1
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
2
|
Teniou A, Rhouati A, Rabai S, Catanante G, Marty JL. Design of a label-free aptasensor for electrochemical determination of hemoglobin: investigation of the peroxidase-like activity of hemoglobin for the sensing of different substrates. Analyst 2023. [PMID: 37466196 DOI: 10.1039/d3an00345k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The unbalanced hemoglobin level in biological fluids can cause several diseases; hence it can be used as a biomarker for diagnosis. We aim, in the present study, to construct a label-free electrochemical aptasensor for the quantification of hemoglobin. For that, a conjugate of L-cysteine and gold nanoparticles was used for the aptamer immobilization on screen printed carbon electrodes. Using square wave voltammetry, the calibration plot was obtained and it was linear in the range of 50 ng ml-1 to 36 000 ng ml-1 while the detection limit was 1.2 ng ml-1. After the binding of Hb on the modified screen-printed carbon electrode surface, the peroxidase-like activity of the bound hemoglobin was explored in the quantification of different substrates. Hydrogen peroxide and nitrite were chosen as model analytes. Amperometric measurements showed wide linear ranges: 0.2 μM-7.7 mM and 3.6 nM-1.3 mM for H2O2 and nitrite, respectively, with detection limits of 0.044 μM and 0.55 nM. In the proposed strategy, the aptamer provides excellent orientation and a biocompatible environment for hemoglobin whose catalytic activity plays a key role in H2O2 and nitrite analysis.
Collapse
Affiliation(s)
- Ahlem Teniou
- Bioengineering laboratory, Higher National School of Biotechnology, Constantine, Algeria.
| | - Amina Rhouati
- Bioengineering laboratory, Higher National School of Biotechnology, Constantine, Algeria.
| | - Selma Rabai
- Laboratory of Sensors, Instrumentations and Process (LCIP), University of Khenchela, Khenchela, Algeria
| | | | | |
Collapse
|
3
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
4
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021; 193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Christian Sonne
- Aarhus University, Arctic Research Centre Department of Bioscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 133-791, South Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| |
Collapse
|
7
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
8
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
9
|
Liu Y, Xu Q, Zhang Y, Ren B, Huang L, Cai H, Xu T, Liu Q, Zhang X. An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-β oligomers. Talanta 2021; 231:122360. [PMID: 33965026 DOI: 10.1016/j.talanta.2021.122360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022]
Abstract
Amyloid-β oligomer is an important biomarker and a potential therapeutic target of Alzheimer's disease in its early stage. Here, we combined superhydrophobic carbon fiber paper (CFP) with AuPt alloy nanoparticles to prepare a CFP/AuPt nanocomposite with larger specific surface area and hydrophobic surface. On this basis, we constructed an electrochemical aptasensor based on CFP/AuPt for the ultrasensitive detection of amyloid-β oligomers. The surface-coated AuPt nanoparticles greatly enhanced the electroactive area, and the hydrophobic surface increased the resisting nonspecific adsorption performance of sensor. A combination of these two features significantly improved the sensitivity and specificity of the sensor. This electrochemical aptasensor based on CFP/AuPt displayed a low detection limit of 0.16 pg/mL. This work shows a promising future in clinical diagnosis of Alzheimer's disease and provides a possible solution to electrochemical biosensors that are susceptible to interference in biological fluids.
Collapse
Affiliation(s)
- Yibiao Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qing Xu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yina Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China; Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Liumei Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hong Cai
- Department of Chemistry, Hanshan Normal University, Chaozhou, China
| | - Tailin Xu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
10
|
α-Synuclein Oligomer Detection with Aptamer Switch on Reduced Graphene Oxide Electrode. NANOMATERIALS 2020; 10:nano10050832. [PMID: 32349285 PMCID: PMC7711764 DOI: 10.3390/nano10050832] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Protein aggregation of alpha-synuclein (α-Syn) is implicated in Parkinson's disease (PD), and, thus, α-Syn aggregates are a potentially promising candidate biomarker for PD diagnosis. Here, we describe a simple and sensitive electrochemical sensor to monitor the aggregation of α-Syn for early PD diagnosis. The sensor utilizes methylene blue (MB)-tagged aptamer (Apt) adsorbed on electrochemically reduced graphene oxide (ERGO) by π-π stacking. The binding of α-Syn oligomer to the Apt induces desorption of the Apt from the ERGO surface, which leads to the electrochemical signal change. The resulting sensor allowed the highly sensitive and selective detection of α-Syn oligomer according to the voltammetric change. Under optimized conditions, the linear range of detection was observed to be from 1 fM to 1 nM of the α-Syn oligomer and the limit of detection (LOD) was estimated to be 0.64 fM based on S/N = 3. The sensor also showed good reproducibility and stability, enabling real sample analysis of the α-Syn oligomer in human blood serum. With its ultrasensitivity and good performance for α-Syn oligomer detection, the sensor provides one promising tool for the early diagnosis of PD.
Collapse
|
11
|
Jadhav RW, Kobaisi MA, Jones LA, Vinu A, Bhosale SV. The Supramolecular Self-Assembly of Aminoglycoside Antibiotics and their Applications. ChemistryOpen 2019; 8:1154-1166. [PMID: 31497469 PMCID: PMC6718072 DOI: 10.1002/open.201900193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycosides, a class of antibiotics that includes gentamicin, kanamycin, neomycin, streptomycin, tobramycin and apramycin, are derived from various streptomyces species. Despite the significant increase in the antibacterial resistant pathogens, aminoglycosides remain an important class of antimicrobial drugs due to their unique chemical structure which offers a broad spectrum of activity. The modification of antibiotics and their subsequent use in supramolecular chemistry is rarely reported. Given the importance of aminoglycosides, here we give a brief overview on the modification of 4,5- and 4,6-disubstituted deoxystreptamine classes of aminoglycosides through supramolecular chemistry and their potential for real world applications. We also make the case that the work in this area is gaining momentum, and there are significant opportunities to meet the challenges of modern antibiotics through the modification of aminoglycosides by harnessing the advantages of supramolecular chemistry.
Collapse
Affiliation(s)
- Ratan W. Jadhav
- School of Chemical SciencesGoa University Taleigao PlateauGoa403 206INDIA
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
| | - Lathe A. Jones
- CAMIC, School of ScienceRMIT University, GPO Box2476Melbourne, VIC-3001Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN)The University of Newcastle (UON), University Drive, CallaghanNSW 2308Australia
| | | |
Collapse
|
12
|
Liang Y, Wu C, Figueroa-Miranda G, Offenhäusser A, Mayer D. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. Biosens Bioelectron 2019; 144:111668. [PMID: 31522101 DOI: 10.1016/j.bios.2019.111668] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/01/2022]
Abstract
Electrochemical aptamer receptor/transducer systems are key elements of emerging E-AB sensors (aptasensor) used for the detection of various kinds of targets. However, the performance of these amperometric sensors is often limited by the low density of receptors attached to the sensor surface and high background signals. In the present work, interdigitated organic electrochemical transistors (iOECT) were used as a transducer to enhance the sensitivity and dynamic detection range of aptasensors. Therefore, the electrode of an amperometric sensor was utilized as gate electrode to operate the iOECT. This device was used to detect the low weight target molecule adenosine triphosphate (ATP), a common biomarker, which plays an important role for cardiovascular, neurodegenerative, and immune deficiency diseases. The novel aptasensor can selectively detect ATP with ultrahigh sensitivity down to the concentration of 10 pM, which is four orders of magnitude lower than the detection limit of the same aptasensor using an amperometric transducer principle (limit-of-detection of 106 nM) and most other previously reported electrochemical sensors. Furthermore, sensor regeneration was demonstrated, which facilitates reusability of OECT aptasensors. The small device size in combination with high transconductances paves the way for the development of highly sensitive integrated micro-biosensors for point-of-care applications.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Complex Systems, Bioelectronics (ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Changtong Wu
- Institute of Complex Systems, Bioelectronics (ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gabriela Figueroa-Miranda
- Institute of Complex Systems, Bioelectronics (ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems, Bioelectronics (ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dirk Mayer
- Institute of Complex Systems, Bioelectronics (ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
13
|
Shekari Z, Zare HR, Falahati A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Mikrochim Acta 2019; 186:530. [PMID: 31302781 DOI: 10.1007/s00604-019-3572-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/02/2019] [Indexed: 01/22/2023]
Abstract
A sandwich-type electrochemical aptasensor has been constructed and applied for sensitive and selective detection of the carcinoembryonic antigen (CEA). The surface of a glassy carbon electrode (GCE) was first modified with nitrogen-doped graphene and then gold nanoparticles and graphene quantum dots electrodeposited on it to obtain an architecture of type GQD/AuNP/NG/GCE. In the next step, the CEA-binding aptamer was immobilized on the modified GCE. Hemin intercalates in the amino-modified hemin aptamer to form a hemin-G-quadruplex (hemin-G4) DNAzyme. The amino modified CEA aptamer II is connected to hemin-G4 by glutaraldehyde (GA) as a linker to produce CEAaptamerII/GA/hemin-G4 (=ApII/GA/DNAzyme). Through a sandwich mode, the ApII/GA/DNAzyme bioconjugates are captured on the modified GCE. Subsequently, the hemin-G4 acts as peroxidase-mimicking DNAzyme and rapidly catalyzes the electroreduction of hydrogen peroxide. The quantitative determination of CEA was achieved by differential pulse voltammetry, best at a working potential of around -0.27 V vs. Ag/AgCl. Under optimized conditions, the assay has a linear response in the 10.0 fg mL-1 to 200.0 ng mL-1 CEA concentration range and a lower detection limit of 3.2 fg mL-1. Graphical abstract Schematic presentation of a sandwich-type electrochemical aptasensor based on nitrogen doped graphene (NG), gold nanoparticles (AuNPs) and graphene quantum dots (GQDs) modified glassy carbon electrode, and the hemin-G4 DNAzyme for femtomolar detection of the carcinoembryonic antigen.
Collapse
Affiliation(s)
- Zahra Shekari
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | - Hamid R Zare
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Ali Falahati
- Department of Biology, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| |
Collapse
|
14
|
Affiliation(s)
- Vlastimil Dorčák
- Department of Biophysical Chemistry and Molecular OncologyInstitute of Biophysics of the CAS, v.v.i. Kralovopolska 135 612 65 Brno
| | - Emil Paleček
- Department of Biophysical Chemistry and Molecular OncologyInstitute of Biophysics of the CAS, v.v.i. Kralovopolska 135 612 65 Brno
| |
Collapse
|
15
|
Graphene-Gold Nanoparticle-modified Electrochemical Sensor for Detection of Kanamycin Based on Target-induced Aptamer Displacement. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8185-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z. Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 2018; 123:59-68. [PMID: 30312876 DOI: 10.1016/j.bios.2018.09.089] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022]
Abstract
Owning to the misuse of the antibiotics in animal husbandry and agriculture, it is highly urgent to determine the quantification of antibiotics in biological systems by the simple, sensitive, and fast method. In this work, a novel nanoarchitecture of Co-based metal-organic frameworks (Co-MOF) and terephthalonitrile-based covalent organic framework (TPN-COF) was synthesized (represented by Co-MOF@TPN-COF), followed by the exploitation as the bioplatform of non-label aptasensor for detecting the most frequently used β-lactam antibiotics, ampicillin (AMP). The new porous hybrid material of Co-MOF@TPN-COF was synthesized by adding the as-prepared TPN-COF into the Co-MOF preparation system. The multilayered Co-MOF@TPN-COF nanosheets exhibit a high specific surface area (52.64 m2 g-1), nitrogen-rich groups and excellent electrochemical activity. As a result, large amounts of aptamer strands can be bound over the Co-MOF@TPN-COF nanosheets owning to the strong π-π stacking and hydrogen bonds. When detecting AMP by the electrochemical impedance spectroscopy, the fabricated Co-MOF@TPN-COF-based aptasensor exhibits an ultra-low detection limit of 0.217 fg mL-1 within the AMP concentration from 1.0 fg mL-1 to 2.0 ng mL-1, which was superior to those previously reported in literatures. In addition, this proposed aptasensor also shows high selectivity, good reproducibility and stability, acceptable regenerability, and favorable applicability in human serum, river water and milk. Therefore, the proposed Co-MOF@TPN-COF-based aptasensor has a great promise to be applied as a powerful tool in the fields of food safety.
Collapse
Affiliation(s)
- Xiaokang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Qin B, Yang K. Voltammetric aptasensor for thrombin by using a gold microelectrode modified with graphene oxide decorated with silver nanoparticles. Mikrochim Acta 2018; 185:407. [DOI: 10.1007/s00604-018-2924-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023]
|
18
|
High-performance nanogap electrode-based impedimetric sensor for direct DNA assays. Biosens Bioelectron 2018; 118:153-159. [PMID: 30075385 DOI: 10.1016/j.bios.2018.07.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
Abstract
The rapid and sensitive detection of pathogen DNA (Deoxyribonucleic acid) would be essential for diagnosis and appropriate antibiotic treatment time. Herein, we report a novel direct DNA detectable impedimetric sensor. Direct assay of the amplified target DNA (mecA gene from methicillin-resistant Staphylococcus aureus (MRSA)) was performed using the PCR (polymerase chain reaction) product without any purification. Even though there are lots of PCR reagents and excess salts in sample PCR product, the nanogap electrode-based impedimetric sensor was able to detect DNA amplification fast in 5th PCR cycle which had 260 fM mecA gene in sample originally. The 70 nm gap electrode sensor yielded over 20% signal increase at the 5th PCR cycle and the impedance change grew up to about 60% at 25th in case of sample with 260 fM mecA gene template originally. The increased concentration of target DNA template led to the rise in impedance change such as 60% up at 5th and 120% up at 25th cycle with 260 pM, respectively. It is very outstanding result as compared with the traditional PCR agarose gel. Besides, it is 7-fold superior sensitivity to the microgap electrode. Furthermore, genomic DNA sample extracted from MRSA was detected rapidly. The nanogap electrode-based impedimetric sensor could be a good candidate for a rapid, sensitive, and low-cost electrical biosensor for DNA characterization in diagnostics and disease monitoring.
Collapse
|
19
|
Carpenter AC, Paulsen IT, Williams TC. Blueprints for Biosensors: Design, Limitations, and Applications. Genes (Basel) 2018; 9:E375. [PMID: 30050028 PMCID: PMC6115959 DOI: 10.3390/genes9080375] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Biosensors are enabling major advances in the field of analytics that are both facilitating and being facilitated by advances in synthetic biology. The ability of biosensors to rapidly and specifically detect a wide range of molecules makes them highly relevant to a range of industrial, medical, ecological, and scientific applications. Approaches to biosensor design are as diverse as their applications, with major biosensor classes including nucleic acids, proteins, and transcription factors. Each of these biosensor types has advantages and limitations based on the intended application, and the parameters that are required for optimal performance. Specifically, the choice of biosensor design must consider factors such as the ligand specificity, sensitivity, dynamic range, functional range, mode of output, time of activation, ease of use, and ease of engineering. This review discusses the rationale for designing the major classes of biosensor in the context of their limitations and assesses their suitability to different areas of biotechnological application.
Collapse
Affiliation(s)
- Alexander C Carpenter
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| |
Collapse
|
20
|
Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta 2018; 189:45-54. [PMID: 30086945 DOI: 10.1016/j.talanta.2018.06.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 01/24/2023]
Abstract
C-reactive protein (CRP) is a crucial biomarker of cardiovascular diseases and for its detection both optical and electrochemical techniques were applied. This study concerns the application of DNA aptamer as recognition layer for CRP detection. For that purpose aptamer immobilization method on gold surface was selected and the content of receptor layer was optimized to ensure an efficient binding to target protein. The quality of the monolayer was verified by the application of chronocoulometry and atomic force microscopy. Using thiolated aptamers provided the formation of layers of highest density and stability. The square-wave voltammetry experiments performed in the presence of methylene blue redox indicator revealed a linear response of aptasensor towards CRP in the range from 1 to 100 pM. Moreover, a DNA aptamer - based sensor showed good selectivity towards C-reactive protein in comparison to interfering proteins including BSA and IgE. Finally, the analysis of CRP in serum sample was conducted using the developed aptasensor.
Collapse
|
21
|
Detection of chikungunya virus DNA using two-dimensional MoS 2 nanosheets based disposable biosensor. Sci Rep 2018; 8:7734. [PMID: 29769549 PMCID: PMC5955964 DOI: 10.1038/s41598-018-25824-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/13/2018] [Indexed: 11/09/2022] Open
Abstract
Development of platforms for a reliable, rapid, sensitive and selective detection of chikungunya virus (CHIGV) is the need of the hour in developing countries. To the best of our knowledge, there are no reports available for the electrochemical detection of CHIGVDNA. Therefore, we aim at developing a biosensor based on molybdenum disulphide nanosheets (MoS2 NSs) for the point-of-care diagnosis of CHIGV. Briefly, MoS2 NSs were synthesized by chemical route and characterized using scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, Raman spectroscopy and X-Ray Diffraction. MoS2 NSs were then subjected to physical adsorption onto the screen printed gold electrodes (SPGEs) and then employed for the detection of CHIGV DNA using electrochemical voltammetric techniques. Herein, the role of MoS2 NSs is to provide biocompatibility to the biological recognition element on the surface of the screen printed electrodes. The detection strategy employed herein is the ability of methylene blue to interact differentially with the guanine bases of the single and double-stranded DNA which leads to change in the magnitude of the voltammetric signal. The proposed genosensor exhibited a wide linear range of 0.1 nM to 100 µM towards the chikungunya virus DNA.
Collapse
|
22
|
Modh H, Scheper T, Walter JG. Aptamer-Modified Magnetic Beads in Biosensing. SENSORS 2018; 18:s18041041. [PMID: 29601533 PMCID: PMC5948603 DOI: 10.3390/s18041041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023]
Abstract
Magnetic beads (MBs) are versatile tools for the purification, detection, and quantitative analysis of analytes from complex matrices. The superparamagnetic property of magnetic beads qualifies them for various analytical applications. To provide specificity, MBs can be decorated with ligands like aptamers, antibodies and peptides. In this context, aptamers are emerging as particular promising ligands due to a number of advantages. Most importantly, the chemical synthesis of aptamers enables straightforward and controlled chemical modification with linker molecules and dyes. Moreover, aptamers facilitate novel sensing strategies based on their oligonucleotide nature that cannot be realized with conventional peptide-based ligands. Due to these benefits, the combination of aptamers and MBs was already used in various analytical applications which are summarized in this article.
Collapse
Affiliation(s)
- Harshvardhan Modh
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover 30167, Germany.
| | | |
Collapse
|
23
|
Electrochemical Aptasensors for Food and Environmental Safeguarding: A Review. BIOSENSORS-BASEL 2018; 8:bios8020028. [PMID: 29570679 PMCID: PMC6022872 DOI: 10.3390/bios8020028] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
Food and environmental monitoring is one of the most important aspects of dealing with recent threats to human well-being and ecosystems. In this framework, electrochemical aptamer-based sensors are resilient due to their ability to resolve food and environmental contamination. An aptamer-based sensor is a compact analytical device combining an aptamer as the bio-sensing element integrated on the transducer surface. Aptamers display many advantages as biorecognition elements in sensor development when compared to affinity-based (antibodies) sensors. Aptasensors are small, chemically unchanging, and inexpensive. Moreover, they offer extraordinary elasticity and expediency in the design of their assemblies, which has led to innovative sensors that show tremendous sensitivity and selectivity. This review will emphasize recent food and environmental safeguarding using aptasensors; there are good prospects for their performance as a supplement to classical techniques.
Collapse
|
24
|
Vasilescu A, Hayat A, Gáspár S, Marty JL. Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. ELECTROANAL 2017. [DOI: 10.1002/elan.201700578] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT); 54000 Lahore Pakistan
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Jean-Louis Marty
- BAE Laboratory; Université de Perpignan Via Domitia; 52 Avenue Paul Alduy 66860 Perpignan France
| |
Collapse
|
25
|
|
26
|
Sattarahmady N, Rahi A, Heli H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci Rep 2017; 7:11238. [PMID: 28894225 PMCID: PMC5593896 DOI: 10.1038/s41598-017-11680-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023] Open
Abstract
A green electrodeposition method was firstly employed for the synthesis of round hairbrush-like gold nanostructure in the presence of cadaverine as a size and shape directing additive. The nanostructure which comprised of arrays of nanospindles was then applied as a transducer to fabricate a signal-on built in-marker electrochemical aptasensor for the detection of human prostate-specific antigen (PSA). The aptasensor detected PSA with a linear concentration range of 0.125 to 128 ng mL-1 and a limit of detection of 50 pg mL-1. The aptasensor was then successfully applied to detect PSA in the blood serum samples of healthy and patient persons.
Collapse
Affiliation(s)
- Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amid Rahi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M. Ensuring food safety using aptamer based assays: Electroanalytical approach. Trends Analyt Chem 2017; 94:77-94. [PMID: 32287541 PMCID: PMC7112916 DOI: 10.1016/j.trac.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aptamers, are being increasingly employed as favorable receptors for constructing highly sensitive biosensors, for their remarkable affinities towards certain targets including a wide scope of biological or chemical substances, and their superiority over other biologic receptors. The selectivity and affinity of the aptamers have been integrated with the wise design of the assay, applying suitable modifications, such as nanomaterials on the electrode surface, employing oligonucleotide-specific amplification strategies or, their combinations. After successful performance of the electrochemical aptasensors for biomedical applications, the food sector with its direct implication for human health, which demands rapid and sensitive and economic analytical solutions for determination of health threatening contaminants in all stages of production process, is the next field of research for developing efficient electrochemical aptasensors. The aim of this review is to categorize and introduce food hazards and summarize the recent electrochemical aptasensors that have been developed to address these contaminants.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia, Iran
- Department of Nanochemistry, Faculty of Science, Urmia University, Urmia, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
28
|
Meirinho SG, Dias LG, Peres AM, Rodrigues LR. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal Chim Acta 2017; 987:25-37. [PMID: 28916037 DOI: 10.1016/j.aca.2017.07.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/30/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
A DNA aptamer with affinity and specificity for human osteopontin (OPN), a potential breast cancer biomarker, was selected using the SELEX process, considering its homology rate and the stability of its secondary structures. This aptamer exhibited a satisfactory affinity towards OPN, showing dissociation constants lower than 2.5 nM. It was further used to develop a simple, label-free electrochemical aptasensor against OPN. The aptasensor showed good sensitivity towards OPN in standard solutions, being the square wave voltammetry (SWV), compared to the cyclic voltammetry, the most sensitive technique with detection and quantification limits of 1.4 ± 0.4 nM and 4.2 ± 1.1 nM, respectively. It showed good reproducibility and acceptable selectivity, exhibiting low signal interferences from other proteins, as thrombin, with 2.6-10 times lower current signals-off than for OPN. The aptasensor also successfully detected OPN in spiked synthetic human plasma. Using SWV, detection and quantification limits (1.3 ± 0.1 and 3.9 ± 0.4 nM) within the OPN plasma levels reported for patients with breast cancer (0.4-4.5 nM) or with metastatic or recurrent breast cancer (0.9-8.4 nM) were found. Moreover, preliminary assays, using a sample of human plasma, showed that the aptasensor and the standard ELISA method quantified similar OPN levels (2.2 ± 0.7 and 1.7 ± 0.1 nM, respectively). Thus, our aptasensor coupled with SWV represents a promising alternative for the detection of relevant breast cancer biomarkers.
Collapse
Affiliation(s)
- Sofia G Meirinho
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Luís G Dias
- ESA - Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; CQ-VR - Centro de Química - Vila Real, University of Trás-os-Montes, Apartado 1013, 5001-801 Vila Real, Portugal
| | - António M Peres
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017; 118:47-61. [PMID: 28715665 DOI: 10.1016/j.bioelechem.2017.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
Abstract
The growing number of contaminants requires the development of new analytical tools to meet the increasing demand for legislative actions on food safety and environmental pollution control. In this context, electrochemical aptamer-based sensors appear promising among all biosensors because they permit multiplexed analysis and provide fast response, sensitivity, specificity and low cost. The aim of this review is to give the readers an overview of recent important achievements in the development of electrochemical aptamer-based biosensors for contaminant detection over the last two years. Special emphasis is placed on aptasensors based on screen-printed electrodes which show a substantial improvement of analytical performances.
Collapse
|
30
|
Mashhadizadeh MH, Naseri N, Mehrgardi MA. A simple non-enzymatic strategy for adenosine triphosphate electrochemical aptasensor using silver nanoparticle-decorated graphene oxide. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1138-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
3-Mercapto propionic acid self-assembled on gold nano-particles applied for modification of screen-printed electrode as a new digoxin electrochemical aptasensor using graphene oxide-based signal-on strategy. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
|
33
|
Voltammetric Aptasensor Based on Magnetic Beads Assay for Detection of Human Activated Protein C. Methods Mol Biol 2016; 1380:163-70. [PMID: 26552824 DOI: 10.1007/978-1-4939-3197-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aptamers are defined as new generation of nucleic acids, which has recently presented promising specifications over to antibodies. An increasing number of electrochemical studies related to aptamer-based sensors, so-called aptasensors have been introduced in the literature. Herein, the interaction between human activated protein C (APC) and its cognate DNA aptamer (DNA APT) was performed at the surface of magnetic beads (MBs), followed by voltammetric detection using disposable graphite electrodes (PGEs).
Collapse
|
34
|
Ravalli A, Voccia D, Palchetti I, Marrazza G. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis. BIOSENSORS-BASEL 2016; 6:bios6030039. [PMID: 27490578 PMCID: PMC5039658 DOI: 10.3390/bios6030039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Aptamer-based sensors have been intensively investigated as potential analytical tools in clinical analysis providing the desired portability, fast response, sensitivity, and specificity, in addition to lower cost and simplicity versus conventional methods. The aim of this review, without pretending to be exhaustive, is to give the readers an overview of recent important achievements about electrochemical, electrochemiluminescence, and photoelectrochemical aptasensors for the protein biomarker determination, mainly cancer related biomarkers, by selected recent publications. Special emphasis is placed on nanostructured-based aptasensors, which show a substantial improvement of the analytical performances.
Collapse
Affiliation(s)
- Andrea Ravalli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Diego Voccia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
35
|
|
36
|
Meirinho SG, Dias LG, Peres AM, Rodrigues LR. Voltammetric aptasensors for protein disease biomarkers detection: A review. Biotechnol Adv 2016; 34:941-953. [PMID: 27235188 DOI: 10.1016/j.biotechadv.2016.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/14/2022]
Abstract
An electrochemical aptasensor is a compact analytical device where the bioreceptor (aptamer) is coupled to a transducer surface to convert a biological interaction into a measurable signal (current) that can be easily processed, recorded and displayed. Since the discovery of the Systematic Evolution of Ligands by Enrichment (SELEX) methodology, the selection of aptamers and their application as bioreceptors has become a promising tool in the design of electrochemical aptasensors. Aptamers present several advantages that highlight their usefulness as bioreceptors such as chemical stability, cost effectiveness and ease of modification towards detection and immobilization at different transducer surfaces. In this review, a special emphasis is given to the potential use of electrochemical aptasensors for the detection of protein disease biomarkers using voltammetry techniques. Methods for the immobilization of aptamers onto electrode surfaces are discussed, as well as different electrochemical strategies that can be used for the design of aptasensors.
Collapse
Affiliation(s)
- Sofia G Meirinho
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Luís G Dias
- ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; CQ-VR, Centro de Química - Vila Real, University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - António M Peres
- Laboratory of Separation and Reaction Enginerring - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Rahi A, Sattarahmady N, Heli H. Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 2016; 156-157:218-224. [PMID: 27260456 DOI: 10.1016/j.talanta.2016.05.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Gold nanospears were electrodeposited with the assistance of arginine as a soft template and precise selection of experimental parameters. The nanospears were then employed as a transducer to immobilize an aptamer of prostate-specific antigen (PSA) and fabrication of a label-free electrochemical aptasensor. The aptasensor was employed for the detection of PSA with a linear concentration range of 0.125-200ngmL(-1) and a limit of detection of 50pgmL(-1). The aptasensor was successfully applied to detect PSA in blood serum samples of healthy and patient persons.
Collapse
Affiliation(s)
- A Rahi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
|
39
|
Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Chaou T, Vialet B, Azéma L. DNA aptamer selection in methanolic media: Adenine-aptamer as proof-of-concept. Methods 2016; 97:11-9. [PMID: 26772966 DOI: 10.1016/j.ymeth.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
The major objective of this study is to investigate the usefulness of aptamers as in situ detection tool in organic solvents, which are often used for environmental extraction. But two problems related to the use of methanol-containing buffers have to be addressed. Firstly, the folding of nucleic acids can be impaired, because of weaker hydrogen bonding interactions. Secondly, the affinity of aptamers selected in aqueous buffers can be altered by the presence of methanol. Thus, in order to improve hydrophobicity of the DNA pool, nucleotide with hydrophobic modification 5-(octa1,7-diynyl)-2'-deoxyuridine (ODT) has been chosen instead of thymidine. As a proof of concept, an adenine aptamer operating in presence 25% of methanol has been selected. We have shown that the modified nucleotide is essential for target binding in organic media, in addition to essential structural pattern as proposed through analysing truncated sequences analysis. The strategy described in this paper offers preliminary insight on the adaptability of the implementation of aptamers as key instrument for in situ detection. It could be broaden to identify other aptamers directed against other chemical species after alcoholic extraction or for monitoring by-product traces in drugs production.
Collapse
Affiliation(s)
- Thinhinane Chaou
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France; INSERM, U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Brune Vialet
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France; INSERM, U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Laurent Azéma
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France; INSERM, U869, ARNA Laboratory, F-33000 Bordeaux, France.
| |
Collapse
|
41
|
Bulbul G, Hayat A, Andreescu S. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. NANOSCALE 2015; 7:13230-13238. [PMID: 26186604 DOI: 10.1039/c5nr02628h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a novel non-enzymatic nanocatalyst based approach to construct an electrochemical aptasensor involving the synergistic contribution of a nanoceria (nCe) tag and graphene oxide (GO). The aptamer was immobilized on the surface of a GO modified electrode. The target analyte was captured by the immobilized aptamer via a specific competitive mechanism between the free and the nCe labeled target. The electrochemical signal was generated by monitoring the electro-oxidation of a generic redox species upon reaction with the nCe tag. The signal was further amplified by the GO layer used as an electrode material to immobilize the aptamer and to increase the electron transfer at the electrode surface, further enhancing sensitivity of the assay. This strategy provides a universal platform for sensitive and specific detection of a wide spectrum of aptamer targets. Application of this new design for the electrochemical detection of Ochratoxin A (OTA) is demonstrated. Under optimal conditions, the aptasensor exhibited a linear response to OTA in the range 0.15-180 nM with a detection limit of 0.1 nM. The method has been successfully used for the detection of OTA in cereal samples. This design may offer a new methodology for sensitive and specific detection of a wide spectrum of analytes for medical, environmental and electronic applications.
Collapse
Affiliation(s)
- Gonca Bulbul
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| | | | | |
Collapse
|
42
|
Osypova A, Thakar D, Dejeu J, Bonnet H, Van der Heyden A, Dubacheva GV, Richter RP, Defrancq E, Spinelli N, Coche-Guérente L, Labbé P. Sensor Based on Aptamer Folding to Detect Low-Molecular Weight Analytes. Anal Chem 2015; 87:7566-74. [PMID: 26122480 DOI: 10.1021/acs.analchem.5b01736] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge. In the present study, we take advantage of the aptamer conformational changes upon the target binding that induces displacement of water acoustically coupled to the sensing layer. As a consequence, this phenomenon leads to a significant enhancement of the detection signal. The methodology is exemplified with the enantioselective recognition of a low molecular weight model compound, L-tyrosinamide (L-Tym). QCM-D monitoring of L-Tym interaction with the aptamer monolayer leads to an appreciable signal that can be further exploited for analytical purposes or thermodynamics studies. Furthermore, in situ combination of QCM-D with spectroscopic ellipsometry unambiguously demonstrates that the conformational change induces a nanometric decrease of the aptamer monolayer thickness. Since QCM-D is sensitive to the whole mass of the sensing layer including water that is acoustically coupled, a decrease in thickness of the highly hydrated aptamer layer induces a sizable release of water that can be easily detected by QCM-D.
Collapse
Affiliation(s)
- Alina Osypova
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Dhruv Thakar
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Jérôme Dejeu
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Hugues Bonnet
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Angéline Van der Heyden
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | | | - Ralf P Richter
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France.,§CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain.,∥Max-Planck-Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Eric Defrancq
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Nicolas Spinelli
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Liliane Coche-Guérente
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Pierre Labbé
- †Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France.,‡CNRS, DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
43
|
Guider R, Gandolfi D, Chalyan T, Pasquardini L, Samusenko A, Pucker G, Pederzolli C, Pavesi L. Design and Optimization of SiON Ring Resonator-Based Biosensors for Aflatoxin M1 Detection. SENSORS 2015; 15:17300-12. [PMID: 26193276 PMCID: PMC4541935 DOI: 10.3390/s150717300] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/05/2022]
Abstract
In this article, we designed and studied silicon oxynitride (SiON) microring-based photonic structures for biosensing applications. We designed waveguides, directional couplers, and racetrack resonators in order to measure refractive index changes smaller than 10−6 refractive index units (RIU). We tested various samples with different SiON refractive indexes as well as the waveguide dimensions for selecting the sensor with the best performance. Propagation losses and bending losses have been measured on test structures, along with a complete characterization of the resonator’s performances. Sensitivities and limit of detection (LOD) were also measured using glucose-water solutions and compared with expected results from simulations. Finally, we functionalized the resonator and performed sensing experiments with Aflatoxin M1 (AFM1). We were able to detect the binding of aflatoxin for concentrations as low as 12.5 nm. The results open up the path for designing cost-effective biosensors for a fast and reliable sensitive analysis of AFM1 in milk.
Collapse
Affiliation(s)
- Romain Guider
- Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Davide Gandolfi
- Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Tatevik Chalyan
- Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Laura Pasquardini
- LaBSSAH, Fondazione Bruno Kessler, Via Sommarive 18, Povo (TN) 38123, Italy.
| | - Alina Samusenko
- Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy.
- Centre for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, Povo (TN) 38123, Italy.
| | - Georg Pucker
- Centre for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, Povo (TN) 38123, Italy.
| | - Cecilia Pederzolli
- LaBSSAH, Fondazione Bruno Kessler, Via Sommarive 18, Povo (TN) 38123, Italy.
| | - Lorenzo Pavesi
- Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy.
| |
Collapse
|
44
|
Li J, Wang J, Guo X, Zheng Q, Peng J, Tang H, Yao S. Carbon Nanotubes Labeled with Aptamer and Horseradish Peroxidase as a Probe for Highly Sensitive Protein Biosensing by Postelectropolymerization of Insoluble Precipitates on Electrodes. Anal Chem 2015; 87:7610-7. [DOI: 10.1021/acs.analchem.5b00640] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jing Li
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- Department
of Chemical Engineering and Textile, Shaanxi Polytechnic Institute, Xianyang 721000, P. R. China
| | - Jingjing Wang
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xiang Guo
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Qiong Zheng
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jing Peng
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Hao Tang
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shouzhuo Yao
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine Research
(Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
45
|
Santos AS, Costa VC, Felício RC. Comparative Study of Nanostructured Matrices Employed in the Development of Biosensors Based on HRP Enzyme for Determination of Phenolic Compounds. ELECTROANAL 2015. [DOI: 10.1002/elan.201400730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Goda T, Higashi D, Matsumoto A, Hoshi T, Sawaguchi T, Miyahara Y. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing. Biosens Bioelectron 2015; 73:174-180. [PMID: 26067329 DOI: 10.1016/j.bios.2015.05.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 11/26/2022]
Abstract
We developed a label-free and reagent-less potentiometric biosensor with improved affinity for thrombin. Two different oligomeric DNA aptamers that can recognize different epitopes in thrombin were introduced in parallel or serial manners on the sensing surface to capture the target via multiple contacts as found in many biological systems. The spacer and linker in the aptamer probes were optimized for exerting the best performance in molecular recognition. To gain the specificity of the sensor to the target, an antifouling molecule, sulfobeaine-3-undecanethiol (SB), was introduced on the sensor to form a self-assembled monolayer (SAM). Surface characterization revealed that the aptamer probe density was comparable to the distance of the two epitopes in thrombin, while the backfilling SB SAM was tightly aligned on the surface to resist nonspecific adsorption. The apparent binding parameters were obtained by thrombin sensing in potentiometry using the 1:1 Langmuir adsorption model, showing the improved dissociation constants (Kd) with the limit of detection of 5.5 nM on the dual aptamer-immobilized surfaces compared with single aptamer-immobilized ones. A fine control of spacer and linker length in the aptamer ligand was essential to realize the multivalent binding of thrombin on the sensor surface. The findings reported herein are effective for improving the sensitivity of potentiometric biosensor in an affordable way towards detection of tiny amount of biomolecules.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Daiki Higashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Toru Hoshi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan
| | - Takashi Sawaguchi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
47
|
Feng L, Lyu Z, Offenhäusser A, Mayer D. Multi-level logic gate operation based on amplified aptasensor performance. Angew Chem Int Ed Engl 2015; 54:7693-7. [PMID: 25959438 DOI: 10.1002/anie.201502315] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/09/2022]
Abstract
Conventional electronic circuits can perform multi-level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon-based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer-based multi-level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer-target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer-linked redox probes and solution-phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi-level logic operation, which has the potential to simplify an otherwise complex diagnosis to a "yes" or "no" decision.
Collapse
Affiliation(s)
- Lingyan Feng
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Zhaozi Lyu
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Andreas Offenhäusser
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Dirk Mayer
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany).
| |
Collapse
|
48
|
Logisches Mehrschrittgatter auf Basis eines Aptamersensors mit verstärktem Sensorsignal. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J. Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Crit Rev Food Sci Nutr 2015; 56:2511-2542. [DOI: 10.1080/10408398.2013.873767] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 2015; 140:88-95. [PMID: 26048828 DOI: 10.1016/j.talanta.2015.03.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 11/22/2022]
Abstract
The introduction of new compact systems for sensitive, fast and simplified analysis is currently playing a substantial role in the development of point-of-care solutions aimed to assist both prognosis and diagnosis. Here we report a simple and low cost biosensor based on Surface Plasmon Resonance (SPR) taking advantage of a plastic optical fiber (POF) for the detection of Vascular endothelial growth factor (VEGF), selected as a circulating protein potentially associated with cancer. Our system is based onto two crucial aspects. By one hand, the functional layer which allows the transduction signal is based on DNA aptamers, short oligonucleotide sequences that bind to non-nucleic acid targets with high affinity and specificity. By the other hand, the light guiding structure is based on a POF with a planar gold layer as the sensing region, which is particularly suitable for bioreceptors implementation. The sensor revealed to be really useful in the interface characterization. The developed system is relatively easy to realize and could well address the development of a rapid, portable and low cost diagnostic platform, with a sensitivity in the nanomolar range.
Collapse
|