolites. This endogenous metabolic pathway has been postulated to play a homeostatic role in cardiac electrophysiology. However, it is unknown if drugs that cause intermediate to high risk torsades de pointes (TdP) exhibit inhibitory effects against CYP2J2 metabolism of AA to EETs. In this study, we demonstrated that 11 out of 16 drugs screened with intermediate to high risk of TdP as defined by the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative are concurrently reversible inhibitors of CYP2J2 metabolism of AA, with unbound inhibitory constant (Ki,AA,u) values ranging widely from 0.132 to 19.9 µM. To understand the physiological relevancy of Ki,AA,u, the in vivo unbound drug concentration within human heart tissue (Cu,heart) was calculated via experimental determination of in vitro unbound partition coefficient (Kpuu) for 10 CYP2J2 inhibitors using AC16 human ventricular cardiomyocytes as well as literature-derived values of fraction unbound in plasma (fu,p) and plasma drug concentrations in clinical scenarios leading to TdP. Notably, all CYP2J2 inhibitors screened belonging to the high TdP risk category, namely vandetanib and bepridil, exhibited highest Kpuu values of 18.2 ± 1.39 and 7.48 ± 1.16 respectively although no clear relationship between Cu,heart and risk of TdP could eventually be determined. R values based on basic models of reversible inhibition as per FDA guidelines were calculated using unbound plasma drug concentrations (Cu,plasma) and adapted using Cu,heart which suggested that 4 out of 10 CYP2J2 inhibitors with intermediate to high risk of TdP demonstrate greatest potential for clinically relevant in vivo cardiac drug-AA interactions. Our results shed novel insights on the relevance of CYP2J2 inhibition in drugs with risk of TdP. Further studies ascertaining the role of CYP2J2 metabolism of AA in cardiac electrophysiology, characterizing inherent cardiac ion channel activities of drugs with risk of TdP as well as in vivo evidence of drug-AA interactions will be required prior to determining if CYP2J2 inhibition could be an alternative mechanism contributing to drug-induced TdP.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Yuxiang Gu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543.
| |
Collapse
|
30
|
Lee YB, Kim V, Lee SG, Lee GH, Kim C, Jeong E, Kim D. Functional Characterization of Allelic Variations of Human Cytochrome P450 2C8 (V181I, I244V, I331T, and L361F). Int J Mol Sci 2023; 24:ijms24098032. [PMID: 37175734 PMCID: PMC10178350 DOI: 10.3390/ijms24098032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The human cytochrome P450 2C8 is responsible for the metabolism of various clinical drugs as well as endogenous fatty acids. Allelic variations can significantly influence the metabolic outcomes. In this study, we characterize the functional effects of four nonsynonymous single nucleotide polymorphisms *15, *16, *17, and *18 alleles recently identified in cytochrome P450 2C8. The recombinant allelic variant enzymes V181I, I244V, I331T, and L361F were successfully expressed in Escherichia coli and purified. The steady-state kinetic analysis of paclitaxel 6-hydroxylation revealed a significant reduction in the catalytic activities of the V181I, I244V, and L361F variants. The calculated catalytic efficiency (kcat/Km) of these variants was 5-26% of that of the wild-type enzyme. The reduced activities were due to both decreased kcat values and increased Km values of the variants. The epoxidation of arachidonic acid by the variants was analyzed. The L361F variant only exhibited 4-6% of the wild-type catalytic efficiency in ω-9- and ω-6-epoxidation reactions to produce 11,12-epoxyeicosatrienoic acid (EET) and 14,15-EET, respectively. These reductions were mainly due to a decrease in the kcat value of the L361F variant. The binding titration analysis of paclitaxel and arachidonic acid showed that all variants had similar affinities to those of the wild-type (10-14 μM for paclitaxel and 20-49 μM for arachidonic acid). The constructed paclitaxel docking model of the variant enzyme suggests that the L361F substitution leads to the incorrect orientation of paclitaxel in the active site, with the 6'C of paclitaxel displaced from the productive catalytic location. This study suggests that individuals carrying the newly identified P450 2C8 allelic variations are likely to have an altered metabolism of clinical medicines and production of fatty acid-derived signal molecules.
Collapse
Affiliation(s)
- Yoo-Bin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Sung-Gyu Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Gyu-Hyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Changmin Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Eunseo Jeong
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| |
Collapse
|
31
|
Wood D, Lin S. Deuterodehalogenation Under Net Reductive or Redox-Neutral Conditions Enabled by Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218858. [PMID: 36738472 PMCID: PMC10050105 DOI: 10.1002/anie.202218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Interest in deuterated active pharmaceutical ingredients (APIs) is increasing as deuteration holds promise for kinetic isotope effect (KIE) regulated fine-tuning of API performance. Moreover, deuterium isotope labeling is frequently carried out to study organic and bioorganic reaction mechanisms and to facilitate complex target synthesis. As such, methods for highly selective deuteration of organic molecules are highly desirable. Herein, we present an electrochemical method for the selective deuterodehalogenation of benzylic halides via a radical-polar crossover mechanism, using inexpensive deuterium oxide (D2 O) as the deuterium source. We demonstrate broad functional group compatibility across a range of aryl and heteroaryl benzylic halides. Furthermore, we uncover a sequential paired electrolysis regime, which permits switching between net reductive and overall redox-neutral reactions of sulfur-containing substrates simply by changing the identity of the sacrificial reductant employed.
Collapse
Affiliation(s)
- Devin Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| |
Collapse
|
32
|
Scala JJ, Ganz AB, Snyder MP. Precision Medicine Approaches to Mental Health Care. Physiology (Bethesda) 2023; 38:0. [PMID: 36099270 PMCID: PMC9870582 DOI: 10.1152/physiol.00013.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
Developing a more comprehensive understanding of the physiological underpinnings of mental illness, precision medicine has the potential to revolutionize psychiatric care. With recent breakthroughs in next-generation multi-omics technologies and data analytics, it is becoming more feasible to leverage multimodal biomarkers, from genetic variants to neuroimaging biomarkers, to objectify diagnostics and treatment decisions in psychiatry and improve patient outcomes. Ongoing work in precision psychiatry will parallel progress in precision oncology and cardiology to develop an expanded suite of blood- and neuroimaging-based diagnostic tests, empower monitoring of treatment efficacy over time, and reduce patient exposure to ineffective treatments. The emerging model of precision psychiatry has the potential to mitigate some of psychiatry's most pressing issues, including improving disease classification, lengthy treatment duration, and suboptimal treatment outcomes. This narrative-style review summarizes some of the emerging breakthroughs and recurring challenges in the application of precision medicine approaches to mental health care.
Collapse
Affiliation(s)
- Jack J Scala
- Department of Genetics, Stanford University, Stanford, California
| | - Ariel B Ganz
- Department of Genetics, Stanford University, Stanford, California
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
33
|
Liu L, Cui H, Huang Y, Yan H, Zhou Y, Wan Y. Molecular docking and in vitro evaluations reveal the role of human cytochrome P450 3A4 in the cross-coupling metabolism of phenolic xenobiotics. ENVIRONMENTAL RESEARCH 2023; 220:115256. [PMID: 36634892 DOI: 10.1016/j.envres.2023.115256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Metabolism generally transforms xenobiotics into more polar and hydrophilic products, facilitating their elimination from the body. Recently, a new metabolic pathway that transforms phenolic xenobiotics into more lipophilic and bioactive dimer products was discovered. To elucidate the role of cytochrome P450 (CYP) enzymes in mediating this cross-coupling metabolism, we used high-throughput screening to identify the metabolites generated from the coupling of 20 xenobiotics with four endogenous metabolites in liver microsomes. Endogenous vitamin E (VE) was the most reactive metabolite, as VE reacted with seven phenolic xenobiotics containing various structures (e.g., an imidazoline ring or a diphenol group) to generate novel lipophilic ethers such as bakuchiol-O-VE, phentolamine-O-VE, phenylethyl resorcinol-O-VE, 2-propanol-O-VE, and resveratrol-O-VE. Seven recombinant CYP enzymes were successfully expressed and purified in Escherichia coli. Integration of the results of recombinant human CYP incubation and molecular docking identified the central role of CYP3A4 in the cross-coupling metabolic pathway. Structural analysis revealed the π-π interactions, hydrogen bonds, and hydrophobic interactions between reactive xenobiotics and VE in the malleable active sites of CYP3A4. The consistency between the molecular docking results and the in vitro human cytochrome P450 evaluation shows that docking calculations can be used to screen molecules participating in cross-coupling metabolism. The results of this study provide supporting evidence for the overlooked toxicological effects induced by direct reactions between xenobiotics and endogenous metabolites during metabolic processes.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
Ichida H, Fukami T, Kudo T, Mishiro K, Takano S, Nakano M, Morinaga G, Matsui A, Ishiguro N, Nakajima M. Identification of HSD17B12 as an enzyme catalyzing drug reduction reactions through investigation of nabumetone metabolism. Arch Biochem Biophys 2023; 736:109536. [PMID: 36724833 DOI: 10.1016/j.abb.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17β-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Kenji Mishiro
- Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shiori Takano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Gaku Morinaga
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Akiko Matsui
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
35
|
Seo ME, Min BJ, Heo N, Lee KH, Kim JH. Comprehensive in vitro and in silico assessments of metabolic capabilities of 24 genomic variants of CYP2C19 using two different substrates. Front Pharmacol 2023; 14:1055991. [PMID: 36713839 PMCID: PMC9877350 DOI: 10.3389/fphar.2023.1055991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Most hepatically cleared drugs are metabolized by cytochromes P450 (CYPs), and Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines provide curated clinical references for CYPs to apply individual genome data for optimized drug therapy. However, incorporating novel pharmacogenetic variants into guidelines takes considerable time. Methods: We comprehensively assessed the drug metabolizing capabilities of CYP2C19 variants discovered through population sequencing of two substrates, S-mephenytoin and omeprazole. Results: Based on established functional assays, 75% (18/24) of the variants not yet described in Pharmacogene Variation (PharmVar) had significantly altered drug metabolizing capabilities. Of them, seven variants with inappreciable protein expression were evaluated as protein damaging by all three in silico prediction algorithms, Sorting intolerant from tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined annotation dependent depletion (CADD). The five variants with decreased metabolic capability (<50%) of wild type for either substrates were evaluated as protein damaging by all three in silico prediction algorithms, except CADD exact score of NM_000769.4:c.593T>C that was 19.68 (<20.0). In the crystal structure of the five polymorphic proteins, each altered residue of all those proteins was observed to affect the key structures of drug binding specificity. We also identified polymorphic proteins indicating different tendencies of metabolic capability between the two substrates (5/24). Discussion: Therefore, we propose a methodology that combines in silico prediction algorithms and functional assays on polymorphic CYPs with multiple substrates to evaluate the changes in the metabolism of all possible genomic variants in CYP genes. The approach would reinforce existing guidelines and provide information for prescribing appropriate medicines for individual patients.
Collapse
Affiliation(s)
- Myung-Eui Seo
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Joo Min
- National Forensic Service Seoul Institute, Seoul, South Korea
| | - Nayoon Heo
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea,Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| |
Collapse
|
36
|
Rodríguez-Pérez R, Trunzer M, Schneider N, Faller B, Gerebtzoff G. Multispecies Machine Learning Predictions of In Vitro Intrinsic Clearance with Uncertainty Quantification Analyses. Mol Pharm 2023; 20:383-394. [PMID: 36437712 DOI: 10.1021/acs.molpharmaceut.2c00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In pharmaceutical research, compounds are optimized for metabolic stability to avoid a too fast elimination of the drug. Intrinsic clearance (CLint) measured in liver microsomes or hepatocytes is an important parameter during lead optimization. In this work, machine learning models were developed to relate the compound structure to microsomal metabolic stability and predict CLint for new compounds. A multitask (MT) learning architecture was introduced to model the CLint of six species simultaneously, giving as a result a multispecies machine learning model. MT graph neural network (MT-GNN) regression was identified as the top-performing method, and an ensemble of 10 MT-GNN models was evaluated prospectively. Geometric mean fold errors were consistently smaller than 2-fold. Moreover, high precision values were obtained in the prediction of "high" (>300 μL/min/mg) and "low" (<100 μL/min/mg) CLint compounds. Precision values ranged from 80 to 94% for low CLint predictions and from 75 to 97% for high CLint predictions, depending on the species. Uncertainty on experimental values and model predictions was systematically quantified. Experimental variability (aleatoric uncertainty) of all historical Novartis in vitro clearance experiments was analyzed. Interestingly, MT-GNN models' performance approached assays' experimental variability. Moreover, uncertainty estimation in predictions (epistemic uncertainty) enabled identifying predictions associated with lower and higher error. Taken together, our manuscript combines a multispecies deep learning model and large-scale uncertainty analyses to improve CLint predictions and facilitate early informed decisions for compound prioritization.
Collapse
Affiliation(s)
| | - Markus Trunzer
- Novartis Institutes for Biomedical Research, Novartis Campus, BaselCH-4002, Switzerland
| | - Nadine Schneider
- Novartis Institutes for Biomedical Research, Novartis Campus, BaselCH-4002, Switzerland
| | - Bernard Faller
- Novartis Institutes for Biomedical Research, Novartis Campus, BaselCH-4002, Switzerland
| | - Grégori Gerebtzoff
- Novartis Institutes for Biomedical Research, Novartis Campus, BaselCH-4002, Switzerland
| |
Collapse
|
37
|
Meakin AS, Amirmostofian M, Darby JRT, Holman SL, Morrison JL, Wiese MD. Characterisation of cytochrome P450 isoenzyme activity in sheep liver and placental microsomes. Placenta 2023; 131:82-89. [PMID: 36527743 DOI: 10.1016/j.placenta.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Drug metabolism during pregnancy is a complex process that involves maternal, placental and fetal sites of metabolism. Indeed, there is a lack of clarity provided from drug metabolism in human pregnancy due to ethical limitations. Large animal models of human pregnancy provide an opportunity to quantify activity of phase 1 drug metabolism mediated by cytochrome P450 (CYP) enzymes in the maternal, placental, and fetal compartments. Herein, we have validated a comprehensive assay to quantify maternal, placental, and fetal CYP activity. METHODS Isolated microsomes from sheep maternal liver, placenta, and fetal liver (140d gestation, term = 150d) were incubated with CYP-specific probe drugs to quantify the activity of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A. Inhibition studies were performed to validate specificity of probe drugs. The validated assay was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1 and CYP3A were active in maternal liver. In contrast, only CYP1A2, CYP2C8 and CYP2D6 were active in the placenta, whereas CYP2B6, CYP2C8 and CYP2D6 were active in the fetal liver. Of the placental-specific CYPs validated, CYP1A2 increased in type A compared with type D placentomes, whereas CYP2C8 activity increased in type B compared with type A and C. DISCUSSION This study has established conditions for compartment-specific CYP activity in the sheep maternal-placental-fetal unit using a validated and standardised experimental workflow. Compartment- and placentome type-specific CYP activity are important considerations when examining drug metabolism in the maternal-placental-fetal unit and in determining the impact of pregnancy complications.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Marzieh Amirmostofian
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack RT Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
38
|
Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochem Pharmacol 2022; 206:115336. [DOI: 10.1016/j.bcp.2022.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
39
|
Relevance of CYP2D6 Gene Variants in Population Genetic Differentiation. Pharmaceutics 2022; 14:pharmaceutics14112481. [PMID: 36432672 PMCID: PMC9694252 DOI: 10.3390/pharmaceutics14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
A significant portion of the variability in complex features, such as drug response, is likely caused by human genetic diversity. One of the highly polymorphic pharmacogenes is CYP2D6, encoding an enzyme involved in the metabolism of about 25% of commonly prescribed drugs. In a directed search of the 1000 Genomes Phase III variation data, 86 single nucleotide polymorphisms (SNPs) in the CYP2D6 gene were extracted from the genotypes of 2504 individuals from 26 populations, and then used to reconstruct haplotypes. Analyses were performed using Haploview, Phase, and Arlequin softwares. Haplotype and nucleotide diversity were high in all populations, but highest in populations of African ancestry. Pairwise FST showed significant results for eleven SNPs, six of which were characteristic of African populations, while four SNPs were most common in East Asian populations. A principal component analysis of CYP2D6 haplotypes showed that African populations form one cluster, Asian populations form another cluster with East and South Asian populations separated, while European populations form the third cluster. Linkage disequilibrium showed that all African populations have three or more haplotype blocks within the CYP2D6 gene, while other world populations have one, except for Chinese Dai and Punjabi in Pakistan populations, which have two.
Collapse
|
40
|
Hepatoprotective Effect of Grape Seed and Skin Extract Against Lithium Exposure Examined by the Window of Proteomics. Dose Response 2022; 20:15593258221141585. [DOI: 10.1177/15593258221141585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Context The liver is the organ by which the majority of substances are metabolized, including psychotropic drugs. Lithium (Li) used as drug for many neurological disorders such as bipolar disorders. Objective This study aims to assess lithium toxicity and to evaluate the hepatic-protective properties of a grape skin seed and extract (GSSE). Materials and methods Twenty-four male Wistar rats were exposed for 30 days to either various lithium concentrations, GSSE alone, or lithium supplemented with GSSE. The proteomic analysis revealed alterations of liver protein profiles after lithium treatments that were successfully identified by mass spectrometry. Results Lithium treatment induced an oxidative damage by the alteration of antioxidant enzymes activities such as superoxide dismutase, CAT, and Gpx. The regulated proteins are mainly involved in the respiratory electron transport chain, detoxification processes, ribosomal stress pathway, glycolysis, and cytoskeleton. Proteins were differentially expressed in a dose-dependent manner. Interestingly, GSSE reversed the situation and restored the level of liver proteins whose abundance was modified after lithium treatment, arguing for its protective activity. Conclusion Our data demonstrated the ability of proteomic analysis to underline the toxicity mechanisms of lithium in animal models. Based on these results, GSSE may be envisaged as a nutritional supplement to weaken the liver toxicity of lithium.
Collapse
|
41
|
Zhang L, Zhang F, Xiao Y, Du J, Zhang X, Chen M, Wu B. The nuclear receptor REV-ERBα regulates CYP2E1 expression and acetaminophen hepatotoxicity. Xenobiotica 2022; 52:633-643. [PMID: 36149338 DOI: 10.1080/00498254.2022.2128934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CYP2E1 plays an important role in drug metabolism and drug-induced hepatotoxicity. Here, we aimed to investigate a potential role for the nuclear receptor REV-ERBα in regulation of CYP2E1 expression and acetaminophen (APAP)-induced hepatotoxicity, and to determine the underlying mechanisms.Regulatory effects of REV-ERBα on CYP2E1 expression were assessed in vivo (using Rev-erbα-/- mice) and in vitro (using AML12 and HepG2 cells). In vitro microsomal CYP2E1 activity was probed using its specific substrate p-nitrophenol. Pharmacokinetic and acute toxicities studies were performed with Rev-erbα-/- and wild-type mice after APAP administration.We found that Rev-erbα ablation led to decreases in hepatic CYP2E1 expression and activity in mice. In line with this, APAP-induced hepatotoxicity was attenuated in Rev-erbα-deficient mice. The attenuated toxicity was due to down-regulation of APAP metabolism mediated by CYP2E1, which was evidenced by a decrease in formation of the toxic intermediate metabolite NAPQI (i.e., reduced APAP-Cysteine and APAP-N-acetylcysteine levels). Furthermore, positive regulation of CYP2E1 expression by REV-ERBα was confirmed in both AML12 and HepG2 cells. Based on luciferase reporter assays, it was found that REV-ERBα regulated Cyp2e1 transcription and expression through repression of DEC2.In conclusion, REV-ERBα positively regulates CYP2E1 expression in mice, thereby affecting APAP metabolism and hepatotoxicity.
Collapse
Affiliation(s)
- Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhao Du
- School of Medicine, Jinan University, Guangzhou, China
| | | | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Demery-Poulos C, Chambers JM. Identification, conservation, and expression of tiered pharmacogenes in zebrafish. PLoS One 2022; 17:e0273582. [PMID: 36040978 PMCID: PMC9426904 DOI: 10.1371/journal.pone.0273582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The number of adverse drug events in the United States is critically high, with annual rates exceeding 1 million cases over the last nine years. One cause of adverse drug events is the underlying genetic variation that can alter drug responses. Pharmacogenomics is a growing field that seeks to better understand the relationship between a patient’s genetics and drug efficacy. Currently, pharmacogenomics relies largely on human trials, as there is not a well-developed animal model for studying preventative measures and alternative treatments. Here, we analyzed pharmacogene expression at two developmental time points in zebrafish to demonstrate the potential of using this model organism for high-throughput pharmacogenomics research. We found that 76% of tiered human pharmacogenes have a zebrafish ortholog, and of these, many have highly conserved amino acid sequences. Additional gene ontology analysis was used to classify pharmacogenes and identify candidate pathways for future modeling in zebrafish. As precision medicine burgeons, adopting a high-throughput in vivo model such as the zebrafish could greatly increase our understanding of the molecular pathology underlying adverse drug events.
Collapse
Affiliation(s)
- Catherine Demery-Poulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, Indiana, United States
| | - Joseph M. Chambers
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, Indiana, United States
- * E-mail:
| |
Collapse
|
43
|
Elalem EG, Jelani M, Khedr A, Ahmad A, Alaama TY, Alaama MN, Al-Kreathy HM, Damanhouri ZA. Association of cytochromes P450 3A4*22 and 3A5*3 genotypes and polymorphism with response to simvastatin in hypercholesterolemia patients. PLoS One 2022; 17:e0260824. [PMID: 35839255 PMCID: PMC9286239 DOI: 10.1371/journal.pone.0260824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUNDS Inter-individual variability in response to statin was mainly due to genetic differences. This study aimed to investigate the association of CYP3A4*22 (rs35599367), CYP3A5*3 (rs776746) single nucleotide polymorphism (SNP) with response to simvastatin in hypercholesterolemia patients conducted at King Abdulaziz University hospital (KAUH) in Jeddah, Saudi Arabia. PATIENTS AND METHODS A total of 274 participants were registered in the current study. Hypercholesterolemic patients taking simvastatin 20 mg (n = 148) and control subjects (n = 126) were tested for rs35599367 and rs776746 genotypes using Custom Taqman ® Assay Probes. Response to simvastatin in these patients was assessed by determination of low density lipoprotein (LDL-C), total cholesterol (TC) and by measuring statin plasma levels using Liquid Chromatography-Mass Spectrometry (LC-MS). RESULTS None of the participants carried a homozygous CYP3A4*22 mutant genotype, while 12 (4.4%) individuals had a heterozygous genotype and 262 (95.6%) had a wild homozygous genotype. The CYP3A5*3 allele was detected in the homozygous mutant form in 16 (5.8%) individuals, while 74 (27.0%) individuals carried the heterozygous genotype and 184 (67.2%) carried the wildtype homozygous genotype. Of the patient group, 15 (11%) were classified as intermediate metabolizers (IMs) and 133 (89%) as extensive metabolizers (EMs). Plasma simvastatin concentrations for the combined CYP3A4/5 genotypes were significantly (P<0.05) higher in the IMs group than in the EMs group. TC and plasma LDL-C levels were also significantly (P<0.05) higher in IMs than in EMs. CONCLUSION The present study showed associations between CYP3A4*22 (rs35599367) and CYP3A5*3 (rs776746) SNP combination genotypes with response to statins in hypercholesterolemia. Patients who had either a mutant homozygous allele for CYP3A5*3 or mutant homozygous and heterozygous alleles for CYP3A4*22 showed increased response to lower TC and LDL-C levels.
Collapse
Affiliation(s)
- Elbatool G. Elalem
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Musharraf Jelani
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Khedr
- Department of Analytical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tareef Y. Alaama
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabeel Alaama
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M. Al-Kreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoheir A. Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Narayanan V, Rodrigues AL, Dordick JS. Influence of Circadian Rhythm on Drug Metabolism in 3D Hepatic Spheroids. Biotechnol Bioeng 2022; 119:2842-2856. [PMID: 35822281 DOI: 10.1002/bit.28180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
Circadian rhythms are characterized as oscillations that fluctuate based on a 24h cycle and are responsible for regulation of physiological functions. While the internal clock synchronizes gene expression using external cues like light, a similar synchronization can be induced in vitro by incubating the cells with an increased percentage of serum followed by its rapid removal. Previous studies have suggested that synchronization of HepG2 cell line induced the rhythmic expression of drug metabolizing enzymes (DME) most specifically the cytochrome P450 enzymes. However, there is a lack of evidence demonstrating the influence of 3D microenvironment on the rhythmicity of these genes. To understand this interplay, gene expression of the circadian machinery and CYP450s were compared using the model human hepatocarcinoma cell line, HepG2. Upon serum shock synchronization, gene and protein expression of core clock regulators was assessed and rhythmic expression of these genes was demonstrated. Further insight into the interrelations between various gene pairs was obtained using statistical analysis. Using RNA sequencing, an in-depth understanding of the widespread effects of circadian regulation on genes involved in metabolic processes in the liver was obtained. This study aids in the better understanding of chronopharmacokinetic events in humans using physiologically relevant 3D culture systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vibha Narayanan
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Andre L Rodrigues
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Departments of Biological Sciences and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
45
|
Zhai Q, van der Lee M, van Gelder T, Swen JJ. Why We Need to Take a Closer Look at Genetic Contributions to CYP3A Activity. Front Pharmacol 2022; 13:912618. [PMID: 35784699 PMCID: PMC9243486 DOI: 10.3389/fphar.2022.912618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 3A (CYP3A) subfamily enzymes are involved in the metabolism of 40% of drugs in clinical use. Twin studies have indicated that 66% of the variability in CYP3A4 activity is hereditary. Yet, the complexity of the CYP3A locus and the lack of distinct drug metabolizer phenotypes has limited the identification and clinical application of CYP3A genetic variants compared to other Cytochrome P450 enzymes. In recent years evidence has emerged indicating that a substantial part of the missing heritability is caused by low frequency genetic variation. In this review, we outline the current pharmacogenomics knowledge of CYP3A activity and discuss potential future directions to improve our genetic knowledge and ability to explain CYP3A variability.
Collapse
|
46
|
Meakin AS, Darby JR, Holman SL, Wiese MD, Morrison JL. Maternal-placental-fetal drug metabolism is altered by late gestation undernutrition in the pregnant ewe. Life Sci 2022; 298:120521. [DOI: 10.1016/j.lfs.2022.120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
47
|
Brazier-Hicks M, Franco-Ortega S, Watson P, Rougemont B, Cohn J, Dale R, Hawkes TR, Goldberg-Cavalleri A, Onkokesung N, Edwards R. Characterization of Cytochrome P450s with Key Roles in Determining Herbicide Selectivity in Maize. ACS OMEGA 2022; 7:17416-17431. [PMID: 35647462 PMCID: PMC9134415 DOI: 10.1021/acsomega.2c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 06/08/2023]
Abstract
Safeners such as metcamifen and benoxacor are widely used in maize to enhance the selectivity of herbicides through the induction of key detoxifying enzymes, notably cytochrome P450 monooxygenases (CYPs). Using a combination of transcriptomics, proteomics, and functional assays, the safener-inducible CYPs responsible for herbicide metabolism in this globally important crop have been identified. A total of 18 CYPs belonging to clans 71, 72, 74, and 86 were safener-induced, with the respective enzymes expressed in yeast and screened for activity toward thiadiazine (bentazon), sulfonylurea (nicosulfuron), and triketone (mesotrione and tembotrione) chemistries. Herbicide metabolism was largely restricted to family CYP81A members from clan 71, notably CYP81A9, CYP81A16, and CYP81A2. Quantitative transcriptomics and proteomics showed that CYP81A9/CYP81A16 were dominant enzymes in safener-treated field maize, whereas only CYP81A9 was determined in sweet corn. The relationship between CYP81A sequence and activities were investigated by splicing CYP81A2 and CP81A9 together as a series of recombinant chimeras. CYP81A9 showed wide ranging activities toward the three herbicide chemistries, while CYP81A2 uniquely hydroxylated bentazon in multiple positions. The plasticity in substrate specificity of CYP81A9 toward multiple herbicides resided in the second quartile of its N terminal half. Further phylogenetic analysis of CYP81A9 showed that the maize enzyme was related to other CYP81As linked to agrochemical metabolism in cereals and wild grasses, suggesting this clan 71 CYP has a unique function in determining herbicide selectivity in arable crops.
Collapse
Affiliation(s)
- Melissa Brazier-Hicks
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Sara Franco-Ortega
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Philip Watson
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | | | - Jonathan Cohn
- Syngenta
Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, Durham, North Carolina 27709-2257, United States
| | - Richard Dale
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Tim R. Hawkes
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Alina Goldberg-Cavalleri
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Nawaporn Onkokesung
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Robert Edwards
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
48
|
Assessing the Roles of Molecular Markers of Antimalarial Drug Resistance and the Host Pharmacogenetics in Drug-Resistant Malaria. J Trop Med 2022; 2022:3492696. [PMID: 35620049 PMCID: PMC9129956 DOI: 10.1155/2022/3492696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 01/11/2023] Open
Abstract
Malaria caused by the Plasmodium parasites is a major public health concern in malaria-endemic regions with P. falciparum causing the most severe form of the disease. The use of antimalarial drugs for the management of the disease proves to be one of the best methods to manage the disease. Unfortunately, P. falciparum has developed resistance to almost all the current in-use antimalarial drugs. Parasite development of resistance is primarily caused by both parasite and host genetic factors. The parasite genetic factors involve undergoing mutation in the drug target sites or increasing the drug target gene copy number to prevent the intended action of the antimalarial drugs. The host pharmacogenetic factors which determine how a particular antimalarial drug is metabolized could result in variations of drug plasma concentration and consequently contribute to variable treatment outcomes and the emergence or propagation of resistant parasites. Since both host and parasite genomes play a role in antimalarial drug action, a key question often asked is, “which of the two strongly drives or controls antimalarial drug resistance?” A major finding in our recent study published in the Malaria Journal indicates that the parasite's genetic factors rather than the host are likely to energize resistance to an antimalarial drug. However, others have reported contrary findings suggesting that the host genetic factors are the force behind resistance to antimalarial drugs. To bring clarity to these observations, there is the need for deciphering the major driving force behind antimalarial drug resistance through optimized strategies aimed at alleviating the phenomenon. In this direction, literature was systematically reviewed to establish the role and importance of each of the two factors aforementioned in the etiology of drug-resistant malaria. Using Internet search engines such as Pubmed and Google, we looked for terms likely to give the desired information which we herein present. We then went ahead to leverage the obtained information to discuss the globally avid aim of combating antimalarial drug resistance.
Collapse
|
49
|
Tang LWT, Fu J, Koh SK, Wu G, Zhou L, Chan ECY. Metabolic Activation of the Acrylamide Michael Acceptor Warhead in Futibatinib to an Epoxide Intermediate Engenders Covalent Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:931-941. [PMID: 35512804 DOI: 10.1124/dmd.122.000895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Futibatinib (FUT) is a potent inhibitor of fibroblast growth factor receptor (FGFR) 1-4 that is currently under clinical investigation for intrahepatic cholangiocarcinoma. Unlike its predecessors, FUT possesses an acrylamide warhead which enables it to bind covalently to a free cysteine residue in the FGFR kinase domain. However, it remains uninterrogated if this electrophilic α,β-unsaturated carbonyl scaffold could also directly or indirectly engender off-target covalent binding to nucleophilic centres on other cellular proteins. Here, we discovered that FUT inactivated both cytochrome P450 3A (CYP3A) isoforms with K I, k inact, and partition ratio of 12.5 and 51.4 µM, 0.25 and 0.06 min-1 and ~52 and ~58 for CYP3A4 and CYP3A5, respectively. Along with its time-, concentration- and cofactor-dependent inhibitory profile, FUT also exhibited several cardinal features that were consistent with mechanism-based inactivation. Moreover, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from the covalent modification of the P450 apoprotein and/or its heme moiety due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation as well as the absence of the diagnostic Soret peak in spectral analyses. Finally, utilizing GSH trapping and high-resolution mass spectrometry, we illuminated that while the acrylamide moiety in FUT could nonenzymatically conjugate to GSH via Michael addition, it was not implicated in the covalent inactivation of CYP3A. Rather, we surmised that it likely stemmed from the metabolic activation of its acrylamide covalent warhead to a highly electrophilic epoxide intermediate that could covalently modify CYP3A and culminate in its catalytic inactivation. Significance Statement In this study, we reported for the first time the inactivation of CYP3A by FUT. Furthermore, using FUT as an exemplary targeted covalent inhibitor, our study revealed the propensity for its acrylamide Michael acceptor moiety to be metabolically activated to a highly electrophilic epoxide. Due to the growing resurgence of covalent inhibitors and the well-established toxicological ramifications associated with epoxides, we advocate that closer scrutiny be adopted when profiling the reactive metabolites of compounds possessing an α,β-unsaturated carbonyl scaffold.
Collapse
Affiliation(s)
| | - Jiaxin Fu
- National University of Singapore, Singapore
| | | | - Guoyi Wu
- National University of Singapore, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | | |
Collapse
|
50
|
Tang LWT, Lim RYR, Venkatesan G, Chan ECY. Rational deuteration of dronedarone attenuates its toxicity in human hepatic HepG2 cells. Toxicol Res (Camb) 2022; 11:311-324. [PMID: 35510231 PMCID: PMC9052316 DOI: 10.1093/toxres/tfac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Deuteration is a chemical modification strategy that has recently gained traction in drug development. The replacement of one or more hydrogen atom(s) in a drug molecule with its heavier stable isotope deuterium can enhance its metabolic stability and pharmacokinetic properties. However, it remains uninterrogated if rational deuteration at bioactivation "hot-spots" could attenuate its associated toxicological consequences. Here, our preliminary screening with benzofuran antiarrhythmic agents first revealed that dronedarone and its major metabolite N-desbutyldronedarone elicited a greater loss of viability and cytotoxicity in human hepatoma G2 (HepG2) cells as compared with amiodarone and its corresponding metabolite N-desethylamiodarone. A comparison of dronedarone and its in-house synthesized deuterated analogue (termed poyendarone) demonstrated that deuteration could attenuate its in vitro toxicity in HepG2 cells by modulating the extent of mitochondrial dysfunction, reducing the dissipation of mitochondrial membrane potential, and evoking a distinct apoptotic kinetic signature. Furthermore, although pretreatment with the CYP3A inducer rifampicin or the substitution of glucose with galactose in the growth media significantly augmented the loss of cell viability elicited by dronedarone and poyendarone, a lower loss of cell viability was consistently observed in poyendarone across all concentrations. Taken together, our preliminary investigations suggested that the rational deuteration of dronedarone at its benzofuran ring reduces aberrant cytochrome P450 3A4/5-mediated bioactivation, which attenuated its mitochondrial toxicity in human hepatic HepG2 cells.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Royden Yu Ren Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| |
Collapse
|