1
|
Electric-field facilitated rapid and efficient dissociation of tissues Into viable single cells. Sci Rep 2022; 12:10728. [PMID: 35750779 PMCID: PMC9232619 DOI: 10.1038/s41598-022-13068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Single-Cell Analysis is a growing field that endeavors to obtain genetic profiles of individual cells. Disruption of cell-cell junctions and digestion of extracellular matrix in tissues requires tissue-specific mechanical and chemical dissociation protocols. Here, a new approach for dissociating tissues into constituent cells is described. Placing a tissue biopsy core within a liquid-filled cavity and applying an electric field between two parallel plate electrodes facilitates rapid dissociation of complex tissues into single cells. Different solution compositions, electric field strengths, and oscillation frequencies are investigated experimentally and with COMSOL Multiphysics. The method is compared with standard chemical and mechanical approaches for tissue dissociation. Treatment of tissue samples at 100 V/cm 1 kHz facilitated dissociation of 95 ± 4% of biopsy tissue sections in as little as 5 min, threefold faster than conventional chemical-mechanical techniques. The approach affords good dissociation of tissues into single cells while preserving cell viability, morphology, and cell cycle progression, suggesting utility for sample preparation of tissue specimens for direct Single-Cell Analysis.
Collapse
|
2
|
Welch EC, Yu H, Tripathi A. Optimization of a Clinically Relevant Chemical-Mechanical Tissue Dissociation Workflow for Single-Cell Analysis. Cell Mol Bioeng 2021; 14:241-258. [PMID: 34109003 PMCID: PMC8175683 DOI: 10.1007/s12195-021-00667-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION While single-cell analysis technology has flourished, obtaining single cells from complex tissues continues to be a challenge. Current methods require multiple steps and several hours of processing. This study investigates chemical and mechanical methods for clinically relevant preparation of single-cell suspension from frozen biopsy cores of complex tissues. The developed protocol can be completed in 15 min. METHODS Frozen bovine liver biopsy cores were normalized by weight, dimension, and calculated cellular composition. Various chemical reagents were tested for their capability to dissociate the tissue via confocal microscopy, hemocytometry and quantitative flow cytometry. Images were processed using ImageJ. Quantitative flow cytometry with gating analysis was also used for the analysis of dissociation. Physical modeling simulations were conducted in COMSOL Multiphysics. RESULTS A rapid method for tissue dissociation was developed for single-cell analysis techniques. The results of this study show that a combination of 1% type-1 collagenase and pronase or hyaluronidase in 100 U/µL HBSS solution is the most effective at dissociating 2.5 mm thawed bovine liver biopsy cores in 15 min, with dissociation efficiency of 37-42% and viability >90% as verified using live MDA-MB-231 cancer cells. Cellular dissociation is significantly improved by adding a controlled mechanical force during the chemical process, to dissociate 93 ± 8% of the entire tissue into single cells. CONCLUSIONS Understanding cellular dissociation in ex vivo tissues is essential to the development of clinically relevant dissociation workflows. Controlled mechanical force in combination with chemical treatment produces high quality tissue dissociation. This research is relevant to the understanding and assessment of tissue dissociation and the establishment of an automated preparatory workflow for single cell diagnostics. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12195-021-00667-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E. Celeste Welch
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02916 USA
| | - Harry Yu
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02916 USA
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02916 USA
| |
Collapse
|
3
|
Huang X, Torres-Castro K, Varhue W, Salahi A, Rasin A, Honrado C, Brown A, Guler J, Swami NS. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection. LAB ON A CHIP 2021; 21:835-843. [PMID: 33532812 PMCID: PMC8019514 DOI: 10.1039/d0lc01211d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dielectrophoresis (DEP) enables the separation of cells based on subtle subcellular phenotypic differences by controlling the frequency of the applied field. However, current electrode-based geometries extend over a limited depth of the sample channel, thereby reducing the throughput of the manipulated sample (sub-μL min-1 flow rates and <105 cells per mL). We present a flow through device with self-aligned sequential field non-uniformities extending laterally across the sample channel width (100 μm) that are created by metal patterned over the entire depth (50 μm) of the sample channel sidewall using a single lithography step. This enables single-cell streamlines to undergo progressive DEP deflection with minimal dependence on the cell starting position, its orientation versus the field and intercellular interactions. Phenotype-specific cell separation is validated (>μL min-1 flow and >106 cells per mL) using heterogeneous samples of healthy and glutaraldehyde-fixed red blood cells, with single-cell impedance cytometry showing that the DEP collected fractions are intact and exhibit electrical opacity differences consistent with their capacitance-based DEP crossover frequency. This geometry can address the vision of an "all electric" selective cell isolation and cytometry system for quantifying phenotypic heterogeneity of cellular systems.
Collapse
Affiliation(s)
- XuHai Huang
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Karina Torres-Castro
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Walter Varhue
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Ahmed Rasin
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Audrey Brown
- Biology, University of Virginia, Charlottesville, USA
| | | | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. and Chemistry, University of Virginia, Charlottesville, USA
| |
Collapse
|
4
|
McGrath JS, Honrado C, Moore JH, Adair SJ, Varhue WB, Salahi A, Farmehini V, Goudreau BJ, Nagdas S, Blais EM, Bauer TW, Swami NS. Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry. Anal Chim Acta 2019; 1101:90-98. [PMID: 32029124 DOI: 10.1016/j.aca.2019.12.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer lacking specific biomarkers that can be correlated to disease onset, promotion and progression. To assess whether tumor cell electrophysiology may serve as a marker for PDAC tumorigenicity, we use multi-frequency impedance cytometry at high throughput (∼350 cells/s) to measure the electrical phenotype of single PDAC tumor cells from xenografts, which are derived from primary pancreatic tumors versus those from liver metastases of different patients. A novel phase contrast metric based on variations in the high and low frequency impedance phase responses that is related to electrophysiology of the cell interior is found to be systematically altered as a function of tumorigenicity. PDAC cells of higher tumorigenicity exhibited lowered interior conductivity and enhanced permittivity, which is validated by the dielectrophoresis on the respective cell types. Using genetic analysis, we suggest the role of dysregulated Na+ transport and removal of Ca2+ ions from the cytoplasm on key oncogenic KRAS-driven processes that may be responsible for lowering of the interior cell conductivity. We envision that impedance cytometry can serve as a tool to quantify phenotypic heterogeneity for rapidly stratifying tumorigenicity. It can also aid in protocols for dielectrophoretic isolation of cells with a particular phenotype for prognostic studies on patient survival and to tailor therapy selection to specific patients.
Collapse
Affiliation(s)
- J S McGrath
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - C Honrado
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - J H Moore
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - S J Adair
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - W B Varhue
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - A Salahi
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - V Farmehini
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA
| | - B J Goudreau
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - S Nagdas
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - E M Blais
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - T W Bauer
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - N S Swami
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Liu X, Huang J, Li Y, Zhang Y, Li B. Optofluidic organization and transport of cell chain. JOURNAL OF BIOPHOTONICS 2017; 10:1627-1635. [PMID: 28464453 DOI: 10.1002/jbio.201600306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 05/17/2023]
Abstract
Controllable organization and transport of cell chain in a fluid, which is of great importance in biological and medical fields, have attracted increasing attentions in recent years. Here we demonstrate an optofluidic strategy, by implanting the microfluidic technique with a large-tapered-angle fiber probe (LTAP), to organize and transport a cell chain in a noncontact and noninvasive manner. After a laser beam at 980-nm wavelength launched into LTAP, the E. coli cells were continuously trapped and then arranged into a cell chain one after another. The chain can be transported by adjusting the magnitudes of optical force and flow drag force. The proposed technique can also be applied for the eukaryotic cells (e. g., yeast cell) and human red blood cells (RBCs). Experiment results were interpreted by the numerical simulation, and the stiffness of cell chain was also discussed.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianbin Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
6
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
7
|
Chaudhuri PK, Ebrahimi Warkiani M, Jing T, Kenry, Lim CT. Microfluidics for research and applications in oncology. Analyst 2017; 141:504-24. [PMID: 26010996 DOI: 10.1039/c5an00382b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology.
Collapse
Affiliation(s)
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tengyang Jing
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and Department of Biomedical Engineering, National University of Singapore, Singapore 117575.
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411 and BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
| |
Collapse
|
8
|
Wang X, Liu Z, Pang Y. Concentration gradient generation methods based on microfluidic systems. RSC Adv 2017. [DOI: 10.1039/c7ra04494a] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Various concentration gradient generation methods based on microfluidic systems are summarized in this paper.
Collapse
Affiliation(s)
- Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
9
|
Chaudhuri J, Timung S, Dandamudi CB, Mandal TK, Bandyopadhyay D. Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes. Electrophoresis 2016; 38:278-286. [PMID: 27436402 DOI: 10.1002/elps.201600276] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 01/24/2023]
Abstract
Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non-invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil-water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil-water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one-step method to form water-in-oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.
Collapse
Affiliation(s)
- Joydip Chaudhuri
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, India
| | - Seim Timung
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, India
| | | | - Tapas Kumar Mandal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, India.,Centre for Nanotechnology, Indian Institute of Technology, Guwahati, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, India.,Centre for Nanotechnology, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
10
|
A review of chemical gradient systems for cell analysis. Anal Chim Acta 2016; 907:7-17. [DOI: 10.1016/j.aca.2015.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/01/2015] [Accepted: 12/12/2015] [Indexed: 01/22/2023]
|
11
|
Chuang CH, Du YC, Wu TF, Chen CH, Lee DH, Chen SM, Huang TC, Wu HP, Shaikh MO. Immunosensor for the ultrasensitive and quantitative detection of bladder cancer in point of care testing. Biosens Bioelectron 2015; 84:126-32. [PMID: 26777732 DOI: 10.1016/j.bios.2015.12.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 01/09/2023]
Abstract
An ultrasensitive and real-time impedance based immunosensor has been fabricated for the quantitative detection of Galectin-1 (Gal-1) protein, a biomarker for the onset of multiple oncological conditions, especially bladder cancer. The chip consists of a gold annular interdigitated microelectrode array (3×3 format with a sensing area of 200µm) patterned using standard microfabrication processes, with the ability to electrically address each electrode individually. To improve sensitivity and immobilization efficiency, we have utilized nanoprobes (Gal-1 antibodies conjugated to alumina nanoparticles through silane modification) that are trapped on the microelectrode surface using programmable dielectrophoretic manipulations. The limit of detection of the immunosensor for Gal-1 protein is 0.0078mg/ml of T24 (Grade III) cell lysate in phosphate buffered saline, artificial urine and human urine samples. The normalized impedance variations show a linear dependence on the concentration of cell lysate present while specificity is demonstrated by comparing the immunosensor response for two different grades of bladder cancer cell lysates. We have also designed a portable impedance analyzing device to connect the immunosensor for regular checkup in point of care testing with the ability to transfer data over the internet using a personal computer. We believe that this diagnostic system would allow for improved public health monitoring and aid in early cancer diagnosis.
Collapse
Affiliation(s)
- Cheng-Hsin Chuang
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Yi-Chun Du
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Ting-Feng Wu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Cheng-Ho Chen
- Department of Chemistry and Material Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Da-Huei Lee
- Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Shih-Min Chen
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Ting-Chi Huang
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Hsun-Pei Wu
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Muhammad Omar Shaikh
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| |
Collapse
|
12
|
Rajta I, Huszánk R, Szabó ATT, Nagy GUL, Szilasi S, Fürjes P, Holczer E, Fekete Z, Járvás G, Szigeti M, Hajba L, Bodnár J, Guttman A. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility. Electrophoresis 2015; 37:498-503. [DOI: 10.1002/elps.201500254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | | | - Peter Fürjes
- Hungarian Academy of Sciences, Centre for Energy Research; Institute of Technical Physics and Materials Science; Budapest Hungary
| | - Eszter Holczer
- Hungarian Academy of Sciences, Centre for Energy Research; Institute of Technical Physics and Materials Science; Budapest Hungary
| | - Zoltan Fekete
- Hungarian Academy of Sciences, Centre for Energy Research; Institute of Technical Physics and Materials Science; Budapest Hungary
| | - Gabor Járvás
- MTA-PE Translational Glycomics Group, MUKKI; University of Pannonia; Veszprém Hungary
| | - Marton Szigeti
- MTA-PE Translational Glycomics Group, MUKKI; University of Pannonia; Veszprém Hungary
- Horvath Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| | - Laszlo Hajba
- MTA-PE Translational Glycomics Group, MUKKI; University of Pannonia; Veszprém Hungary
| | - Judit Bodnár
- MTA-PE Translational Glycomics Group, MUKKI; University of Pannonia; Veszprém Hungary
| | - Andras Guttman
- MTA-PE Translational Glycomics Group, MUKKI; University of Pannonia; Veszprém Hungary
- Horvath Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| |
Collapse
|
13
|
Huszank R, Rajta I, Cserháti C. Direct formation of high aspect ratio multiple tilted micropillar array in liquid phase PDMS by proton beam writing. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Somaweera H, Haputhanthri SO, Ibraguimov A, Pappas D. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation. Analyst 2015; 140:5029-38. [DOI: 10.1039/c5an00481k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies.
Collapse
Affiliation(s)
- Himali Somaweera
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | | | - Akif Ibraguimov
- Department of Mathematics and Statistics
- Texas Tech University
- Lubbock
- USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
15
|
Sharma A, Chaudhuri J, Kumar V, Timung S, Mandal TK, Bandyopadhyay D. Digitization of two-phase flow patterns in a microchannel induced by an external AC field. RSC Adv 2015. [DOI: 10.1039/c5ra02451j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An externally applied alternating current (AC) electrostatic field can deform the interface of a pair of weakly conducting liquids to engender droplet flow patterns inside the ‘T’ shaped microchannels.
Collapse
Affiliation(s)
- Abhinav Sharma
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
| | - Joydip Chaudhuri
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
| | - Vineet Kumar
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
| | - Seim Timung
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
| | - Tapas Kumar Mandal
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
| |
Collapse
|
16
|
Song Y, Li M, Pan X, Wang Q, Li D. Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip. Electrophoresis 2014; 36:398-404. [DOI: 10.1002/elps.201400292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Mengqi Li
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Xinxiang Pan
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Qi Wang
- Department of Respiratory Medicine; The second affiliated hospital of Dalian Medical University; Dalian P. R. China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
17
|
Jarvas G, Szigeti M, Hajba L, Furjes P, Guttman A. Computational Fluid Dynamics-Based Design of a Microfabricated Cell Capture Device. J Chromatogr Sci 2014; 53:411-6. [DOI: 10.1093/chromsci/bmu110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Witte C, Kremer C, Chanasakulniyom M, Reboud J, Wilson R, Cooper JM, Neale SL. Spatially selecting a single cell for lysis using light-induced electric fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3026-31. [PMID: 24719234 DOI: 10.1002/smll.201400247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Indexed: 05/16/2023]
Abstract
An optoelectronic tweezing (OET) device, within an integrated microfluidic channel, is used to precisely select single cells for lysis among dense populations. Cells to be lysed are exposed to higher electrical fields than their neighbours by illuminating a photoconductive film underneath them. Using beam spot sizes as low as 2.5 μm, 100% lysis efficiency is reached in <1 min allowing the targeted lysis of cells.
Collapse
Affiliation(s)
- Christian Witte
- University of Glasgow, Division of Biomedical Engineering, G12 8LT, Scotland
| | | | | | | | | | | | | |
Collapse
|
19
|
Ren L, Su X, Wang Y, Xu J, Ning K. QSpec: online control and data analysis system for single-cell Raman spectroscopy. PeerJ 2014; 2:e436. [PMID: 25024908 PMCID: PMC4081187 DOI: 10.7717/peerj.436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/29/2014] [Indexed: 11/20/2022] Open
Abstract
Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS) has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS). Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.
Collapse
Affiliation(s)
- Lihui Ren
- Bioinformatics Group of Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong , P.R. China
| | - Xiaoquan Su
- Bioinformatics Group of Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong , P.R. China
| | - Yun Wang
- Bioinformatics Group of Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong , P.R. China
| | - Jian Xu
- Bioinformatics Group of Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong , P.R. China
| | - Kang Ning
- Bioinformatics Group of Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong , P.R. China
| |
Collapse
|
20
|
Jarvas G, Guttman A. Modeling of cell sorting and rare cell capture with microfabricated biodevices. Trends Biotechnol 2013; 31:696-703. [DOI: 10.1016/j.tibtech.2013.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 01/22/2023]
|
21
|
Wlodkowic D, Skommer J, Akagi J, Fujimura Y, Takeda K. Multiparameter analysis of apoptosis using lab-on-a-chip flow cytometry. CURRENT PROTOCOLS IN CYTOMETRY 2013; 66:9.42.1-9.42.15. [PMID: 24510726 DOI: 10.1002/0471142956.cy0942s66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The age of microfluidic flow cytometry (µFCM) is fast becoming a reality. One of the most exciting applications of miniaturized chip-based cytometers is multivariate analysis using sampling volumes as small as 10 µl while matching the multiparameter data collection of conventional flow cytometers. We outline several innovative protocols for analyzing caspase-dependent cell death and cell cycle (DNA-content) profile using a fully integrated microfluidic flow cytometry system, Fishman-R. The first protocol describes the use of a new plasma membrane-permeability marker, DRAQ7, and the fluorogenic caspase substrate PhiPhiLux to track caspase activation during programmed cell death. Also outlined is the use of DRAQ7 fluorochrome in conjunction with the mitochondrial membrane potential-sensitive probe TMRM to track dissipation of inner mitochondrial cross-membrane potential. Another protocol adds the ability to measure dissipation of mitochondrial inner membrane potential (using TMRM probe) in relation to the cell cycle profile (using DRAQ5 probe) in living leukemic cells. Finally, we describe the combined use of fluorogenic caspases substrate PhiPhiLux with DRAQ5 probe to measure caspase activation in relation to the cell cycle profile in living tumor cells.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- The BioMEMS Research Group, School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Joanna Skommer
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jin Akagi
- The BioMEMS Research Group, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Yoo Fujimura
- R&D Division, On-chip Biotechnologies, Tokyo, Japan
| | - Kazuo Takeda
- R&D Division, On-chip Biotechnologies, Tokyo, Japan
| |
Collapse
|
22
|
Epstein RJ. Has discovery-based cancer research been a bust? Clin Transl Oncol 2013; 15:865-70. [PMID: 24002944 DOI: 10.1007/s12094-013-1071-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
Abstract
The completion of the human genome sequence sparked optimism about prospects for new anticancer drug development, but clinical progress over the last decade has proven slower than expected. Here it is proposed that unrealistically high expectations of first-generation discovery-based diagnostics have contributed to this problem. Hypothesis-based single-molecule tests (e.g., mutation screening of KRAS, EGFR, BRAF or KIT genes) continue to change clinical practice incrementally, whereas first-generation multiplex assays--such as gene expression profiling and proteomics--have identified few high-impact therapeutic targets despite numerous correlations with prognosis. To move forward, second-generation multiplex diagnostics should be based not on statistical patterns/associations alone, but on clinically interpretable ('high-signal-to-noise') data such as change-of-function mutations, gene amplifications, recurrent chromosomal anomalies, and abnormal phosphorylation profiles of ERK or mTOR signaling cascades.
Collapse
Affiliation(s)
- R J Epstein
- Department of Oncology, Clinical Cancer Informatics & Research Centre, The Kinghorn Cancer Centre, Sydney, Australia,
| |
Collapse
|
23
|
Furia L, Pelicci PG, Faretta M. A computational platform for robotized fluorescence microscopy (I): high-content image-based cell-cycle analysis. Cytometry A 2013; 83:333-43. [PMID: 23463605 DOI: 10.1002/cyto.a.22266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 01/11/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hardware automation and software development have allowed a dramatic increase of throughput in both acquisition and analysis of images by associating an optimized statistical significance with fluorescence microscopy. Despite the numerous common points between fluorescence microscopy and flow cytometry (FCM), the enormous amount of applications developed for the latter have found relatively low space among the modern high-resolution imaging techniques. With the aim to fulfill this gap, we developed a novel computational platform named A.M.I.CO. (Automated Microscopy for Image-Cytometry) for the quantitative analysis of images from widefield and confocal robotized microscopes. Thanks to the setting up of both staining protocols and analysis procedures, we were able to recapitulate many FCM assays. In particular, we focused on the measurement of DNA content and the reconstruction of cell-cycle profiles with optimal parameters. Standard automated microscopes were employed at the highest optical resolution (200 nm), and white-light sources made it possible to perform an efficient multiparameter analysis. DNA- and protein-content measurements were complemented with image-derived information on their intracellular spatial distribution. Notably, the developed tools create a direct link between image-analysis and acquisition. It is therefore possible to isolate target populations according to a definite quantitative profile, and to relocate physically them for diffraction-limited data acquisition. Thanks to its flexibility and analysis-driven acquisition, A.M.I.CO. can integrate flow, image-stream and laser-scanning cytometry analysis, providing high-resolution intracellular analysis with a previously unreached statistical relevance.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus for Oncogenomics, Milano 20139, Italy
| | | | | |
Collapse
|
24
|
Liu Y, Butler WB, Pappas D. Spatially selective reagent delivery into cancer cells using a two-layer microfluidic culture system. Anal Chim Acta 2012; 743:125-30. [PMID: 22882832 PMCID: PMC3439837 DOI: 10.1016/j.aca.2012.06.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 12/31/2022]
Abstract
In this work, we demonstrate a two-layer microfluidic system capable of spatially selective delivery of drugs and other reagents under low shear stress. Loading occurs by hydrodynamically focusing a reagent stream over a particular region of the cell culture. The system consisted of a cell culture chamber and fluid flow channel, which were located in different layers to reduce shear stress on cells. Cells in the center of the culture chamber were exposed to parallel streams of laminar flow, which allowed fast changes to be made to the cellular environment. The shear force was reduced to 2.7 dyn cm(-2) in the two-layer device (vs. 6.0 dyn cm(-2) in a one-layer device). Cells in the side of the culture chamber were exposed to the side streams of buffer; the shear force was further reduced to a greater extent since the sides of the culture chamber were separated from the main fluid path. The channel shape and flow rate of the multiple streams were optimized for spatially controlled reagent delivery. The boundaries between streams were well controlled at a flow rate of 0.1 mL h(-1), which was optimized for all streams. We demonstrated multi-reagent delivery to different regions of the same culture well, as well as selective treatment of cancer cells with a built in control group in the same well. In the case of apoptosis induction using staurosporine, 10% of cells remained viable after 24 h of exposure. Cells in the same chamber, but not exposed to staurosporine, had a viability of 90%. This chip allows dynamic observation of cellular behavior immediately after drug delivery, as well as long-term drug treatment with the benefit of large cell numbers, device simplicity, and low shear stress.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - W. Boyd Butler
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
25
|
Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. LAB ON A CHIP 2012; 12:1753-67. [PMID: 22437479 DOI: 10.1039/c2lc21273k] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article reviews the recent developments in microfluidic technologies for in vitro cancer diagnosis. We summarize the working principles and experimental results of key microfluidic platforms for cancer cell detection, characterization, and separation based on cell-affinity micro-chromatography, magnetic activated micro-sorting, and cellular biophysics (e.g., cell size and mechanical and electrical properties). We examine the advantages and limitations of each technique and discuss future research opportunities for improving device throughput and purity, and for enabling on-chip analysis of captured cancer cells.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | | | | |
Collapse
|
26
|
Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT. Perspective on diagnostics for global health. IEEE Pulse 2012; 2:40-50. [PMID: 22147068 DOI: 10.1109/mpul.2011.942766] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Elain Fu
- Department of Bioengineering, University of Washington, Washington, USA.
| | | | | | | | | |
Collapse
|
27
|
Abstract
An important problem in translational cancer research is our limited ability to functionally characterize behaviors of primary patient cancer cells and associated stromal cell types, and relate mechanistic understanding to therapy selection. Functional analyses of primary samples face at least 3 major challenges: limited availability of primary samples for testing, paucity of functional information extracted from samples, and lack of functional methods accessible to many researchers. We developed a microscale cell culture platform that overcomes these limitations, especially for hematologic cancers. A key feature of the platform is the ability to compartmentalize small populations of adherent and nonadherent cells in controlled microenvironments that can better reflect physiological conditions and enable cell-cell interaction studies. Custom image analysis was developed to measure cell viability and protein subcellular localizations in single cells to provide insights into heterogeneity of cellular responses. We validated our platform by assessing viability and nuclear translocations of NF-κB and STAT3 in multiple myeloma cells exposed to different conditions, including cocultured bone marrow stromal cells. We further assessed its utility by analyzing NF-κB activation in a primary chronic lymphocytic leukemia patient sample. Our platform can be applied to myriad biological questions, enabling high-content functional cytomics of primary hematologic malignancies.
Collapse
|
28
|
Wlodkowic D, Khoshmanesh K, Sharpe JC, Darzynkiewicz Z, Cooper JM. Apoptosis goes on a chip: advances in the microfluidic analysis of programmed cell death. Anal Chem 2011; 83:6439-46. [PMID: 21630641 PMCID: PMC3251906 DOI: 10.1021/ac200588g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have brought enormous progress in cell-based lab-on-a-chip technologies, allowing dynamic studies of cell death with an unprecedented accuracy. As interest in the microfabricated technologies for cell-based bioassays is rapidly gaining momentum, we highlight the most promising technologies that provide a new outlook for the rapid assessment of programmed and accidental cell death and are applicable in drug discovery, high-content drug screening, and personalized clinical diagnostics.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Biffi E, Menegon A, Piraino F, Pedrocchi A, Fiore GB, Rasponi M. Validation of long-term primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates. Biotechnol Bioeng 2011; 109:166-75. [PMID: 21858786 DOI: 10.1002/bit.23310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 01/09/2023]
Abstract
In vitro recording of neuronal electrical activity is a widely used technique to understand brain functions and to study the effect of drugs on the central nervous system. The integration of microfluidic devices with microelectrode arrays (MEAs) enables the recording of networks activity in a controlled microenvironment. In this work, an integrated microfluidic system for neuronal cultures was developed, reversibly coupling a PDMS microfluidic device with a commercial flat MEA through magnetic forces. Neurons from mouse embryos were cultured in a 100 µm channel and their activity was followed up to 18 days in vitro. The maturation of the networks and their morphological and functional characteristics were comparable with those of networks cultured in macro-environments and described in literature. In this work, we successfully demonstrated the ability of long-term culturing of primary neuronal cells in a reversible bonded microfluidic device (based on magnetism) that will be fundamental for neuropharmacological studies.
Collapse
Affiliation(s)
- Emilia Biffi
- Politecnico di Milano, Bioengineering Department, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Werner M, Merenda F, Piguet J, Salathé RP, Vogel H. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. LAB ON A CHIP 2011; 11:2432-9. [PMID: 21655617 DOI: 10.1039/c1lc20181f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Analysis of genetic and functional variability in populations of living cells requires experimental techniques capable of monitoring cellular processes such as cell signaling of many single cells in parallel while offering the possibility to sort interesting cell phenotypes for further investigations. Although flow cytometry is able to sequentially probe and sort thousands of cells per second, dynamic processes cannot be experimentally accessed on single cells due to the sub-second sampling time. Cellular dynamics can be measured by image cytometry of surface-immobilized cells, however, cell sorting is complicated under these conditions due to cell attachment. We here developed a cytometric tool based on refractive multiple optical tweezers combined with microfluidics and optical microscopy. We demonstrate contact-free immobilization of more than 200 yeast cells into a high-density array of optical traps in a microfluidic chip. The cell array could be moved to specific locations of the chip enabling us to expose in a controlled manner the cells to reagents and to analyze the responses of individual cells in a highly parallel format using fluorescence microscopy. We further established a method to sort single cells within the microfluidic device using an additional steerable optical trap. Ratiometric fluorescence imaging of intracellular pH of trapped yeast cells allowed us on the one hand to measure the effect of the trapping laser on the cells' viability and on the other hand to probe the dynamic response of the cells upon glucose sensing.
Collapse
Affiliation(s)
- Michael Werner
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Wlodkowic D, Khoshmanesh K, Akagi J, Williams DE, Cooper JM. Wormometry-on-a-chip: Innovative technologies for in situ analysis of small multicellular organisms. Cytometry A 2011; 79:799-813. [PMID: 21548078 DOI: 10.1002/cyto.a.21070] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/09/2011] [Accepted: 03/30/2011] [Indexed: 12/12/2022]
Abstract
Small multicellular organisms such as nematodes, fruit flies, clawed frogs, and zebrafish are emerging models for an increasing number of biomedical and environmental studies. They offer substantial advantages over cell lines and isolated tissues, providing analysis under normal physiological milieu of the whole organism. Many bioassays performed on these alternative animal models mirror with a high level of accuracy those performed on inherently low-throughput, costly, and ethically controversial mammalian models of human disease. Analysis of small model organisms in a high-throughput and high-content manner is, however, still a challenging task not easily susceptible to laboratory automation. In this context, recent advances in photonics, electronics, as well as material sciences have facilitated the emergence of miniaturized bioanalytical systems collectively known as Lab-on-a-Chip (LOC). These technologies combine micro- and nanoscale sciences, allowing the application of laminar fluid flow at ultralow volumes in spatially confined chip-based circuitry. LOC technologies are particularly advantageous for the development of a wide array of automated functionalities. The present work outlines the development of innovative miniaturized chip-based devices for the in situ analysis of small model organisms. We also introduce a new term "wormometry" to collectively distinguish these up-and-coming chip-based technologies that go far beyond the conventional meaning of the term "cytometry."
Collapse
Affiliation(s)
- Donald Wlodkowic
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, 1142, New Zealand.
| | | | | | | | | |
Collapse
|
32
|
Khoshmanesh K, Akagi J, Nahavandi S, Kalantar-zadeh K, Baratchi S, Williams DE, Cooper JM, Wlodkowic D. Interfacing Cell-Based Assays in Environmental Scanning Electron Microscopy Using Dielectrophoresis. Anal Chem 2011; 83:3217-21. [DOI: 10.1021/ac2002142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khashayar Khoshmanesh
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, New Zealand
- Centre for Intelligent Systems Research, Deakin University, Waurn Ponds, Australia
| | - Jin Akagi
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, New Zealand
| | - Saeid Nahavandi
- Centre for Intelligent Systems Research, Deakin University, Waurn Ponds, Australia
| | | | - Sara Baratchi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - David E. Williams
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, New Zealand
| | - Jonathan M. Cooper
- The Bioelectronics Research Centre, Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Donald Wlodkowic
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Khoshmanesh K, Akagi J, Nahavandi S, Skommer J, Baratchi S, Cooper JM, Kalantar-Zadeh K, Williams DE, Wlodkowic D. Dynamic analysis of drug-induced cytotoxicity using chip-based dielectrophoretic cell immobilization technology. Anal Chem 2011; 83:2133-44. [PMID: 21344868 DOI: 10.1021/ac1029456] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantification of programmed and accidental cell death provides useful end-points for the anticancer drug efficacy assessment. Cell death is, however, a stochastic process. Therefore, the opportunity to dynamically quantify individual cellular states is advantageous over the commonly employed static, end-point assays. In this work, we describe the development and application of a microfabricated, dielectrophoretic (DEP) cell immobilization platform for the real-time analysis of cancer drug-induced cytotoxicity. Microelectrode arrays were designed to generate weak electro-thermal vortices that support efficient drug mixing and rapid cell immobilization at the delta-shape regions of strong electric field formed between the opposite microelectrodes. We applied this technology to the dynamic analysis of hematopoietic tumor cells that represent a particular challenge for real-time imaging due to their dislodgement during image acquisition. The present study was designed to provide a comprehensive mechanistic rationale for accelerated cell-based assays on DEP chips using real-time labeling with cell permeability markers. In this context, we provide data on the complex behavior of viable vs dying cells in the DEP fields and probe the effects of DEP fields upon cell responses to anticancer drugs and overall bioassay performance. Results indicate that simple DEP cell immobilization technology can be readily applied for the dynamic analysis of investigational drugs in hematopoietic cancer cells. This ability is of particular importance in studying the outcome of patient derived cancer cells, when exposed to therapeutic drugs, as these cells are often rare and difficult to collect, purify and immobilize.
Collapse
Affiliation(s)
- Khashayar Khoshmanesh
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wlodkowic D, Darzynkiewicz Z. Rise of the micromachines: microfluidics and the future of cytometry. Methods Cell Biol 2011; 102:105-25. [PMID: 21704837 DOI: 10.1016/b978-0-12-374912-3.00005-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The past decade has brought many innovations to the field of flow and image-based cytometry. These advancements can be seen in the current miniaturization trends and simplification of analytical components found in the conventional flow cytometers. On the other hand, the maturation of multispectral imaging cytometry in flow imaging and the slide-based laser scanning cytometers offers great hopes for improved data quality and throughput while proving new vistas for the multiparameter, real-time analysis of cells and tissues. Importantly, however, cytometry remains a viable and very dynamic field of modern engineering. Technological milestones and innovations made over the last couple of years are bringing the next generation of cytometers out of centralized core facilities while making it much more affordable and user friendly. In this context, the development of microfluidic, lab-on-a-chip (LOC) technologies is one of the most innovative and cost-effective approaches toward the advancement of cytometry. LOC devices promise new functionalities that can overcome current limitations while at the same time promise greatly reduced costs, increased sensitivity, and ultra high throughputs. We can expect that the current pace in the development of novel microfabricated cytometric systems will open up groundbreaking vistas for the field of cytometry, lead to the renaissance of cytometric techniques and most importantly greatly support the wider availability of these enabling bioanalytical technologies.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
35
|
Darzynkiewicz Z, Traganos F, Zhao H, Halicka HD, Skommer J, Wlodkowic D. Analysis of individual molecular events of DNA damage response by flow- and image-assisted cytometry. Methods Cell Biol 2011; 103:115-47. [PMID: 21722802 DOI: 10.1016/b978-0-12-385493-3.00006-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This chapter describes molecular mechanisms of DNA damage response (DDR) and presents flow- and image-assisted cytometric approaches to assess these mechanisms and measure the extent of DDR in individual cells. DNA damage was induced by cell treatment with oxidizing agents, UV light, DNA topoisomerase I or II inhibitors, cisplatin, tobacco smoke, and by exogenous and endogenous oxidants. Chromatin relaxation (decondensation) is an early event of DDR chromatin that involves modification of high mobility group proteins (HMGs) and histone H1 and was detected by cytometry by analysis of the susceptibility of DNA in situ to denaturation using the metachromatic fluorochrome acridine orange. Translocation of the MRN complex consisting of Meiotic Recombination 11 Homolog A (Mre11), Rad50 homolog, and Nijmegen Breakage Syndrome 1 (NMR1) into DNA damage sites was assessed by laser scanning cytometry as the increase in the intensity of maximal pixel as well as integral value of Mre11 immunofluorescence. Examples of cytometric detection of activation of Ataxia telangiectasia mutated (ATM), and Check 2 (Chk2) protein kinases using phospho-specific Abs targeting Ser1981 and Thr68 of these proteins, respectively are also presented. We also discuss approaches to correlate activation of ATM and Chk2 with phosphorylation of p53 on Ser15 and histone H2AX on Ser139 as well as with cell cycle position and DNA replication. The capability of laser scanning cytometry to quantify individual foci of phosphorylated H2AX and/or ATM that provides more dependable assessment of the presence of DNA double-strand breaks is outlined. The new microfluidic Lab-on-a-Chip platforms for interrogation of individual cells offer a novel approach for DDR cytometric analysis.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cytometric techniques are continually being improved, refined, and adapted to new applications. This chapter briefly outlines recent advances in the field of cytometry with the main focus on new instrumentations in flow and image cytometry as well as new probes suitable for multiparametric analyses. There is a remarkable trend for miniaturizing cytometers, developing label-free and fluorescence-free analytical approaches, and designing "intelligent" probes. Furthermore, new methods for analyzing complex data for extracting relevant information are reviewed.
Collapse
|
37
|
Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 2011; 26:1800-14. [PMID: 20933384 DOI: 10.1016/j.bios.2010.09.022] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
38
|
Tuleuova N, Revzin A. Micropatterning of Aptamer Beacons to Create Cytokine-Sensing Surfaces. Cell Mol Bioeng 2010; 3:337-344. [PMID: 21170394 PMCID: PMC2991185 DOI: 10.1007/s12195-010-0148-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/08/2010] [Indexed: 01/09/2023] Open
Abstract
Aptamer beacons are DNA or RNA probes that bind proteins or small molecules of interest and emit signal directly upon interaction with the target analyte. This paper describes micropatterning of aptamer beacons for detection of IFN-γ—an important inflammatory cytokine. The beacon consisted of a fluorophore-labeled aptamer strand hybridized with a shorter, quencher-carrying complementary strand. Cytokine molecules were expected to displace quenching strands of the beacon, disrupting FRET effect and resulting in fluorescence signal. The glass substrate was first micropatterned with poly(ethylene glycol) (PEG) hydrogel microwells (35 μm diameter individual wells) so as to define sites for attachment of beacon molecules. PEG microwell arrays were then incubated with avidin followed by biotin-aptamer-fluorophore constructs. Subsequent incubation with quencher-carrying complementary strands resulted in formation of DNA duplex and caused quenching of fluorescence due to FRET effect. When exposed to IFN-γ, microwells changed fluorescence from low (quencher hybridized with fluorophore-carrying strand) to high (quenching strand displaced by cytokine molecules). The fluorescence signal was confined to microwells, was changing in real-time and was dependent on the concentration of IFN-γ. In the future, we plan to co-localize aptamer beacons and cells on micropatterned surfaces in order to monitor in real-time cytokine secretion from immune cells in microwells.
Collapse
Affiliation(s)
- Nazgul Tuleuova
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, #2519, Davis, CA 95616 USA
- National Center for Biotechnology, Astana, Kazakhstan
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, #2519, Davis, CA 95616 USA
| |
Collapse
|
39
|
Wlodkowic D, Darzynkiewicz Z. Microfluidics: Emerging prospects for anti-cancer drug screening. World J Clin Oncol 2010; 1:18-23. [PMID: 21603306 PMCID: PMC3095457 DOI: 10.5306/wjco.v1.i1.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 02/06/2023] Open
Abstract
Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines.
Collapse
Affiliation(s)
- Donald Wlodkowic
- Donald Wlodkowic, Auckland Microfabrication Facility, Department of Chemistry, University of Auckland, 1142 Auckland, New Zealand
| | | |
Collapse
|
40
|
Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A. Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 2010; 398:227-38. [PMID: 20623273 DOI: 10.1007/s00216-010-3933-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 12/15/2022]
Abstract
It has been estimated that over a billion dollars in resources can be consumed to obtain clinical approval, and only a few new chemical entities are approved by the US Food and Drug Administration (FDA) each year. Therefore it is of utmost importance to obtain the maximum amount of information about biological activity, toxicological profile, biochemical mechanisms, and off-target interactions of drug-candidate leads in the earliest stages of drug discovery. Cell-based assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of the drug-discovery process. Nevertheless, cellular screening, relying on different strategies ranging from reporter gene technology to protein fragment complementation assays, still presents a variety of challenges. This review focuses on main advantages and limitations of different cell-based approaches, and future directions and trends in this fascinating field.
Collapse
Affiliation(s)
- Elisa Michelini
- Department of Pharmaceutical Sciences, University of Bologna, Via Mentana, 7, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|