1
|
Gwon G, Jung Y, Hong H, Cho H, Kim H, Kim KH, Kim NH. Real-Time Monitoring of Molecules in Aqueous Solution via a Surface-Functionalized Ag-Anodic Aluminum Oxide Surface-Enhanced Raman Scattering Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53123-53131. [PMID: 39313356 DOI: 10.1021/acsami.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Real-time monitoring of molecular species in aqueous solutions is crucial for diverse scientific applications, from biomedical diagnostics to environmental analysis. In this study, we investigate the selective detection and discrimination of specific molecules in aqueous solution samples using a Ag-coated anodized aluminum oxide (Ag-AAO) surface functionalized with thiol molecules. Our investigation harnesses the power of surface-enhanced Raman scattering (SERS) synergized with principal component analysis (PCA) to elucidate the distinctive signatures of aqueous dopamine and l-tyrosine molecules. By scrutinizing the Raman spectra of surface-treated molecules, we unveil nuanced variations driven by the unique functional groups of the thiol molecules and their dynamic interactions with the target molecules in solution. Notably, we observe different alterations in the SERS spectra of Ag-AAO surface-functionalized boronic acid molecules for detection of dopamine and l-tyrosine, even at a concentration as low as 10-8 M. Moreover, the spectral PCA elucidates the discrimination of dopamine and l-tyrosine within the aqueous environment attributed to the different molecular interactions near SERS-active hotspots. Our findings facilitate real-time monitoring of minute analytes with exceptional molecular selectivity, ushering in an era of precise chemical analysis in aqueous solutions.
Collapse
Affiliation(s)
- Geunyeol Gwon
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yujin Jung
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyowon Hong
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Heeyeong Cho
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyunwoo Kim
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyoung-Ho Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nam Hoon Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
Hassan M, Zhao Y, Zughaier SM. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:375. [PMID: 39194603 DOI: 10.3390/bios14080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Rapid identification of microorganisms with a high sensitivity and selectivity is of great interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection platform has been extensively used for bacterial detection, and the effort has been extended to clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review aims to cover the development of SERS-based methods for bacterial detection with an emphasis on the source of the signal, techniques used to improve the limit of detection and specificity, and the application of SERS in high-throughput settings and complex samples. The challenges and advancements with the implementation of artificial intelligence (AI) are also discussed.
Collapse
Affiliation(s)
- Manal Hassan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Raki H, Aalaila Y, Taktour A, Peluffo-Ordóñez DH. Combining AI Tools with Non-Destructive Technologies for Crop-Based Food Safety: A Comprehensive Review. Foods 2023; 13:11. [PMID: 38201039 PMCID: PMC10777928 DOI: 10.3390/foods13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
On a global scale, food safety and security aspects entail consideration throughout the farm-to-fork continuum, considering food's supply chain. Generally, the agrifood system is a multiplex network of interconnected features and processes, with a hard predictive rate, where maintaining the food's safety is an indispensable element and is part of the Sustainable Development Goals (SDGs). It has led the scientific community to develop advanced applied analytical methods, such as machine learning (ML) and deep learning (DL) techniques applied for assessing foodborne diseases. The main objective of this paper is to contribute to the development of the consensus version of ongoing research about the application of Artificial Intelligence (AI) tools in the domain of food-crop safety from an analytical point of view. Writing a comprehensive review for a more specific topic can also be challenging, especially when searching within the literature. To our knowledge, this review is the first to address this issue. This work consisted of conducting a unique and exhaustive study of the literature, using our TriScope Keywords-based Synthesis methodology. All available literature related to our topic was investigated according to our criteria of inclusion and exclusion. The final count of data papers was subject to deep reading and analysis to extract the necessary information to answer our research questions. Although many studies have been conducted, limited attention has been paid to outlining the applications of AI tools combined with analytical strategies for crop-based food safety specifically.
Collapse
Affiliation(s)
- Hind Raki
- College of Computing, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco; (Y.A.); (D.H.P.-O.)
| | - Yahya Aalaila
- College of Computing, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco; (Y.A.); (D.H.P.-O.)
| | - Ayoub Taktour
- Materials Sciences and Nanotechnoloy (MSN), University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco;
| | - Diego H. Peluffo-Ordóñez
- College of Computing, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco; (Y.A.); (D.H.P.-O.)
| |
Collapse
|
4
|
Usman M, Tang JW, Li F, Lai JX, Liu QH, Liu W, Wang L. Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. J Adv Res 2023; 51:91-107. [PMID: 36549439 PMCID: PMC10491996 DOI: 10.1016/j.jare.2022.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The rapid and reliable detection of pathogenic bacteria at an early stage is a highly significant research field for public health. However, most traditional approaches for pathogen identification are time-consuming and labour-intensive, which may cause physicians making inappropriate treatment decisions based on an incomplete diagnosis of patients with unknown infections, leading to increased morbidity and mortality. Therefore, novel methods are constantly required to face the emerging challenges of bacterial detection and identification. In particular, Raman spectroscopy (RS) is becoming an attractive method for rapid and accurate detection of bacterial pathogens in recent years, among which the newly developed surface-enhanced Raman spectroscopy (SERS) shows the most promising potential. AIM OF REVIEW Recent advances in pathogen detection and diagnosis of bacterial infections were discussed with focuses on the development of the SERS approaches and its applications in complex clinical settings. KEY SCIENTIFIC CONCEPTS OF REVIEW The current review describes bacterial classification using surface enhanced Raman spectroscopy (SERS) for developing a rapid and more accurate method for the identification of bacterial pathogens in clinical diagnosis. The initial part of this review gives a brief overview of the mechanism of SERS technology and development of the SERS approach to detect bacterial pathogens in complex samples. The development of the label-based and label-free SERS strategies and several novel SERS-compatible technologies in clinical applications, as well as the analytical procedures and examples of chemometric methods for SERS, are introduced. The computational challenges of pre-processing spectra and the highlights of the limitations and perspectives of the SERS technique are also discussed.Taken together, this systematic review provides an overall summary of the SERS technique and its application potential for direct bacterial diagnosis in clinical samples such as blood, urine and sputum, etc.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fen Li
- Laboratory Medicine, Huai'an Fifth People's Hospital, Huai'an, Jiangsu Province, China
| | - Jin-Xin Lai
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau SAR, China
| | - Wei Liu
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Jimenez-Carretero M, Rodríguez-López J, Ropero-Moreno C, Granada J, Delgado-Martín J, Martinez-Bueno M, Fernandez-Vivas A, Jimenez-Lopez C. Biomimetic magnetic nanoparticles for bacterial magnetic concentration in liquids and qPCR-detection. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Zhu C, Liu W, Wang D, Gong Z, Fan M. Boosting bacteria differentiation efficiency with multidimensional surface-enhanced Raman scattering: the example of Bacillus cereus. LUMINESCENCE 2022; 37:1145-1151. [PMID: 35481694 DOI: 10.1002/bio.4268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful tool for constructing biomolecular fingerprints, which play a vital role in differentiation of bacteria. Due to the rather subtle differences in the SERS spectra among different bacteria, artificial intelligence is usually adopted and enormous amounts of spectral data are required to improve the differentiation efficiency. However, in many cases, large volume data acquisition on bacteria is not only technical difficult but labour intensive. It is known that surface modification of SERS nanomaterials can bring additional dimensionality (difference) of the SERS fingerprints. Here in this work, we show that the concept could be used to improve the bacteria differentiation efficiency. Ag NPs were modified with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, and 1-dodecanethiol to provide additional dimensionality. The modified NPs then were mixed with cell lysate from different strains of Bacillus cereus (B. cereus). Even by applying a simple PCA process to the resulting SERS spectra data, all the three modified Ag NPs showed superior differentiation results compared with bare Ag NPs, which could only separate Staphylococcus aureus (S. aureus) and B. cereus. It is believed that the multidimensional SERS could find great potential in bacteria differentiation.
Collapse
Affiliation(s)
- Chengye Zhu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Wen Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
7
|
Al-Awwal N, Masjedi M, El-Dweik M, Anderson SH, Ansari J. Nanoparticle immuno-fluorescent probes as a method for detection of viable E. coli O157:H7. METHODS IN MICROBIOLOGY 2022; 193:106403. [PMID: 34990644 DOI: 10.1016/j.mimet.2021.106403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Development of revolutionary sensitive biosensors for detecting the presence of harmful biological species in the environment is a necessity for countering disease outbreaks. This work examined the interaction of fluorescence-labeled antibody on amine functionalized gold nanoparticles (GNP) as a model system. The synthesized tetramethylrhodamine isothiocyanate (TRITC) labeled antibody-amine functionalized GNP interaction was characterized using UV-Vis spectroscopy and Fluorescent Microscopy imaging. Transmission Electron Microscopy (TEM) was also used to observe the morphology of the GNP. In contrast to TEM, the fluorescence microscopy imaging revealed the coating of the TRITC labeled antibody on the surface of the GNP. The signals were measured using a Photon Technology Inc. fluorometer at excitation of 541 nm and emission at 555 nm to 650 nm. Tests were conducted at near real-time with results obtained using the biosensor assay within 5 min. Results indicated that there was a shift of the wavelength from lower to higher wavelength (blue to red shift) when conjugated GNP (anti-E. coliO157:H7; IgY-TRITC-GNP) are compared to free GNP, a difference of about 28 nm. The GNP demonstrated a quenching capability when compared to the TRITC labeled antibody (degree of labeling of 15.41 mol dye per mole of IgY) using fluorometer. The lower and upper detection range of this method was found to be 103-105 CFU/mL with observed fluorescence of about 42,000 counts per seconds as against 24,000 counts per seconds that was observed when the specificity of the sensor was tested using Salmonella enterica.
Collapse
Affiliation(s)
- Nasruddeen Al-Awwal
- School of Natural Resources, University of Missouri Columbia, 321 Anheuser-Busch Natural Resources Building, 65211, United States
| | - Mehdi Masjedi
- Cooperative Research and Extension, College of Agriculture, Environmental and Human Sciences, Lincoln University Missouri, 65101, United States
| | - Majed El-Dweik
- Cooperative Research and Extension, College of Agriculture, Environmental and Human Sciences, Lincoln University Missouri, 65101, United States.
| | - Stephen H Anderson
- School of Natural Resources, University of Missouri Columbia, 321 Anheuser-Busch Natural Resources Building, 65211, United States
| | - Jamshid Ansari
- School of Natural Resources, University of Missouri Columbia, 321 Anheuser-Busch Natural Resources Building, 65211, United States
| |
Collapse
|
8
|
Berry ME, Kearns H, Graham D, Faulds K. Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst 2021; 146:6084-6101. [PMID: 34492668 PMCID: PMC8504440 DOI: 10.1039/d1an00865j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/22/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a technique that demonstrates a number of advantages for the rapid, specific and sensitive detection of pathogenic microorganisms. In this review, an overview of label-free and label-based SERS approaches, including microfluidics, nucleic acid detection and immunoassays, for the multiplexed detection of pathogenic bacteria and viruses from the last decade will be discussed, as well as their transition into promising point-of-use detection technologies in industrial and medical settings.
Collapse
Affiliation(s)
- Matthew E Berry
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Hayleigh Kearns
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
9
|
Cui L, Li HZ, Yang K, Zhu LJ, Xu F, Zhu YG. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Pardehkhorram R, Alshawawreh F, Gonçales VR, Lee NA, Tilley RD, Gooding JJ. Functionalized Gold Nanorod Probes: A Sophisticated Design of SERS Immunoassay for Biodetection in Complex Media. Anal Chem 2021; 93:12954-12965. [PMID: 34520166 DOI: 10.1021/acs.analchem.1c02557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman scattering (SERS) probes offer considerable opportunities in label-based biosensing and analysis. However, achieving specific and reproducible performance, where low detection limits are needed in complex media, remains a challenge. Herein, we present a general strategy employing gold nanorod SERS probes and rationally designed surface chemistry involving protein resistant layers and antibodies to allow for the selective detection of species in complex media. By utilizing the ability of gold nanorods for selective surface modification, Raman reporters (4-mercaptobenzoic acid) were attached to the tips. Importantly, the sides of the nanorods were modified using a mixed layer of two different length stabilizing ligands (carboxyl-terminated oligo ethylene glycols) to ensure colloidal stability, while antibodies were attached to the stabilizing ligands. The nanoparticle interfacial design improves the colloidal stability, unlocks the capability of the probes for targeting biomolecules in complex matrices, and gives the probes the high SERS efficiency. The utility of this probe is demonstrated herein via the detection of Salmonella bacteria at the single bacterium level in complex food matrices using an anti-Salmonella IgG antibody-conjugated probe. The modular nature of the surface chemistry enables the SERS probes to be employed with a molecularly diverse range of biorecognition species (e.g., antibodies and peptides) for many different analytes, thus opening up new opportunities for efficient biosensing applications.
Collapse
Affiliation(s)
- Raheleh Pardehkhorram
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fida'A Alshawawreh
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vinicius R Gonçales
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - N Alice Lee
- ARC Training Centre for Advanced Technologies in Food Manufacture (ATFM), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Bashir S, Nawaz H, Irfan Majeed M, Mohsin M, Nawaz A, Rashid N, Batool F, Akbar S, Abubakar M, Ahmad S, Ali S, Kashif M. Surface-enhanced Raman spectroscopy for the identification of tigecycline-resistant E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119831. [PMID: 33957452 DOI: 10.1016/j.saa.2021.119831] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Tigecycline (TGC) is recognised as last resort of drugs against several antibiotic-resistant bacteria. Bacterial resistance to tigecycline due to presence of plasmid-mediated mobile TGC resistance genes (tet X3/X4) has broken another defense line. Therefore, rapid and reproducible detection of tigecycline-resistant E. coli (TREC) is required. The current study is designed for the identification and differentiation of TREC from tigecycline-sensitive E. coli (TSEC) by employing SERS by using Ag NPs as a SERS substrate. The SERS spectral fingerprints of E. coli strains associated directly or indirectly with the development of resistance against tigecycline have been distinguished by comparing SERS spectral data of TSEC strains with each TREC strain. Moreover, the statistical analysis including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed to check the diagnostic potential of SERS for the differentiation among TREC and TSEC strains. The qualitative identification and differentiation between resistant and sensitive strains and among individual strains have been efficiently done by performing both PCA and HCA. The successful discrimination among TREC and TSEC at the strain level is performed by PLS-DA with 98% area under ROC curve, 100% sensitivity, 98.7% specificity and 100% accuracy.
Collapse
Affiliation(s)
- Saba Bashir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Ali Nawaz
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Fatima Batool
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saba Akbar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
12
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Huynh KH, Hahm E, Noh MS, Lee JH, Pham XH, Lee SH, Kim J, Rho WY, Chang H, Kim DM, Baek A, Kim DE, Jeong DH, Park SM, Jun BH. Recent Advances in Surface-Enhanced Raman Scattering Magnetic Plasmonic Particles for Bioapplications. NANOMATERIALS 2021; 11:nano11051215. [PMID: 34064407 PMCID: PMC8147842 DOI: 10.3390/nano11051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
The surface-enhanced Raman scattering (SERS) technique, that uses magnetic plasmonic particles (MPPs), is an advanced SERS detection platform owing to the synergetic effects of the particles’ magnetic and plasmonic properties. As well as being an ultrasensitive and reliable SERS material, MPPs perform various functions, such as aiding in separation, drug delivery, and acting as a therapeutic material. This literature discusses the structure and multifunctionality of MPPs, which has enabled the novel application of MPPs to various biological fields.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Mi Suk Noh
- Medical Device & Bio-research Team, Bio-medical & Environ-chemical Division, Korea Testing Certification, Gunpo, Gyeonggi-do 15809, Korea;
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea;
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea;
| | - Dong Min Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Ahruem Baek
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
- Center for Educational Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seung-min Park
- Department of Urology, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| |
Collapse
|
14
|
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads. Sci Rep 2021; 11:6240. [PMID: 33737512 PMCID: PMC7973519 DOI: 10.1038/s41598-021-84793-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted and effective therapy of diseases demands utilization of rapid methods of identification of the given markers. Surface enhanced Raman spectroscopy (SERS) in conjunction with streptavidin-biotin complex is a promising alternative to culture or PCR based methods used for such purposes. Many biotinylated antibodies are available on the market and so this system offers a powerful tool for many analytical applications. Here, we present a very fast and easy-to-use procedure for preparation of streptavidin coated magnetic polystyrene-Au (or Ag) nanocomposite particles as efficient substrate for surface SERS purposes. As a precursor for the preparation of SERS active and magnetically separable composite, commercially available streptavidin coated polystyrene (PS) microparticles with a magnetic core were utilized. These composites of PS particles with silver or gold nanoparticles were prepared by reducing Au(III) or Ag(I) ions using ascorbic acid or dopamine. The choice of the reducing agent influences the morphology and the size of the prepared Ag or Au particles (15-100 nm). The prepare composites were also characterized by HR-TEM images, mapping of elements and also magnetization measurements. The content of Au and Ag was determined by AAS analysis. The synthesized composites have a significantly lower density against magnetic composites based on iron oxides, which considerably decreases the tendency to sedimentation. The polystyrene shell on a magnetic iron oxide core also pronouncedly reduces the inclination to particle aggregation. Moreover, the preparation and purification of this SERS substrate takes only a few minutes. The PS composite with thorny Au particles with the size of approximately 100 nm prepared was utilized for specific and selective detection of Staphylococcus aureus infection in joint knee fluid (PJI) and tau protein (marker for Alzheimer disease).
Collapse
|
16
|
Wang YH, Song Z, Hu XY, Wang HS. Circulating tumor DNA analysis for tumor diagnosis. Talanta 2021; 228:122220. [PMID: 33773726 DOI: 10.1016/j.talanta.2021.122220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 01/10/2023]
Abstract
Tumor is a kind of abnormal organism generated by the proliferation and differentiation of cells in the body under the action of various initiating and promoting factors, which seriously threatens human life and health. Tumorigenesis is a gradual process that involves multistage reactions and the accumulation of mutations. Gene mutation usually occurs during tumorigenesis, and can be used for tumor diagnosis. Early diagnosis is the most effective way to improve the cure rate and reduce the mortality rate. Among the peripheral blood circulating tumor DNA (ctDNA), gene mutation in keeping with tumor cells can be detected, which can potentially replace tumor tissue section for early diagnosis. It has been considered as a liquid biopsy marker with good clinical application prospect. However, the high fragmentation and low concentration of ctDNA in blood result in the difficulty of tumor stage determination. Therefore, high sensitive and specific mutation detection methods have been developed to detect trace mutant ctDNA. At present, the approaches include digital PCR (dPCR), Bead, Emulsion, Amplification and Magnetic (BEAMing), Next Generation Sequencing (NGS), Amplification Refractory Mutation System (ARMS), etc. In this paper, the principle, characteristics, latest progress and application prospects of these methods are reviewed, which will facilitate researchers to choose appropriate ctDNA detection approaches.
Collapse
Affiliation(s)
- Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Zhang H, Liu Y, Yao S, Shang M, Zhao C, Li J, Wang J. A multicolor sensing system for simultaneous detection of four foodborne pathogenic bacteria based on Fe 3O 4/MnO 2 nanocomposites and the etching of gold nanorods. Food Chem Toxicol 2021; 149:112035. [PMID: 33548372 DOI: 10.1016/j.fct.2021.112035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Food safety problems attributed to foodborne pathogenic bacteria seriously endanger human health and cause substantial economic losses. Novel assays for rapid and sensitive identification of foodborne pathogenic bacteria are highly desired. In this study, a multicolor sensing system has been established for simultaneous determination of four foodborne bacteria by exploiting oxidase mimicking activity of aptamer-functionalized manganese dioxide-coated ferriferrous oxide (apt-Fe3O4/MnO2) nanocomposites and oxTMB etching of gold nanorods (AuNRs). Apt-Fe3O4/MnO2 nanocomposites were used as capture probes to recognize and capture specific bacteria. The captured bacteria blocked the catalytic sites of the magnetic conjugate, which inhibited the catalyzation of oxTMB and further reduced the etching of AuNRs. Consequently, the longitudinal shift of AuNRs decreased linearly with the increase of the concentration of bacteria ranging from 10 to 106 CFU mL-1. Instrumental detection limits for S. aureus, L. monocytogenes, E. coli O157:H7 and V. parahaemolyticus reached down to 1.3 CFU mL-1, 1.2 CFU mL-1, 1.3 CFU mL-1 and 1.4 CFU mL-1, respectively. And their visual detection limit was as low as 10 CFU mL-1. The whole detection process only needs 40 min, suggesting that this method is promising in on-site detection of bacteria.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yushen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Mingyu Shang
- College of Earth Sciences, Jilin University, Changchun, 130061, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Wang P, Sun Y, Li X, Wang L, Xu Y, He L, Li G. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal Chim Acta 2021; 1157:338279. [PMID: 33832584 DOI: 10.1016/j.aca.2021.338279] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
Rapid and reliable detection of pathogenic bacteria at the early stage represents a highly topical research area for food safety and public health. Although culture based method is the gold standard method for bacteria detection, recent techniques have promoted the development of alternative methods, such as surface enhanced Raman scattering (SERS). SERS provides additional advantages of high speed, simultaneous detection and characterization, multiplex analysis, and comparatively low cost. However, conventional SERS methods for bacteria detection are facing limitations of low sensitivity, susceptible to matrix interference, and poor accuracy. In recent years, specific detection of pathogenic bacteria with dual recognition based SERS methods has attracted increasing attentions. These methods include two steps recognition of target bacteria, and integrate the functions of target separation and detection. Considering their merits of excellent specificity, ultrahigh sensitivity, multiplex detection capability, and potential for on-site applications, these methods are promising alternatives for rapid and reliable detection of pathogenic bacteria. Herein, this review aims to summarize the recent advances in dual recognition based SERS methods for specific detection of pathogenic bacteria. Their advantages and limitations are discussed, and further perspectives are tentatively given. This review provides new insights into the application of SERS as a reliable tool for pathogenic bacteria detection.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yan Sun
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Li Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ying Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, MA, 01003, USA
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
19
|
Ajish JK, Abraham HM, Subramanian M, Kumar KSA. A Reusable Column Method Using Glycopolymer-Functionalized Resins for Capture-Detection of Proteins and Escherichia coli. Macromol Biosci 2020; 21:e2000342. [PMID: 33336880 DOI: 10.1002/mabi.202000342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Indexed: 11/08/2022]
Abstract
The use of glycopolymer-functionalized resins (Resin-Glc), as a solid support, in column mode for bacterial/protein capture and quantification is explored. The Resin-Glc is synthesized from commercially available chloromethylated polystyrene resin and glycopolymer, and is characterized by fourier transform infrared spectroscopy, thermogravimetry, and elemental analysis. The percentage of glycopolymer functionalized on Resin-Glc is accounted to be 5 wt%. The ability of Resin-Glc to selectively capture lectin, Concanavalin A, over Peanut Agglutinin, reversibly, is demonstrated for six cycles of experiments. The bacterial sequestration study using SYBR (Synergy Brands, Inc.) Green I tagged Escherichia coli/Staphylococcus aureus reveals the ability of Resin-Glc to selectively capture E. coli over S. aureus. The quantification of captured cells in the column is carried out by enzymatic colorimetric assay using methylumbelliferyl glucuronide as the substrate. The E. coli capture studies reveal a consistent capture efficiency of 105 CFU (Colony Forming Units) g-1 over six cycles. Studies with spiked tap water samples show satisfactory results for E. coli cell densities ranging from 102 to 107 CFU mL-1 . The method portrayed can serve as a basis for the development of a reusable solid support in capture and detection of proteins and bacteria.
Collapse
Affiliation(s)
- Juby K Ajish
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Hephziba Maria Abraham
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, 682020, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K S Ajish Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
20
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
21
|
Ren W, Cabush A, Irudayaraj J. Checkpoint enrichment for sensitive detection of target bacteria from large volume of food matrices. Anal Chim Acta 2020; 1127:114-121. [PMID: 32800114 DOI: 10.1016/j.aca.2020.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023]
Abstract
A gap in biosensor development is the ability to enrich and detect targets in large sample volumes in a complex matrix. To bridge this gap, our goal in this work is to propose a practical strategy, termed as checkpoint-style enrichment, for rapid enrichment of the target bacteria from large volume of food samples with particulates and evaluate its enrichment and improvement in detection. The checkpoint-style enrichment was conducted with antibody modified polyethylene terephthalate (PET) pads as capture substrates. In our approach, blended lettuce sample cocktail was circulated through antibody modified PET pads such as a checkpoint in the sample solution pathway, where target pathogens were selectively captured with immobilized antibodies. The obtained PET pads with the captured target pathogens were then used for enhanced detection by colorimetry. To render the checkpoint-style enrichment approach practical and applicable for on-site rapid screening tests, only a simple syringe-based setup with antibody modified PET pad was required. The developed method could process up to 50 ml of lettuce cocktail blended from 5g samples and purposefully inoculated with E. coli O157:H7. Overall, the enrichment method developed required only 40 min of sample processing time. After enrichment, as low as 100 CFU/ml of E. coli O157:H7 could be detected by a simple colorimetric procedure due to the enhancement from the proposed checkpoint-style enrichment in the presence of ∼3000 CFU/ml of non-target bacteria. A linear response was obtained from blank to 100000 CFU/ml of E. coli O157:H7 in blended lettuce samples. The conceptualized approach demonstrates a promising means to improve the detection of target bacteria with a high degree of sensitivity and specificity and could be used in low resourse settings.
Collapse
Affiliation(s)
- Wen Ren
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Abigail Cabush
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
You SM, Luo K, Jung JY, Jeong KB, Lee ES, Oh MH, Kim YR. Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of E. coli O157:H7. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18292-18300. [PMID: 32242418 DOI: 10.1021/acsami.0c00418] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Here, we report gold nanoparticle-coated starch magnetic beads (AuNP@SMBs) that were prepared by in situ synthesis of AuNPs on the surface of SMBs. Upon functionalization of the surface with a specific antibody, the immuno-AuNP@SMBs were found to be effective in separating and concentrating the target pathogenic bacteria, Escherichia coli O157:H7, from an aqueous sample as well as providing a hotspot for surface-enhanced Raman scattering (SERS)-based detection. We employed a bifunctional linker protein, 4× gold-binding peptide-tagged Streptococcal protein G (4GS), to immobilize antibodies on AuNP@SMBs and AuNPs in an oriented form. The linker protein also served as a Raman reporter, exhibiting a strong and unique fingerprint signal during the SERS measurement. The amplitude of the SERS signal was shown to have a good correlation with the concentration of target bacteria ranging from 100 to 105 CFU/mL. The detection limit was determined to be as low as a single cell, and the background signals derived from nontarget bacteria were negligible due to the excellent specificity and colloidal stability of the immuno-AuNP@SMBs and SERS tags. The highly sensitive nature of the SERS-based detection system will provide a promising means to detect the pathogenic microorganisms in food or clinical specimen.
Collapse
Affiliation(s)
- Sang-Mook You
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Ke Luo
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Jong-Yun Jung
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Ki-Baek Jeong
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Eun-Seon Lee
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
23
|
Colorimetric Detection of Escherichia coli O157:H7 with Signal Enhancement Using Size-Based Filtration on a Finger-Powered Microfluidic Device. SENSORS 2020; 20:s20082267. [PMID: 32316232 PMCID: PMC7219071 DOI: 10.3390/s20082267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023]
Abstract
Although immunomagnetic separation is a useful sample pretreatment method that can be used to separate target pathogens from a raw sample, it is challenging to remove unbound free magnetic nanoparticles (MNPs) for colorimetric detection of target pathogens. Here, size-based filtration was exploited for the rapid on-site detection of pathogens separated by immunomagnetic separation in order to remove unbound free MNPs using a finger-powered microfluidic device. A membrane filter and an absorbent pad were integrated into the device and a mixture of unbound free MNPs and MNP-bound Escherichia coli (E. coli) O157:H7 was dispensed over the membrane filter by pressing and releasing the pressure chamber. A colorimetric signal was generated by MNP-bound E. coli O157:H7 while unbound free MNPs were washed out by the absorbent. Furthermore, the colorimetric signals can be amplified using a gold enhancer solution when gold-coated MNPs were used instead of MNPs. As a result, 102 CFU/mL E. coli O157:H7 could be detected by the enhanced colorimetric signal on a proposed device.
Collapse
|
24
|
Duan N, Shen M, Qi S, Wang W, Wu S, Wang Z. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118103. [PMID: 32000058 DOI: 10.1016/j.saa.2020.118103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 05/14/2023]
Abstract
An aptamer-based sensitive method was developed here for detection of multiple foodborne pathogens in food matrix by surface-enhanced Raman scattering (SERS) technology. Polydimethylsiloxane (PDMS) film was first prepared and then coated with gold nanoparticles (AuNP) to act as an active substrate for the enhancement of Raman scattering. The as-prepared Au-PDMS film was functionalized with specific pathogen aptamers (Apt) to capture the targets. In addition, aptamers functionalized AuNP integrated with Raman reporters (4-Mercaptobenzoic acid (4-MBA)/Nile blue A (NBA)) were fabricated as pathogen-specific SERS probes. In this scheme, pathogens were first captured by Apt-Au-PDMS film and then bind with SERS probes to allow the formation of a sandwich assay to complete the sensor module for the detection of multiple pathogens. With Vibrio parahaemolyticus and Salmonella typhimurium as model targets, this protocol can selectively detect 18 cfu/mL and 27 cfu/mL, respectively. Furthermore, this platform can be successfully applied to detect pathogens in seafood samples with recoveries ranging from 82.9% to 95.1%.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Mofei Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyue Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| |
Collapse
|
25
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Juneja S, Bhattacharya J. Biosynthetically grown dendritic silver nanostructures for visible Surface Enhanced Resonance Raman Spectroscopy (v-SERRS). NEW J CHEM 2020. [DOI: 10.1039/d0nj03040f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple approach to achieve high SERS enhancement for bio-analyte detection at visible wavelength through a resonance Raman (RR) effect has been proposed in this study.
Collapse
Affiliation(s)
- Subhavna Juneja
- NanoBiotechnology Lab, School of Biotechnology
- Jawaharlal Nehru University
- India
| | | |
Collapse
|
27
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
28
|
Cui L, Zhang D, Yang K, Zhang X, Zhu YG. Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. Anal Chem 2019; 91:15345-15354. [DOI: 10.1021/acs.analchem.9b03996] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - DanDan Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
29
|
Li H, Martin FL, Jones KC, Zhang D. Interrogating the Transient Selectivity of Bacterial Chemotaxis-Driven Affinity and Accumulation of Carbonaceous Substances via Raman Microspectroscopy. Front Microbiol 2019; 10:2215. [PMID: 31636611 PMCID: PMC6787638 DOI: 10.3389/fmicb.2019.02215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Carbonaceous substances are fundamental organic nutrients for microbial metabolism and catabolism in natural habitats. Microbial abilities to sense, accumulate, and utilize organic carbonaceous substances in the complex nutrient environment are important for their growth and ecological functions. Bacterial chemotaxis is an effective mechanism for microbial utilization of carbonaceous substances under nutrient depletion conditions. Although bacterial accumulation and utilization to individual carbonaceous substance in long-term cultivation has been well studied, their selective affinity of mixed carbonaceous substances remains to be investigated, primarily because of technical limitations of conventional methods. Herein, we applied Raman microspectroscopy to identify chemotaxis-driven affinity and accumulation of four organic carbonaceous substances (glucose, succinate, acetate, and salicylate) by three bacterial strains (Acinetobacter baylyi, Pseudomonas fluorescence, and Escherichia coli). A. baylyi exhibited strong binding affinity toward glucose and succinate, whereas P. fluorescence and E. coli were preferentially responsive to glucose and acetate. For the first time, bacterial transient selectivity of carbonaceous substances was studied via interrogating Raman spectral alterations. Post-exposure to carbonaceous-substance mixtures, the three bacterial strains showed distinct selective behaviors. Stronger selective affinity enhanced the chemotaxis-related signal transduction in A. baylyi cells, whereas the carbonaceous substance signal transduction in E. coli was decreased by higher selective affinity. In P. fluorescence, there was no specific effect of selective affinity on signal transduction. Our study suggests that Raman microspectroscopy can successfully investigate and distinguish different scenarios of bacterial competitive and transient unitization of organic carbonaceous substances.
Collapse
Affiliation(s)
- Hanbing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.,Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Ouyang L, Dai P, Yao L, Zhou Q, Tang H, Zhu L. A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring. Analyst 2019; 144:5528-5537. [PMID: 31402359 DOI: 10.1039/c9an01123d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fast inspection of the pesticide residues on fruits and vegetables requires the development of facile, sensitive and accurate methods. Surface enhanced Raman scattering (SERS) is a promising way to provide a fast inspection method, which requires significant improvements in the reproducibility and feasibility. In the present work, an SERS method was developed for the fast inspection of pesticides on fruit peels in conjunction with surface extraction and coordination transferring. In this new method, the residual pesticides were directly extracted from fruit peels with an appropriate extraction solution and then quantitatively transferred onto an organic solvent-compatible Au array SERS chip through the strong chemical interactions between the heteroatoms in the pesticides and the gold surface. The functional SERS chip was fabricated by the interfacial assembly of an Au array on a membrane, which produced dense and uniformly distributed SERS hot spots and enabled compatibility with random curvature surfaces and handheld Raman spectrometers. As a proof of concept, sulfur atoms containing thiram on apples were detected at a concentration as low as 5 ng cm-2 with good reproducibility (relative standard deviation lower than 10%). The strong interactions between the sulfur atoms and gold surface during the coordination transferring process were confirmed by the enhanced vibrations of the specified bands occurring in both the Raman and IR spectra. This surface extraction-coordination transferring-based method holds wide applicability for heteroatom-containing pesticides, as demonstrated by the detection of various S- and P-containing pesticides.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
31
|
Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium. Anal Chim Acta 2019; 1067:98-106. [DOI: 10.1016/j.aca.2019.03.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/13/2023]
|
32
|
Jia M, Liu Z, Wu C, Zhang Z, Ma L, Lu X, Mao Y, Zhang H. Detection of Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium based on cell elongation induced by beta-lactam antibiotics. Analyst 2019; 144:4505-4512. [PMID: 31225571 DOI: 10.1039/c9an00569b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pathogenic bacteria such as Shiga toxigenic Escherichia coli and Salmonella can cause severe food-borne diseases. Rapid and sensitive detection of these foodborne pathogens is essential to ensure food safety. In this study, a novel method based on cell elongation induced by beta-lactam antibiotics for direct microscopic counting of Gram-negative bacteria was established. Combined with the sample preparation steps of membrane filtration and magnetic separation, the detection of E. coli O157:H7 and Salmonella enterica serotype Typhimurium was achieved by direct optical microscopic counting of the number of elongated bacteria. The limit of detection of E. coli O157:H7 and S. typhimurium could reach 20 CFU mL-1. The recovery tests for E. coli O157:H7 and S. typhimurium in water and milk samples showed acceptable recovery values between 93.6% and 106.2%. This method is sensitive, cost effective, and rapid (<2 h) and shows great potential for the detection of Gram-negative pathogens in various environmental and food samples.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhaochen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Chuanchen Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhen Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Yifei Mao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
33
|
Ren J, Liang G, Man Y, Li A, Jin X, Liu Q, Pan L. Aptamer-based fluorometric determination of Salmonella Typhimurium using Fe3O4 magnetic separation and CdTe quantum dots. PLoS One 2019; 14:e0218325. [PMID: 31216306 PMCID: PMC6584018 DOI: 10.1371/journal.pone.0218325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023] Open
Abstract
Based on the high sensitivity and stable fluorescence of CdTe quantum dots (QDs) in conjunction with a specific DNA aptamer, the authors describe an aptamer-based fluorescence assay for the determination of Salmonella Typhimurium. The fluorescence detection and quantification of S. Typhimurium is based on a magnetic separation system, a combination of aptamer-coated Fe3O4 magnetic particles (Apt-MNPs) and QD-labeled ssDNA2 (complementary strand of the aptamer). Apt-MNPs are employed for the specific capture of S. Typhimurium. CdTe QD-labeled ssDNA2 was used as a signaling probe. Simply, the as-prepared CdTe QD-labeled ssDNA2 was first incubated with the Apt-MNPs to form the aptamer-ssDNA2 duplex. After the addition of S. Typhimurium, they could specifically bind the DNA aptamer, leading to cleavage of the aptamer-ssDNA2 duplex, accompanied by the release of CdTe QD-labeled DNA. Thus, an increased fluorescence signal can be achieved after magnetic removal of the Apt-MNPs. The fluorescence of CdTe QDs (λexc/em = 327/612 nm) increases linearly in the concentration range of 10 to 1010 cfu•mL-1, and the limit of detection is determined to be 1 cfu•mL-1. The detection process can be performed within 2 h and is successfully applied to the analysis of spiked food samples with good recoveries from 90% to 105%.
Collapse
Affiliation(s)
- Junan Ren
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Qingju Liu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
- * E-mail:
| |
Collapse
|
34
|
Verdian A, Fooladi E, Rouhbakhsh Z. Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta 2019; 202:123-135. [PMID: 31171160 DOI: 10.1016/j.talanta.2019.04.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants, which have expanded in foods and the environment. Detection of PCBs is considered essential due to recognized side-effects of PCBs on health and the public concerns in this regard. On the other hand, due to the trace levels of these organic chlorine compounds, reliable and sensitive assays must be developed. Recognition elements are essential parts of analytical detection assays and sensors of PCBs since these elements are involved in the selective identification of the analytes of interest. Understanding the fundamentals of the recognition elements of PCBs and the benefits of the sensor strategies result in the development of next-generation recognition devices. This review aimed to highlight the recent progress in the recognition elements as key parts of biosensors. We initially, focused on the developed antibody-based biosensors for the detection of PCBs, followed by discussing the aptamers as novel recognition elements. Furthermore, the recent advancement in the development of aptamer-based solid phase extractions has been evaluated. These findings could contribute to improving the design of commercial PCB-kits in the future.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
35
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zhang Z, Zhou J, Du X. Electrochemical Biosensors for Detection of Foodborne Pathogens. MICROMACHINES 2019; 10:mi10040222. [PMID: 30925806 PMCID: PMC6523478 DOI: 10.3390/mi10040222] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Foodborne safety has become a global public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens has generated a strong interest by researchers in order to control and prevent human foodborne infections. Traditional methods for the detection of foodborne pathogens are often time-consuming, laborious, expensive, and unable to satisfy the demands of rapid food testing. Owing to the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost, electrochemical biosensing technology is more and more widely used in determination of foodborne pathogens. Here, we summarize recent developments in electrochemical biosensing technologies used to detect common foodborne pathogens. Additionally, we discuss research challenges and future prospects for this field of study.
Collapse
Affiliation(s)
- Zhenguo Zhang
- College of Life Sciences, Key Laboratory of Food Nutrition and Safety, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- College of Life Sciences, Key Laboratory of Food Nutrition and Safety, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Xin Du
- College of Life Sciences, Key Laboratory of Food Nutrition and Safety, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
37
|
Joye IJ, Corradini MG, Duizer LM, Bohrer BM, LaPointe G, Farber JM, Spagnuolo PA, Rogers MA. A comprehensive perspective of food nanomaterials. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:1-45. [PMID: 31151722 DOI: 10.1016/bs.afnr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanotechnology is a rapidly developing toolbox that provides solutions to numerous challenges in the food industry and meet public demands for healthier and safer food products. The diversity of nanostructures and their vast, tunable functionality drives their inclusion in food products and packaging materials to improve their nutritional quality through bioactive fortification and probiotics encapsulation, enhance their safety due to their antimicrobial and sensing capabilities and confer novel sensorial properties. In this food nanotechnology state-of-the-art communication, matrix materials with particular focus on food-grade components, existing and novel production techniques, and current and potential applications in the fields of food quality, safety and preservation, nutrient bioaccessibility and digestibility will be detailed. Additionally, a thorough analysis of potential strategies to assess the safety of these novel nanostructures is presented.
Collapse
Affiliation(s)
- I J Joye
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M G Corradini
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| | - L M Duizer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - B M Bohrer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - G LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - J M Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - P A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
38
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
39
|
Wang K, Li S, Petersen M, Wang S, Lu X. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E762. [PMID: 30261660 PMCID: PMC6215266 DOI: 10.3390/nano8100762] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
This mini-review summarizes the most recent progress concerning the use of surface-enhanced Raman spectroscopy (SERS) for the detection and characterization of antibiotic-resistant bacteria. We first discussed the design and synthesis of various types of nanomaterials that can be used as the SERS-active substrates for biosensing trace levels of antibiotic-resistant bacteria. We then reviewed the tandem-SERS strategy of integrating a separation element/platform with SERS sensing to achieve the detection of antibiotic-resistant bacteria in the environmental, agri-food, and clinical samples. Finally, we demonstrated the application of using SERS to investigate bacterial antibiotic resistance and susceptibility as well as the working mechanism of antibiotics based on spectral fingerprinting of the whole cells.
Collapse
Affiliation(s)
- Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300371, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
40
|
Galvan DD, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2018; 7:e1701335. [PMID: 29504273 DOI: 10.1002/adhm.201701335] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/30/2017] [Indexed: 12/19/2022]
Abstract
As the prevalence of antibiotic-resistant bacteria continues to rise, biosensing technologies are needed to enable rapid diagnosis of bacterial infections. Furthermore, understanding the unique biochemistry of resistance mechanisms can facilitate the development of next generation therapeutics. Surface-enhanced Raman scattering (SERS) offers a potential solution to real-time diagnostic technologies, as well as a route to fundamental, mechanistic studies. In the current review, SERS-based approaches to the detection and characterization of antibiotic-resistant bacteria are covered. The commonly used nanomaterials (nanoparticles and nanostructured surfaces) and surface modifications (antibodies, aptamers, reporters, etc.) for SERS bacterial detection and differentiation are discussed first, and followed by a review of SERS-based detection of antibiotic-resistant bacteria from environmental/food processing and clinical sources. Antibiotic susceptibility testing and minimum inhibitory concentration testing with SERS are then summarized. Finally, recent developments of SERS-based chemical imaging/mapping of bacteria are reviewed.
Collapse
Affiliation(s)
- Daniel D. Galvan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Qiuming Yu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
41
|
Zhao X, Li M, Xu Z. Detection of Foodborne Pathogens by Surface Enhanced Raman Spectroscopy. Front Microbiol 2018; 9:1236. [PMID: 29946307 PMCID: PMC6005832 DOI: 10.3389/fmicb.2018.01236] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Food safety has become an important public health issue in both developed and developing countries. However, as the foodborne illnesses caused by the pollution of foodborne pathogens occurred frequently, which seriously endangered the safety and health of human beings. More importantly, the traditional techniques, such as PCR and enzyme-linked immunosorbent assay, are accurate and effective, but their pretreatments are complex and time-consuming. Therefore, how to detect foodborne pathogens quickly and sensitively has become the key to control food safety. Because of its sensitivity, rapidity, and non-destructive damage to the sample, the surface enhanced Raman scattering (SERS) is considered to be a powerful testing technology that is widely used to different fields. This review aims to give a systematic and comprehensive understanding of SERS for rapid detection of pathogen bacteria. First, the related concepts of SERS are stated, such as its work principal, active substrate, and biochemical origins of the detection of bacteria by SERS. Then the latest progress and applications in food safety, from detection and characterization of targets in label-free method to label method, is summarized. The advantages and limitations of different SERS substrates and methods are discussed. Finally, there are still several hurdles for the further development of SERS techniques into real-world applications. This review comes up with the perspectives on the future trends of the SERS technique in the field of foodborne pathogens detection and some problems to be solved urgently. Therefore, the purpose is mainly to understand the detection of foodborne pathogens and to make further emphasis on the importance of SERS techniques.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mei Li
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
42
|
Shi Q, Huang J, Sun Y, Yin M, Hu M, Hu X, Zhang Z, Zhang G. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:107-113. [PMID: 29195715 DOI: 10.1016/j.saa.2017.11.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
An ultrasensitive method for the detection of antibiotics in milk is developed based on inexpensive, simple, rapid and portable lateral flow immunoassay (LFI) strip, in combination with high sensitivity surface-enhanced Raman spectroscopy (SERS). In our strategy, an immunoprobe was prepared from colloidal gold (AuNPs) conjugated with both a monoclonal antibody against neomycin (NEO-mAb) and a Raman probe molecule 4-aminothiophenol (PATP). The competitive interaction with immunoprobe between free NEO and the coated antigen (NEO-OVA) resulted in the change of the amount of the immobilized immunoprobe on the paper substrate. The LFI procedure was completed within 15min. The Raman intensity of PATP on the test line of the LFI strip was measured for the quantitative determination of NEO. The IC50 and the limit of detection (LOD) of this assay are 0.04ng/mL and 0.216pg/mL of NEO, respectively. There is no cross-reactivity (CR) of the assay with other compounds, showing high specificity of the assay. The recoveries for milk samples with added NEO are in the range of 89.7%-105.6% with the relative standard deviations (RSD) of 2.4%-5.3% (n=3). The result reveals that this method possesses high specificity, sensitivity, reproducibility and stability, and can be used to detect a variety of antibiotic residues in milk samples.
Collapse
Affiliation(s)
- Qiaoqiao Shi
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Mengqi Yin
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Mei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
43
|
|
44
|
Abstract
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.
Collapse
|
45
|
Jeong A, Lim H. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium. Talanta 2018; 178:916-921. [DOI: 10.1016/j.talanta.2017.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
|
46
|
Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, Liu S, Wang Y, Zhang D, Wang S, Chen X. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B 2018; 6:3751-3761. [DOI: 10.1039/c8tb00504d] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A sensitive SERS platform for the simultaneous detection of S. aureus and E. coli on the basis of dual recognition by vancomycin and aptamers is reported.
Collapse
|
47
|
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 2017; 40:237-248. [PMID: 29181762 DOI: 10.1007/s10529-017-2477-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022]
Abstract
Bacterial cell immobilization is a novel technique used in many areas of biosciences and biotechnology. Iron oxide nanoparticles have attracted much attention in bacterial cell immobilization due to their unique properties such as superparamagnetism, large surface area to volume ratio, biocompatibility and easy separation methodology. Adhesion is the basis behind many immobilization techniques and various types of interactions determine bacterial adhesion. Efficiency of bacterial cell immobilization using iron oxide nanoparticles (IONs) generally depends on the physicochemical properties of the IONs and surface properties of bacterial cells as well as environmental/culture conditions. Bacteria exhibit various metabolic responses upon interaction with IONs, and the potential applications of iron oxide nanoparticles in bacterial cell immobilization will be discussed in this work.
Collapse
Affiliation(s)
- Dinali Ranmadugala
- Faculty of Science & Engineering, University of Waikato, Hamilton, New Zealand
| | - Alireza Ebrahiminezhad
- Department of Medical Biotechnology, School of Medicine, and Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- Faculty of Science & Engineering, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
48
|
Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K. SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Anal Chem 2017; 89:12666-12673. [DOI: 10.1021/acs.analchem.7b02653] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hayleigh Kearns
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Royston Goodacre
- The
Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Lauren E. Jamieson
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Duncan Graham
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Karen Faulds
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| |
Collapse
|
49
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
50
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|