1
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
2
|
Park Y, Ro YG, Shin Y, Park C, Na S, Chang Y, Ko H. Multi-Layered Triboelectric Nanogenerators with Controllable Multiple Spikes for Low-Power Artificial Synaptic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304598. [PMID: 37888859 PMCID: PMC10754122 DOI: 10.1002/advs.202304598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/20/2023] [Indexed: 10/28/2023]
Abstract
In the domains of wearable electronics, robotics, and the Internet of Things, there is a demand for devices with low power consumption and the capability of multiplex sensing, memory, and learning. Triboelectric nanogenerators (TENGs) offer remarkable versatility in this regard, particularly when integrated with synaptic transistors that mimic biological synapses. However, conventional TENGs, generating only two spikes per cycle, have limitations when used in synaptic devices requiring repetitive high-frequency gating signals to perform various synaptic plasticity functions. Herein, a multi-layered micropatterned TENG (M-TENG) consisting of a polydimethylsiloxane (PDMS) film and a composite film that includes 1H,1H,2H,2H-perfluorooctyltrichlorosilane/BaTiO3 /PDMS are proposed. The M-TENG generates multiple spikes from a single touch by utilizing separate triboelectric charges at the multiple friction layers, along with a contact/separation delay achieved by distinct spacers between layers. This configuration allows the maximum triboelectric output charge of M-TENG to reach up to 7.52 nC, compared to 3.69 nC for a single-layered TENG. Furthermore, by integrating M-TENGs with an organic electrochemical transistor, the spike number multiplication property of M-TENGs is leveraged to demonstrate an artificial synaptic device with low energy consumption. As a proof-of-concept application, a robotic hand is operated through continuous memory training under repeated stimulations, successfully emulating long-term plasticity.
Collapse
Affiliation(s)
- Yong‐Jin Park
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Young‐Eun Shin
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Cheolhong Park
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Sangyun Na
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Yoojin Chang
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| |
Collapse
|
3
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
4
|
Sharova AS, Modena F, Luzio A, Melloni F, Cataldi P, Viola F, Lamanna L, Zorn NF, Sassi M, Ronchi C, Zaumseil J, Beverina L, Antognazza MR, Caironi M. Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics. NANOSCALE 2023; 15:10808-10819. [PMID: 37334549 PMCID: PMC10311466 DOI: 10.1039/d3nr01051a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 μm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.
Collapse
Affiliation(s)
- Alina S Sharova
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Alessandro Luzio
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Filippo Melloni
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Pietro Cataldi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Fabrizio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Leonardo Lamanna
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Nicolas F Zorn
- Institute for Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mauro Sassi
- Department of Materials Science, Università degli Studi di Milano-Bicocca, via Cozzi, 55, 20125, Milano, Italy
| | - Carlotta Ronchi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Luca Beverina
- Department of Materials Science, Università degli Studi di Milano-Bicocca, via Cozzi, 55, 20125, Milano, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| |
Collapse
|
5
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
6
|
Gadroy C, Boukraa R, Battaglini N, Le Derf F, Mofaddel N, Vieillard J, Piro B. An Electrolyte-Gated Graphene Field-Effect Transistor for Detection of Gadolinium(III) in Aqueous Media. BIOSENSORS 2023; 13:363. [PMID: 36979575 PMCID: PMC10046572 DOI: 10.3390/bios13030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this work, an electrolyte-gated graphene field-effect transistor is developed for Gd3+ ion detection in water. The source and drain electrodes of the transistor are fabricated by photolithography on polyimide, while the graphene channel is obtained by inkjet-printing a graphene oxide ink subsequently electro-reduced to give reduced graphene oxide. The Gd3+-selective ligand DOTA is functionalized by an alkyne linker to be grafted by click chemistry on a gold electrode without losing its affinity for Gd3+. The synthesis route is fully described, and the ligand, the linker and the functionalized surface are characterized by electrochemical analysis and spectroscopy. The as functionalized electrode is used as gate in the graphene transistor so to modulate the source-drain current as a function of its potential, which is itself modulated by the concentration of Gd3+captured on the gate surface. The obtained sensor is able to quantify Gd3+ even in a sample containing several other potentially interfering ions such as Ni2+, Ca2+, Na+ and In3+. The quantification range is from 1 pM to 10 mM, with a sensitivity of 20 mV dec-1 expected for a trivalent ion. This paves the way for Gd3+ quantification in hospital or industrial wastewater.
Collapse
Affiliation(s)
- Charlène Gadroy
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Rassen Boukraa
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | | | - Franck Le Derf
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Nadine Mofaddel
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Julien Vieillard
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Benoît Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
7
|
Montero-Jimenez M, Amante FL, Fenoy GE, Scotto J, Azzaroni O, Marmisolle WA. PEDOT-Polyamine-Based Organic Electrochemical Transistors for Monitoring Protein Binding. BIOSENSORS 2023; 13:288. [PMID: 36832054 PMCID: PMC9954629 DOI: 10.3390/bios13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The fabrication of efficient organic electrochemical transistors (OECTs)-based biosensors requires the design of biocompatible interfaces for the immobilization of biorecognition elements, as well as the development of robust channel materials to enable the transduction of the biochemical event into a reliable electrical signal. In this work, PEDOT-polyamine blends are shown as versatile organic films that can act as both highly conducting channels of the transistors and non-denaturing platforms for the construction of the biomolecular architectures that operate as sensing surfaces. To achieve this goal, we synthesized and characterized films of PEDOT and polyallylamine hydrochloride (PAH) and employed them as conducting channels in the construction of OECTs. Next, we studied the response of the obtained devices to protein adsorption, using glucose oxidase (GOx) as a model system, through two different strategies: The direct electrostatic adsorption of GOx on the PEDOT-PAH film and the specific recognition of the protein by a lectin attached to the surface. Firstly, we used surface plasmon resonance to monitor the adsorption of the proteins and the stability of the assemblies on PEDOT-PAH films. Then, we monitored the same processes with the OECT showing the capability of the device to perform the detection of the protein binding process in real time. In addition, the sensing mechanisms enabling the monitoring of the adsorption process with the OECTs for the two strategies are discussed.
Collapse
|
8
|
Dual-gate thin film transistor lactate sensors operating in the subthreshold regime. Biosens Bioelectron 2023; 222:114958. [PMID: 36502715 DOI: 10.1016/j.bios.2022.114958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Organic thin-film transistors (TFTs) with an electrochemically functionalized sensing gate are promising platforms for wearable health-monitoring technologies because they are light, flexible, and cheap. Achieving both high sensitivity and low power is highly demanding for portable or wearable devices. In this work, we present flexible printed dual-gate (DG) organic TFTs operating in the subthreshold regime with ultralow power and high sensitivity. The subthreshold operation of the gate-modulated TFT-based sensors not only increases the sensitivity but also reduces the power consumption. The DG configuration has deeper depletion and stronger accumulation, thereby further making the subthreshold slope sharper. We integrate an enzymatic lactate-sensing extended-gate electrode into the printed DG TFT and achieve exceptionally high sensitivity (0.77) and ultralow static power consumption (10 nW). Our sensors are successfully demonstrated in physiological lactate monitoring with human saliva. The accuracy of the DG TFT sensing system is as good as that of a high-cost conventional assay. The developed platform can be readily extended to various materials and technologies for high performance wearable sensing applications.
Collapse
|
9
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Sharfstein ST. Bio-hybrid electronic and photonic devices. Exp Biol Med (Maywood) 2022; 247:2128-2141. [PMID: 36533579 PMCID: PMC9837307 DOI: 10.1177/15353702221144087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bio-hybrid devices, combining electronic and photonic components with cells, tissues, and organs, hold potential for advancing our understanding of biology, physiology, and pathologies and for treating a wide range of conditions and diseases. In this review, I describe the devices, materials, and technologies that enable bio-hybrid devices and provide examples of their utilization at multiple biological scales ranging from the subcellular to whole organs. Finally, I describe the outcomes of a National Science Foundation (NSF)-funded workshop envisioning potential applications of these technologies to improve health outcomes and quality of life.
Collapse
|
11
|
Brendgen R, Graßmann C, Gellner S, Schwarz-Pfeiffer A. Textile One-Component Organic Electrochemical Sensor for Near-Body Applications. MICROMACHINES 2022; 13:1980. [PMID: 36422410 PMCID: PMC9695350 DOI: 10.3390/mi13111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The need for more efficient health services and the trend of a healthy lifestyle pushes the development of smart textiles. Since textiles have always been an object of everyday life, smart textiles promise an extensive user acceptance. Thereby, the manufacture of electrical components based on textile materials is of great interest for applications as biosensors. Organic electrochemical transistors (OECTs) are often used as biosensors for the detection of saline content, adrenaline, glucose, etc., in diverse body fluids. Textile-based OECTs are mostly prepared by combining a liquid electrolyte solution with two separate electro-active yarns that must be precisely arranged in a textile structure. Herein, on the other hand, a biosensor based on a textile single-component organic electrochemical transistor with a hardened electrolyte was developed by common textile technologies such as impregnation and laminating. Its working principle was demonstrated by showing that the herein-produced transistor functions similarly to a switch or an amplifier and that it is able to detect ionic analytes of a saline solution. These findings support the idea of using this new device layout of textile-based OECTs as biosensors in near-body applications, though future work must be carried out to ensure reproducibility and selectivity, and to achieve an increased level of textile integration.
Collapse
Affiliation(s)
- Rike Brendgen
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| | - Carsten Graßmann
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| | - Sandra Gellner
- Faculty Electrical Engineering and Computer Science, Niederrhein University of Applied Sciences, Reinarzstr. 49, 47805 Krefeld, Germany
| | - Anne Schwarz-Pfeiffer
- Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| |
Collapse
|
12
|
Flexible biochemical sensors for point-of-care management of diseases: a review. Mikrochim Acta 2022; 189:380. [PMID: 36094594 PMCID: PMC9465157 DOI: 10.1007/s00604-022-05469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Health problems have been widely concerned by all mankind. Real-time monitoring of disease-related biomarkers can feedback the physiological status of human body in time, which is very helpful to the diseases management of healthcare. However, conventional non-flexible/rigid biochemical sensors possess low fit and comfort with the human body, hence hindering the accurate and comfortable long-time health monitoring. Flexible and stretchable materials make it possible for sensors to be continuously attached to the human body with good fit, and more precise and higher quality results can be obtained. Thus, tremendous attention has been paid to flexible biochemical sensors in point-of-care (POC) for real-time monitoring the entire disease process. Here, recent progress on flexible biochemical sensors for management of various diseases, focusing on chronic and communicable diseases, is reviewed, and the detection principle and performance of these flexible biochemical sensors are discussed. Finally, some directions and challenges are proposed for further development of flexible biochemical sensors.
Collapse
|
13
|
Demuru S, Kim J, El Chazli M, Bruce S, Dupertuis M, Binz PA, Saubade M, Lafaye C, Briand D. Antibody-Coated Wearable Organic Electrochemical Transistors for Cortisol Detection in Human Sweat. ACS Sens 2022; 7:2721-2731. [PMID: 36054907 DOI: 10.1021/acssensors.2c01250] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dysregulation of the hormone cortisol is related to several pathological states, and its monitoring could help prevent severe stress, fatigue, and mental diseases. While wearable antibody-based biosensors could allow real-time and simple monitoring of antigens, an accurate and low-cost antibody-based cortisol detection through electrochemical methods is considerably challenging due to its low concentration and the high ionic strength of real biofluids. Here, a label-free and fast sensor for cortisol detection is proposed based on antibody-coated organic electrochemical transistors. The developed devices show unprecedented high sensitivities of 50 μA/dec for cortisol sensing in high-ionic-strength solutions with effective cortisol detection demonstrated with real human sweat. The sensing mechanism is analyzed through impedance spectroscopy and confirmed with electrical models. Compared to existing methods requiring bulky and expensive laboratory equipment, these wearable devices enable point-of-care cortisol detection in 5 min with direct sweat collection for personalized well-being monitoring.
Collapse
Affiliation(s)
- Silvia Demuru
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Jaemin Kim
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Marwan El Chazli
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Stephen Bruce
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Michael Dupertuis
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pierre-Alain Binz
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mathieu Saubade
- Sports Medicine Unit, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Céline Lafaye
- Sports Medicine Unit, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Danick Briand
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| |
Collapse
|
14
|
Deng Y, Liu L, Li J, Gao L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. BIOSENSORS 2022; 12:776. [PMID: 36290914 PMCID: PMC9599861 DOI: 10.3390/bios12100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Nano biochemical sensors play an important role in detecting the biomarkers related to human diseases, and carbon nanotubes (CNTs) have become an important factor in promoting the vigorous development of this field due to their special structure and excellent electronic properties. This paper focuses on applying carbon nanotube field-effect transistor (CNT-FET) biochemical sensors to detect biomarkers. Firstly, the preparation method, physical and electronic properties and functional modification of CNTs are introduced. Then, the configuration and sensing mechanism of CNT-FETs are introduced. Finally, the latest progress in detecting nucleic acids, proteins, cells, gases and ions based on CNT-FET sensors is summarized.
Collapse
Affiliation(s)
- Yixi Deng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat Commun 2022; 13:5423. [PMID: 36109508 PMCID: PMC9477811 DOI: 10.1038/s41467-022-33094-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Research on electrolyte-gated and organic electrochemical transistor (OECT) architectures is motivated by the prospect of a highly biocompatible interface capable of amplifying bioelectronic signals at the site of detection. Despite many demonstrations in these directions, a quantitative model for OECTs as impedance biosensors is still lacking. We overcome this issue by introducing a model experiment where we simulate the detection of a single cell by the impedance sensing of a dielectric microparticle. The highly reproducible experiment allows us to study the impact of transistor geometry and operation conditions on device sensitivity. With the data we rationalize a mathematical model that provides clear guidelines for the optimization of OECTs as single cell sensors, and we verify the quantitative predictions in an in-vitro experiment. In the optimized geometry, the OECT-based impedance sensor allows to record single cell adhesion and detachment transients, showing a maximum gain of 20.2±0.9 dB with respect to a single electrode-based impedance sensor. The authors develop a quantitative description of alternating current amplification gain in organic electrochemical transistors. The findings are applied to achieve detection of single glioblastoma cell adhesion with 20 dB gain compared to microelectrodes.
Collapse
|
16
|
Pathak Y, Malhotra BD, Chaujar R. Detection of biomolecules in dielectric modulated double metal below ferroelectric layer FET with improved sensitivity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2022; 33:13558-13567. [PMID: 38625222 PMCID: PMC9078211 DOI: 10.1007/s10854-022-08290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/16/2022] [Indexed: 04/17/2024]
Abstract
In this work, we examined the double metal below ferroelectric layer FET that is double metal below negative capacitance field-effect transistor (DM-below-NCFET) for biosensing application and change in nanocavity gap with biomolecules as protein, ChO x (cholesterol oxidase), streptavidin, and uricase. For measuring the electrical characteristic and neutral biosensing such as threshold voltage, switching ratio (I on / I off ) of the device which is higher than one without molecules by 1.52 times, sensitivity of protein enhanced by 1.11 over without biomolecule, limit of detection of protein is higher by 1.012 times over without molecule, shift in potential have been researched for cavity length 10 nm. The biosensor indicated improved sensitivity for biomolecules with the rise in their dielectric parameter. Moreover, modulation of the length of the gap of cavity was too examined, exposing that its increment (from 8 to 12 nm) altogether upgraded the sensitivity of the proposed biosensor. Visual TCAD (Technology Computer-Aided Design) software is used for simulating all results. In general, the consequences of this examination represent that such DM-below-NCFET biosensors can display extreme sensitivity (1.11) at small drain voltage (0.4 V), empowering their utilization for biosensor applications to analyze different infections which involve low power, extreme density, and enhanced speed.
Collapse
Affiliation(s)
- Yash Pathak
- Department of Applied Physics, Delhi Technological University, New Delhi, 110042 India
| | - Bansi Dhar Malhotra
- Department of Biotechnology, Delhi Technological University, New Delhi, 110042 India
| | - Rishu Chaujar
- Department of Applied Physics, Delhi Technological University, New Delhi, 110042 India
| |
Collapse
|
17
|
Bianchi M, De Salvo A, Asplund M, Carli S, Di Lauro M, Schulze‐Bonhage A, Stieglitz T, Fadiga L, Biscarini F. Poly(3,4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104701. [PMID: 35191224 PMCID: PMC9036021 DOI: 10.1002/advs.202104701] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
Collapse
Affiliation(s)
- Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Anna De Salvo
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Maria Asplund
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Present address:
Department of Environmental and Prevention SciencesUniversità di FerraraFerrara44121Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
- Epilepsy CenterFaculty of MedicineUniversity of FreiburgFreiburg79110Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Life Science DepartmentUniversità di Modena e Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
18
|
Yao DR, Yu H, Rauhala OJ, Cea C, Zhao Z, Gelinas JN, Khodagholy D. Anisotropic Ion Conducting Particulate Composites for Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104404. [PMID: 35083889 PMCID: PMC8948554 DOI: 10.1002/advs.202104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Acquisition, processing, and manipulation of biological signals require transistor circuits capable of ion to electron conversion. However, use of this class of transistors in integrated sensors or circuits is limited due to difficulty in patterning biocompatible electrolytes for independent operation of transistors. It is hypothesized that it would be possible to eliminate the need for electrolyte patterning by enabling directional ion conduction as a property of the material serving as electrolyte. Here, the anisotropic ion conductor (AIC) is developed as a soft, biocompatible composite material comprised of ion-conducting particles and an insulating polymer. AIC displays strongly anisotropic ion conduction with vertical conduction comparable to isotropic electrolytes over extended time periods. AIC allows effective hydration of conducting polymers to establish volumetric capacitance, which is critical for the operation of electrochemical transistors. AIC enables dense patterning of transistors with minimal leakage using simple solution-based deposition techniques. Lastly, AIC can be utilized as a dry, anisotropic interface with human skin that is capable of non-invasive acquisition of individual motor action potentials. The properties of AIC position it to enable implementation of a wide range of large-scale organic bioelectronics and enhance their translation to human health applications.
Collapse
Affiliation(s)
- Dickson R. Yao
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Han Yu
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Onni J. Rauhala
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Claudia Cea
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zifang Zhao
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jennifer N. Gelinas
- Department of NeurologyColumbia University Medical CenterNew YorkNY10032USA
- Institute for Genomic MedicineColumbia University Medical CenterNew YorkNY10032USA
| | - Dion Khodagholy
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| |
Collapse
|
19
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Bhatt D, Panda S. Dual‐gate ion‐sensitive field‐effect transistors: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Deepa Bhatt
- National Centre for Flexible Electronics Indian Institute of Technology Kanpur Kanpur India
- Samtel Centre for Display Technologies Indian Institute of Technology Kanpur Kanpur India
| | - Siddhartha Panda
- National Centre for Flexible Electronics Indian Institute of Technology Kanpur Kanpur India
- Samtel Centre for Display Technologies Indian Institute of Technology Kanpur Kanpur India
- Department of Chemical Engineering Indian Institute of Technology Kanpur Kanpur India
- Materials Science Programme Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
21
|
Song Y, Wagner J, Katz HE. The behavior of carboxylated and hydroxylated polythiophene as bioreceptor layer: Anti‐human IgG and human IgG interaction detection based on organic electrochemical transistors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yunjia Song
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Justine Wagner
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Howard E. Katz
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
22
|
Mello HJNPD, Faleiros MC, Mulato M. Electrochemically activated polyaniline based ambipolar organic electrochemical transistor. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hugo José Nogueira Pedroza Dias Mello
- Institute of Physics Federal University of Goiás (UFG) Goiânia Goiás Brazil
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto (FFCLRP) University of Sao Paulo (USP) Ribeirao Preto Sao Paulo Brazil
| | - Murilo Calil Faleiros
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto (FFCLRP) University of Sao Paulo (USP) Ribeirao Preto Sao Paulo Brazil
| | - Marcelo Mulato
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto (FFCLRP) University of Sao Paulo (USP) Ribeirao Preto Sao Paulo Brazil
| |
Collapse
|
23
|
Raza S, Li X, Soyekwo F, Liao D, Xiang Y, Liu C. A comprehensive overview of common conducting polymer-based nanocomposites; Recent advances in design and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Non-invasive wearable chemical sensors in real-life applications. Anal Chim Acta 2021; 1179:338643. [PMID: 34535258 DOI: 10.1016/j.aca.2021.338643] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, non-invasive wearable chemical sensors have gained tremendous attention in the field of personal health monitoring and medical diagnosis. These sensors provide non-invasive, real-time, and continuous monitoring of targeted biomarkers with more simplicity than the conventional diagnostic approaches. This review primarily describes the substrate materials used for sensor fabrication, sample collection and handling, and analytical detection techniques that are utilized to detect biomarkers in different biofluids. Common substrates including paper, textile, and hydrogel for wearable sensor fabrication are discussed. Principles and applications of colorimetric and electrochemical detection in wearable chemical sensors are illustrated. Data transmission systems enabling wireless communication between the sensor and output devices are also discussed. Finally, examples of different designs of wearable chemical sensors including tattoos, garments, and accessories are shown. Successful development of non-invasive wearable chemical sensors will effectively help users to manage their personal health, predict the potential diseases, and eventually improve the overall quality of life.
Collapse
|
25
|
|
26
|
|
27
|
Bastide M, Frath D, Gam‐Derouich S, Lacroix J. Electrochemical and Plasmon‐induced Grafting of n‐Dopable π‐Conjugated Oligomers. ChemElectroChem 2021. [DOI: 10.1002/celc.202100563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mathieu Bastide
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J.-A. de Baïf 75205 Paris Cedex 13 France
| | - Denis Frath
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J.-A. de Baïf 75205 Paris Cedex 13 France
| | - Sarra Gam‐Derouich
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J.-A. de Baïf 75205 Paris Cedex 13 France
| | | |
Collapse
|
28
|
Chelliah R, Wei S, Daliri EBM, Rubab M, Elahi F, Yeon SJ, Jo KH, Yan P, Liu S, Oh DH. Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1515. [PMID: 34201071 PMCID: PMC8226856 DOI: 10.3390/nano11061515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022]
Abstract
The issue of medication noncompliance has resulted in major risks to public safety and financial loss. The new omnipresent medicine enabled by the Internet of things offers fascinating new possibilities. Additionally, an in-home healthcare station (IHHS), it is necessary to meet the rapidly increasing need for routine nursing and on-site diagnosis and prognosis. This article proposes a universal and preventive strategy to drug management based on intelligent and interactive packaging (I2Pack) and IMedBox. The controlled delamination material (CDM) seals and regulates wireless technologies in novel medicine packaging. As such, wearable biomedical sensors may capture a variety of crucial parameters via wireless communication. On-site treatment and prediction of these critical factors are made possible by high-performance architecture. The user interface is also highlighted to make surgery easier for the elderly, disabled, and patients. Land testing incorporates and validates an approach for prototyping I2Pack and iMedBox. Additionally, sustainability, increased product safety, and quality standards are crucial throughout the life sciences. To achieve these standards, intelligent packaging is also used in the food and pharmaceutical industries. These technologies will continuously monitor the quality of a product and communicate with the user. Data carriers, indications, and sensors are the three most important groups. They are not widely used at the moment, although their potential is well understood. Intelligent packaging should be used in these sectors and the functionality of the systems and the values presented in this analysis.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan;
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Kyoung hee Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| |
Collapse
|
29
|
Liu N, Xiang X, Fu L, Cao Q, Huang R, Liu H, Han G, Wu L. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens Bioelectron 2021; 188:113340. [PMID: 34030092 DOI: 10.1016/j.bios.2021.113340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The detection of dopamine, one of the neurotransmitters in cerebral physiology, is critical in studying brain activities and understanding brain functions. However, regenerative biosensor for monitoring dopamine in the progress of physiological and pathological events is still challenging, due to lack of the platform for repetitive on-line detection-regeneration cycle. Herein, we have developed a regenerated field effect transistor (FET) combined with in vivo monitoring system. In this biosensor, gold-coated magnetic nanoparticles (Fe3O4@AuNPs) acts as a regenerated recognition unit for dopamine. Just by simple removal of a permanent magnet, dopamine on the biosensor interface are catalyzed by tyrosinase, thus achieving the regeneration of the biosensor. As a result, this FET biosensor not only reveals high sensitivity and selectivity, but also exhibits excellent stability after 15 regeneration processing. This biosensor is capable of monitor dopamine with a linear range between 1 μmol L-1 and 120 μmol L-1 and low detection limit (DL) of 3.3 nmol L-1. Then, the platform has been successfully applied in dopamine analysis in fish brain under global cerebral cortical neurons. This FET biosensor is the first to on-line and remote control the sensitivity and DL by permanent magnet. It opens the door to reusable, inexpensive and large-scale productions.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei Fu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong Huang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
30
|
Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems. Sci Rep 2021; 11:9815. [PMID: 33972649 PMCID: PMC8111018 DOI: 10.1038/s41598-021-89367-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Lab-on-Chip is a technology that aims to transform the Point-of-Care (PoC) diagnostics field; nonetheless a commercial production compatible technology is yet to be established. Lab-on-Printed Circuit Board (Lab-on-PCB) is currently considered as a promising candidate technology for cost-aware but simultaneously high specification applications, requiring multi-component microsystem implementations, due to its inherent compatibility with electronics and the long-standing industrial manufacturing basis. In this work, we demonstrate the first electrolyte gated field-effect transistor (FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink was drop-casted to form the transistor channel and PNA probes were immobilized on the graphene channel, enabling label-free DNA detection. It is shown that the sensor can selectively detect the complementary DNA sequence, following a fully inkjet-printing compatible manufacturing process. The results demonstrate the potential for the effortless integration of FET sensors into Lab-on-PCB diagnostic platforms, paving the way for even higher sensitivity quantification than the current Lab-on-PCB state-of-the-art of passive electrode electrochemical sensing. The substitution of such biosensors with our presented FET structures, promises further reduction of the time-to-result in microsystems combining sequential DNA amplification and detection modules to few minutes, since much fewer amplification cycles are required even for low-abundance nucleic acid targets.
Collapse
|
31
|
PEDOT:PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells. Biosens Bioelectron 2021; 180:113101. [DOI: 10.1016/j.bios.2021.113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
|
32
|
Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications. NANOMATERIALS 2021; 11:nano11051185. [PMID: 33946256 PMCID: PMC8145629 DOI: 10.3390/nano11051185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
This work reports the development of a highly sensitive pressure detector prepared by inkjet printing of electroactive organic semiconducting materials. The pressure sensing is achieved by incorporating a quantum tunnelling composite material composed of graphite nanoparticles in a rubber matrix into the multilayer nanostructure of a printed organic thin film transistor. This printed device was able to convert shock wave inputs rapidly and reproducibly into an inherently amplified electronic output signal. Variation of the organic ink material, solvents, and printing speeds were shown to modulate the multilayer nanostructure of the organic semiconducting and dielectric layers, enabling tuneable optimisation of the transistor response. The optimised printed device exhibits rapid switching from a non-conductive to a conductive state upon application of low pressures whilst operating at very low source-drain voltages (0–5 V), a feature that is often required in applications sensitive to stray electromagnetic signals but is not provided by conventional inorganic transistors and switches. The printed sensor also operates without the need for any gate voltage bias, further reducing the electronics required for operation. The printable low-voltage sensing and signalling system offers a route to simple low-cost assemblies for secure detection of stimuli in highly energetic systems including combustible or chemically sensitive materials.
Collapse
|
33
|
Pazoki S, Frick J, Dougherty DB. Dynamics of domain boundaries at metal-organic interfaces. J Chem Phys 2021; 154:124704. [PMID: 33810683 DOI: 10.1063/5.0029313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Domain boundaries are a determining factor in the performance of organic electronic devices since they can trap mobile charge carriers. We point out the possibility of time-dependent motion of these boundaries and suggest that their thermal fluctuations can be a source of dynamic disorder in organic films. In particular, we study the C8-BTBT monolayer films with several different domain boundaries. After characterizing the crystallography and diversity of structures in the first layer of C8-BTBT on Au(111), we focus on quantifying the domain boundary fluctuations in the saturated monolayer. We find that the mean squared displacement of the boundary position grows linearly with time at early times but tends to saturate after about 7 s. This behavior is ascribed to confined diffusion of the interface position based on fits and numerical integration of a Langevin equation for the interface motion.
Collapse
Affiliation(s)
- Sara Pazoki
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jordan Frick
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Daniel B Dougherty
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
34
|
Contact-electrification-activated artificial afferents at femtojoule energy. Nat Commun 2021; 12:1581. [PMID: 33707420 PMCID: PMC7952391 DOI: 10.1038/s41467-021-21890-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Low power electronics endowed with artificial intelligence and biological afferent characters are beneficial to neuromorphic sensory network. Highly distributed synaptic sensory neurons are more readily driven by portable, distributed, and ubiquitous power sources. Here, we report a contact-electrification-activated artificial afferent at femtojoule energy. Upon the contact-electrification effect, the induced triboelectric signals activate the ion-gel-gated MoS2 postsynaptic transistor, endowing the artificial afferent with the adaptive capacity to carry out spatiotemporal recognition/sensation on external stimuli (e.g., displacements, pressures and touch patterns). The decay time of the synaptic device is in the range of sensory memory stage. The energy dissipation of the artificial afferents is significantly reduced to 11.9 fJ per spike. Furthermore, the artificial afferents are demonstrated to be capable of recognizing the spatiotemporal information of touch patterns. This work is of great significance for the construction of next-generation neuromorphic sensory network, self-powered biomimetic electronics and intelligent interactive equipment. Low power electronics endowed with artificial intelligence and biological afferent characters are beneficial to neuromorphic sensory network. Here, the authors report contact-electrification-activated artificial afferent at femtojoule energy, which is able to carry out spatiotemporal recognition on external stimuli.
Collapse
|
35
|
Spanu A, Martines L, Bonfiglio A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. LAB ON A CHIP 2021; 21:795-820. [PMID: 33565540 DOI: 10.1039/d0lc01007c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, organic bioelectronics has attracted considerable interest in the scientific community. The impressive growth that it has undergone in the last 10 years has allowed the rise of the completely new field of cellular organic bioelectronics, which has now the chance to compete with consolidated approaches based on devices such as micro-electrode arrays and ISFET-based transducers both in in vitro and in vivo experimental practice. This review focuses on cellular interfaces based on organic active devices and has the intent of highlighting the recent advances and the most innovative approaches to the ongoing and everlasting challenge of interfacing living matter to the "external world" in order to unveil the hidden mechanisms governing its behavior. Device-wise, three different organic structures will be considered in this work, namely the organic electrochemical transistor (OECT), the solution-gated organic transistor (SGOFET - which is presented here in two possible different versions according to the employed active material, namely: the electrolyte-gated organic transistor - EGOFET, and the solution gated graphene transistor - gSGFET), and the organic charge modulated field effect transistor (OCMFET). Application-wise, this work will mainly focus on cellular-based biosensors employed in in vitro and in vivo cellular interfaces, with the aim of offering the reader a comprehensive retrospective of the recent past, an overview of the latest innovations, and a glance at the future prospects of this challenging, yet exciting and still mostly unexplored scientific field.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari, CA, Italy.
| | | | | |
Collapse
|
36
|
Gall JL, Vasilijević S, Battaglini N, Mattana G, Noël V, Brayner R, Piro B. Algae-functionalized hydrogel-gated organic field-effect transistor. Application to the detection of herbicides. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Gogoi G, Bhattacharya L, Sahoo SR, Sahu S, Sarma NS, Sharma S. Enhancement of air-stability, π-stacking ability, and charge transport properties of fluoroalkyl side chain engineered n-type naphthalene tetracarboxylic diimide compounds. RSC Adv 2021; 11:57-70. [PMID: 35423045 PMCID: PMC8690421 DOI: 10.1039/d0ra08345c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π–π stacking ability. This is also in good agreement for the predicted π–π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π–π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored.![]()
Collapse
Affiliation(s)
- Gautomi Gogoi
- Advanced Materials Laboratory
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - Labanya Bhattacharya
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Smruti R. Sahoo
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Sridhar Sahu
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Neelotpal Sen Sarma
- Advanced Materials Laboratory
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - Sagar Sharma
- Department of Chemistry
- School of Fundamental and Applied Sciences
- Assam Don Bosco University
- Guwahati-782402
- India
| |
Collapse
|
38
|
Zhang Y, Zeng Q, Shen Y, Yang L, Yu F. Electrochemical Stability Investigations and Drug Toxicity Tests of Electrolyte-Gated Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56216-56221. [PMID: 33327057 DOI: 10.1021/acsami.0c15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrolyte-gated organic field-effect transistors (EGOFETs) are emerging as a new frontier of organic bioelectronics, with promising applications in biosensing, pharmaceutical testing, and neuroscience. However, the limited charge carriers' mobility and well-known environmental instability of conjugated polymers constrain the real applications of organic bioelectronics. Here, we comparatively studied the electrochemical stability of p-type conjugated polymer films in the EGOFET configuration. By combining electrochemical stability tests, morphology characterization, and EQCM-D monitoring, we find that a donor-acceptor copolymer, poly(N-alkyldiketopyrrolo-pyrrole-dithienylthieno[3,2-b]thiophene) (DPP-DTT) shows improved mobility and electrochemical stability under an electrolyte, which may benefit from the ordered morphology and close alkyl side-chains' interdigitation preventing water diffusion and ion doping during long-term operation under an electrolyte. Based on the DPP-DTT EGOFETs, we have demonstrated a low-cost drug toxicity test platform that is sensitive enough to distinguish the cytotoxicity of different chemicals. This study overall pushes forward the development of organic bioelectronics with enhanced stability and sensitivity and presents successful exploitation of EGOFET in pharmaceutical research.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Qiming Zeng
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Yujie Shen
- Shenzhen Pynect Science and Technology Ltd., Shenzhen 518055, P. R. China
| | - Li Yang
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Fei Yu
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| |
Collapse
|
39
|
Shaposhnik PA, Zapunidi SA, Shestakov MV, Agina EV, Ponomarenko SA. Modern bio and chemical sensors and neuromorphic devices based on organic semiconductors. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes and highlights the current state-of-the-art of research on chemical sensors and biosensors in liquid environment and neuromorphic devices based on electrolyte-gated organic transistors with the active semiconductor layer of organic π-conjugated materials (small molecules, oligomers and polymers). The architecture and principles of operation of electrolyte-gated organic transistors and the main advantages and drawbacks of these devices are considered in detail. The criteria for the selection of organic semiconductors for these devices are presented. The causes of degradation of semiconductor layers and ways of their elimination are discussed. Examples of the use of electrolyte-gated organic transistors as bio and chemical sensors, artificial synapses and computing devices are given.
The bibliography includes 132 references.
Collapse
|
40
|
Wu S, Wang X, Li Z, Zhang S, Xing F. Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors. MICROMACHINES 2020; 11:E1059. [PMID: 33265955 PMCID: PMC7760752 DOI: 10.3390/mi11121059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
This review reports the progress of the recent development of graphene-based microfluidic sensors. The introduction of microfluidics technology provides an important possibility for the advance of graphene biosensor devices for a broad series of applications including clinical diagnosis, biological detection, health, and environment monitoring. Compared with traditional (optical, electrochemical, and biological) sensing systems, the combination of graphene and microfluidics produces many advantages, such as achieving miniaturization, decreasing the response time and consumption of chemicals, improving the reproducibility and sensitivity of devices. This article reviews the latest research progress of graphene microfluidic sensors in the fields of electrochemistry, optics, and biology. Here, the latest development trends of graphene-based microfluidic sensors as a new generation of detection tools in material preparation, device assembly, and chip materials are summarized. Special emphasis is placed on the working principles and applications of graphene-based microfluidic biosensors, especially in the detection of nucleic acid molecules, protein molecules, and bacterial cells. This article also discusses the challenges and prospects of graphene microfluidic biosensors.
Collapse
Affiliation(s)
- Shigang Wu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China;
| | - Xin Wang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| | - Shijie Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| |
Collapse
|
41
|
Ultra stable, inkjet-printed pseudo reference electrodes for lab-on-chip integrated electrochemical biosensors. Sci Rep 2020; 10:17152. [PMID: 33051556 PMCID: PMC7554035 DOI: 10.1038/s41598-020-74340-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Lab-on-Chip technology comprises one of the most promising technologies enabling the widespread adoption of Point-of-Care testing in routine clinical practice. However, until now advances in Lab-on-Chip have not been translated to the anticipated degree to commercialized tools, with integrated device mass manufacturing cost still not at a competitive level for several key clinical applications. Lab-on-PCB is currently considered as a candidate technology addressing this issue, owing to its intuitive compatibility with electronics, seamless integration of electrochemical biosensors and the extensive experience regarding industrial manufacturing processes. Inkjet-printing in particular is a compatible fabrication method, widening the range of electronic materials available and thus enabling seamlessly integrated ultrasensitive electronic detection. To this end, in this work stable pseudo-reference electrodes are fabricated for the first time by means of commercial inkjet-printing on a PCB-integrated electrochemical biosensing platform. SEM and XPS analysis are employed to characterize the electrodes’ structure and composition and identify any special characteristics, compared to published work on alternative substrates. Additionally, this paper analyzes integrated reference electrodes from a new perspective, focusing mainly on their characteristics in real-life operation: chemical sintering as opposed to high budget thermal one, stability under continuous flow, pH dependency and bias stress effects on electrode instability, a parameter often overlooked in electrochemical biosensors.
Collapse
|
42
|
Xiao K, Wan C, Jiang L, Chen X, Antonietti M. Bioinspired Ionic Sensory Systems: The Successor of Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000218. [PMID: 32500602 DOI: 10.1002/adma.202000218] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
All biological systems, including animals and plants, communicate in a language of ions and small molecules, while the modern information infrastructures and technologies rely on a language of electrons. Although electronics and bioelectronics have made great progress in the past several decades, they still face the disadvantage of signal transformation when communicating with biology. To narrow the gap between biological systems and artificial-intelligence systems, bioinspired ion-transport-based sensory systems should be developed as successor of electronics, since they can emulate biological functionality more directly and communicate with biology seamlessly. Herein, the essential principles of (accurate) ion transport are introduced, and the recent progress in the development of three elements of an ionic sensory system is reviewed: ionic sensors, ionic processors, and ionic interfaces. The current challenges and future developments of ion-transport-based sensory systems are also discussed.
Collapse
Affiliation(s)
- Kai Xiao
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Potsdam, 14476, Germany
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Jiang
- Key Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Potsdam, 14476, Germany
| |
Collapse
|
43
|
Ricci S, Casalini S, Parkula V, Selvaraj M, Saygin GD, Greco P, Biscarini F, Mas-Torrent M. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens Bioelectron 2020; 167:112433. [PMID: 32771862 DOI: 10.1016/j.bios.2020.112433] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
The aggregation of α-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of α-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(α-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Simona Ricci
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain
| | - Stefano Casalini
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain; Department of Chemical Sciences, University of Padua, via Francesco Marzolo 1, 35131, Padova, Italy.
| | - Vitaliy Parkula
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy; University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Meenu Selvaraj
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy
| | | | - Pierpaolo Greco
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy
| | - Fabio Biscarini
- University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy; Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain.
| |
Collapse
|
44
|
Le Gall J, Mouillard F, Le TN, Vu TT, Mattana G, Brayner R, Zrig S, Noël V, Piro B. Monitoring photosynthetic microorganism activity with an electrolyte-gated organic field effect transistor. Biosens Bioelectron 2020; 157:112166. [PMID: 32250936 DOI: 10.1016/j.bios.2020.112166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 01/16/2023]
Abstract
Among organic thin film transistors (OTFTs), Organic Electrochemical Transistors (OECTs) have been extensively used for cell monitoring while Electrolyte-Gated Organic Field-Effect Transistors (EGOFETs) have never been described for that kind of application. However, EGOFETs are well adapted for this use because, as well as OECTs, they can operate directly in aqueous solutions such as cells culture media, but they offer much a higher on/off ratio which could lead to better sensitivity. As a proof of concept, we propose herein to monitor the photosynthetic activity of a cyanobacterium (Anabaena flos-aquae) contained within an EGOFET's electrolyte.
Collapse
Affiliation(s)
- Jérémy Le Gall
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Flavien Mouillard
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Trung Ngoc Le
- Department of Advanced Materials Science and Nanotechnology (AMSN), University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Nghĩa Đô, Cầu Giấy, Hanoi, Viet Nam
| | - Thi Thu Vu
- Department of Advanced Materials Science and Nanotechnology (AMSN), University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Nghĩa Đô, Cầu Giấy, Hanoi, Viet Nam
| | - Giorgio Mattana
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Roberta Brayner
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Samia Zrig
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France.
| | - B Piro
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France.
| |
Collapse
|
45
|
Emerging Designs of Electronic Devices in Biomedicine. MICROMACHINES 2020; 11:mi11020123. [PMID: 31979030 PMCID: PMC7074089 DOI: 10.3390/mi11020123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
A long-standing goal of nanoelectronics is the development of integrated systems to be used in medicine as sensor, therapeutic, or theranostic devices. In this review, we examine the phenomena of transport and the interaction between electro-active charges and the material at the nanoscale. We then demonstrate how these mechanisms can be exploited to design and fabricate devices for applications in biomedicine and bioengineering. Specifically, we present and discuss electrochemical devices based on the interaction between ions and conductive polymers, such as organic electrochemical transistors (OFETs), electrolyte gated field-effect transistors (FETs), fin field-effect transistor (FinFETs), tunnelling field-effect transistors (TFETs), electrochemical lab-on-chips (LOCs). For these systems, we comment on their use in medicine.
Collapse
|
46
|
Vurro F, Janni M, Coppedè N, Gentile F, Manfredi R, Bettelli M, Zappettini A. Development of an In Vivo Sensor to Monitor the Effects of Vapour Pressure Deficit (VPD) Changes to Improve Water Productivity in Agriculture. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4667. [PMID: 31661770 PMCID: PMC6864644 DOI: 10.3390/s19214667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Environment, biodiversity and ecosystem services are essential to ensure food security and nutrition. Managing natural resources and mainstreaming biodiversity across agriculture sectors are keys towards a sustainable agriculture focused on resource efficiency. Vapour Pressure Deficit (VPD) is considered the main driving force of water movements in the plant vascular system, however the tools available to monitor this parameter are usually based on environmental monitoring. The driving motif of this paper is the development of an in-vivo sensor to monitor the effects of VPD changes in the plant. We have used an in vivo sensor, termed "bioristor", to continuously monitor the changes occurring in the sap ion's status when plants experience different VPD conditions and we observed a specific R (sensor response) trend in response to VPD. The possibility to directly monitor the physiological changes occurring in the plant in different VPD conditions, can be used to increase efficiency of the water management in controlled conditions thus achieving a more sustainable use of natural resources.
Collapse
Affiliation(s)
- Filippo Vurro
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Michela Janni
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
- Istituto di Bioscienze e Biorisorse (IBBR-CNR) Via Amendola 165/A, 70126 Bari, Italy.
| | - Nicola Coppedè
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Francesco Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, 80138 Naples, Italy.
| | - Riccardo Manfredi
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Manuele Bettelli
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Andrea Zappettini
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| |
Collapse
|
47
|
Parmeggiani M, Verna A, Ballesio A, Cocuzza M, Piatti E, Fra V, Pirri CF, Marasso SL. P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4497. [PMID: 31627267 PMCID: PMC6832883 DOI: 10.3390/s19204497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/02/2022]
Abstract
In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution to obtaining their recognition. In this study, we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT) in order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor. The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of a commercial adhesion promoter (Ti Prime) on the morphological structure and electronic properties of P3HT film. Combining the results from these surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in deionized (DI) water with an Ag/AgCl gate electrode.
Collapse
Affiliation(s)
- Matteo Parmeggiani
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, 10144 Torino, Italy.
| | - Alessio Verna
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Alberto Ballesio
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Matteo Cocuzza
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Erik Piatti
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Vittorio Fra
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, 10144 Torino, Italy.
| | - Simone Luigi Marasso
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| |
Collapse
|
48
|
Liu N, Chen R, Wan Q. Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. SENSORS 2019; 19:s19153425. [PMID: 31387221 PMCID: PMC6696065 DOI: 10.3390/s19153425] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
As promising biochemical sensors, ion-sensitive field-effect transistors (ISFETs) are used widely in the growing field of biochemical sensing applications. Recently, a new type of field-effect transistor gated by ionic electrolytes has attracted intense attention due to the extremely strong electric-double-layer (EDL) gating effect. In such devices, the carrier density of the semiconductor channel can be effectively modulated by an ion-induced EDL capacitance at the semiconductor/electrolyte interface. With advantages of large specific capacitance, low operating voltage and sensitive interfacial properties, various EDL-based transistor (EDLT) devices have been developed for ultrasensitive portable sensing applications. In this article, we will review the recent progress of EDLT-based biochemical sensors. Starting with a brief introduction of the concepts of EDL capacitance and EDLT, we describe the material compositions and the working principle of EDLT devices. Moreover, the biochemical sensing performances of several important EDLTs are discussed in detail, including organic-based EDLTs, oxide-based EDLTs, nanomaterial-based EDLTs and neuromorphic EDLTs. Finally, the main challenges and development prospects of EDLT-based biochemical sensors are listed.
Collapse
Affiliation(s)
- Ning Liu
- Nanchang Institute of Technology, Nanchang 330099, China
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China
| | - Ru Chen
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qing Wan
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
49
|
|
50
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|