1
|
Dong C, Li F, Sun Y, Long D, Chen C, Li M, Wei T, Martins RP, Chen T, Mak PI. A syndromic diagnostic assay on a macrochannel-to-digital microfluidic platform for automatic identification of multiple respiratory pathogens. LAB ON A CHIP 2024; 24:3850-3862. [PMID: 37961846 DOI: 10.1039/d3lc00728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The worldwide COVID-19 pandemic has changed people's lives and the diagnostic landscape. The nucleic acid amplification test (NAT) as the gold standard for SARS-CoV-2 detection has been applied in containing its transmission. However, there remains a lack of an affordable on-site detection system at resource-limited areas. In this study, a low cost "sample-in-answer-out" system incorporating nucleic acid extraction, purification, and amplification was developed on a single macrochannel-to-digital microfluidic chip. The macrochannel fluidic subsystem worked as a world-to-chip interface receiving 500-1000 μL raw samples, which then underwent bead-based extraction and purification processes before being delivered to DMF. Electrodes actuate an eluent dispensed to eight independent droplets for reverse transcription quantitative polymerase chain reaction (RT-qPCR). By reading with 4 florescence channels, the system can accommodate a maximum of 32 detection targets. To evaluate the proposed platform, a comprehensive assessment was conducted on the microfluidic chip as well as its functional components (i.e., extraction and amplification). The platform demonstrated a superior performance. In particular, using clinical specimens, the chip targeting SARS-CoV-2 and Flu A/B exhibited 100% agreement with off-chip diagnoses. Furthermore, the fabrication of chips is ready for scaled-up manufacturing and they are cost-effective for disposable use since they are assembled using a printed circuit board (PCB) and prefabricated blocks. Overall, the macrochannel-to-digital microfluidic platform coincides with the requirements of point-of-care testing (POCT) because of its advantages: low-cost, ease of use, comparable sensitivity and specificity, and availability for mass production.
Collapse
Affiliation(s)
- Cheng Dong
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai 519000, China
| | - Fei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Digifluidic Biotech Ltd., Zhuhai 519000, China.
| | - Yun Sun
- Digifluidic Biotech Ltd., Zhuhai 519000, China.
| | - Dongling Long
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519087, China
| | - Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, USA
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
| | - Rui P Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
| | | | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
- Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
2
|
Raj A, Dubey A, Malla MA, Kumar A. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117680. [PMID: 37011532 DOI: 10.1016/j.jenvman.2023.117680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Increased anthropogenic activities are confronted as the main cause for rising environmental and health concerns globally, presenting an indisputable threat to both environment and human well-being. Modern-day industrialization has given rise to a cascade of concurrent environmental and health challenges. The global human population is growing at an alarming rate, posing tremendous pressure on future food security, and healthy and environmentally sustainable diets for all. To feed all, the global food production needs to increase by 50% by 2050, but this increase has to occur from the limited arable land, and under the present-day climate variabilities. Pesticides have become an integral component of contemporary agricultural system, safeguarding crops from pests and diseases and their use must be reduce to fulfill the SDG (Sustainable Development Goals) agenda . However, their indiscriminate use, lengthy half-lives, and high persistence in soil and aquatic ecosystems have impacted global sustainability, overshot the planetary boundaries and damaged the pure sources of life with severe and negative impacts on environmental and human health. Here in this review, we have provided an overview of the background of pesticide use and pollution status and action strategies of top pesticide-using nations. Additionally, we have summarized biosensor-based methodologies for the rapid detection of pesticide residue. Finally, omics-based approaches and their role in pesticide mitigation and sustainable development have been discussed qualitatively. The main aim of this review is to provide the scientific facts for pesticide management and application and to provide a clean, green, and sustainable environment for future generations.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India; Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, U.P., India.
| |
Collapse
|
3
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
4
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
5
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Molecular diagnostic of toxigenic Corynebacterium diphtheriae strain by DNA sensor potentially suitable for electrochemical point-of-care diagnostic. Talanta 2021; 227:122161. [PMID: 33714465 DOI: 10.1016/j.talanta.2021.122161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The presented study is focused on the development of electrochemical genosensor for detection of tox gene fragment of toxigenic Corynebacterium diphtheriae strain. Together with our previous studies it fulfils the whole procedure for fast and accurate diagnostic of diphtheria at its early stage of infection with the use of electrochemical methods. The developed DNA sensor potentially can be used in more sophisticated portable device. After the electrochemical stem-loop probe structure optimization the conditions for real asymmetric PCR (aPCR) product detection were selected. As was shown it was crucial to optimize the magnesium and organic solvent concentrations in detection buffer. Under optimal conditions it was possible to selectively detect as low as 20.8 nM of complementary stand in 5 min or 0.5 nM in 30 min with sensitivity of 12.81 and 0.24 1⋅μM-1 respectively. The unspecific biosensor response was elucidated with the use of new electrode blocking agent, diethyldithiocarbamate. Its application in electrochemical genosensors lead to significant higher current values and the biosensor response even in conditions with magnesium ion depletion. The developed biosensor selectivity was examined using samples containing genetic material originated from a number of non-target bacterial species which potentially can be present in the human upper respiratory tract.
Collapse
|
7
|
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6926. [PMID: 33291722 PMCID: PMC7730340 DOI: 10.3390/s20236926] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors' design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mariana Brenes-Acuña
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Arianna Castro-Rojas
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Rolando Cordero-Salmerón
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| |
Collapse
|
8
|
Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2020; 160:105606. [PMID: 33052148 PMCID: PMC7543751 DOI: 10.1016/j.microc.2020.105606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 infection poses a serious risk to human life by causing acute lung damage. Various techniques used to identify and quantify COVID-19 infection. Major challenges for containing the spread of COVID-19 is the ability to identify asymptomatic cases. Currently available diagnostic methods, biosensing technology developed during COVID-19 infection.
The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2). From this perspective, laboratories, universities, and companies around the world have embarked on a race to develop and produce much-needed test kits. This review has been developed to provide an overview of current trends and strategies in n-SARS-CoV-2 diagnostics based on traditional and new emerging assessment technologies, to continuous innovation. It focuses on recent trends in biosensors to build a fast, reliable, more sensitive, accessible, user-friendly system and easily adaptable technology n-SARS-CoV-2 detection and monitoring. On the whole, we have addressed and identified research evidence supporting the use of biosensors on the premise that screening people for n-SARS-CoV-2 is the best way to contain its spread.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - Y El Bouabi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| |
Collapse
|
9
|
Polysaccharide-enhanced ARGET ATRP signal amplification for ultrasensitive fluorescent detection of lung cancer CYFRA 21-1 DNA. Anal Bioanal Chem 2020; 412:2413-2421. [PMID: 32047944 DOI: 10.1007/s00216-020-02394-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
An ultrasensitive fluorescence biosensor for detecting cytokeratin fragment antigen 21-1 (CYFRA 21-1) DNA of non-small cell lung carcinoma (NSCLC) is designed using polysaccharide and activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) signal amplification strategy. Thiolated peptide nucleic acid (PNA) is fixed on magnetic nanoparticles (MNPs) by a cross-linking agent and hybridized with CYFRA 21-1 DNA. Hyaluronic acid (HA) is linked to PNA/tDNA heteroduplexes in the form of carboxy-Zr4+-phosphate. Subsequently, multiple 2-bromo-2-methylpropionic acid (BMP) molecules are linked with HA to initiate ARGET ATRP reaction. Finally, a large number of fluorescein o-acrylate (FA) monomers are polymerized on the macro-initiators, and the fluorescence signal is significantly amplified. Under optimal conditions, this biosensor shows a significant linear correlation between the fluorescence intensity and logarithm of CYFRA 21-1 DNA concentration (0.1 fM to 0.1 nM), and the limit of detection is as low as 78 aM. Furthermore, the sensor has a good ability to detect CYFRA 21-1 DNA in serum samples and to recognize mismatched bases. It suggests that the strategy has broad application in early diagnosis by virtue of its high sensitivity and selectivity. Graphical abstract A novel and highly sensitive fluorescence biosensor for quantitatively detecting CYFRA 21-1 DNA via dual signal amplification of hyaluronic acid and ARGET ATRP reaction was developed. This proposed method has a low detection limit, wide detection range, high selectivity, and strong anti-interference.
Collapse
|
10
|
Deshmukh R, Prusty AK, Roy U, Bhand S. A capacitive DNA sensor for sensitive detection ofEscherichia coliO157:H7 in potable water based on thez3276genetic marker: fabrication and analytical performance. Analyst 2020; 145:2267-2278. [DOI: 10.1039/c9an02291k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a label-free biosensor for the detection ofEscherichia coliO157:H7 ATCC 43895 in potable water using a newly designed DNA sensing probe targeting thez3276genetic marker.
Collapse
Affiliation(s)
- Rehan Deshmukh
- Birla institute of Technology and Science
- Pilani
- Department of Biological Sciences
- India
| | - Arun Kumar Prusty
- Birla institute of Technology and Science
- Pilani
- Department of Chemistry
- India
| | - Utpal Roy
- Birla institute of Technology and Science
- Pilani
- Department of Biological Sciences
- India
| | - Sunil Bhand
- Birla institute of Technology and Science
- Pilani
- Department of Chemistry
- India
| |
Collapse
|
11
|
Pedro GC, Gorza FD, da Silva RJ, do Nascimento KT, Medina-Llamas JC, Chávez-Guajardo AE, Alcaraz-Espinoza JJ, de Melo CP. A novel nucleic acid fluorescent sensing platform based on nanostructured films of intrinsically conducting polymers. Anal Chim Acta 2019; 1047:214-224. [DOI: 10.1016/j.aca.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
12
|
Miyagawa A, Harada M, Okada T. Zeptomole Biosensing of DNA with Flexible Selectivity Based on Acoustic Levitation of a Single Microsphere Binding Gold Nanoparticles by Hybridization. ACS Sens 2018; 3:1870-1875. [PMID: 30152225 DOI: 10.1021/acssensors.8b00748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel scheme for DNA sensing at the zeptomole level is presented, based on the levitation of a single microsphere in a combined acoustic-gravitational (CAG) field. The levitation of a microsphere in the field is predominantly determined by its density. Capture and reporter probe DNAs are anchored on poly(methyl methacrylate) microsphere (PMMA) and gold nanoparticles (AuNPs), respectively, and a target DNA induces the binding of AuNPs on PMMA. This interparticle sandwich DNA-hybridization induces density increase in PMMA, which is detected as a shift in the levitation coordinate in the CAG field. The reporter DNAs are designed based on base-pair (bp) number selectivity, which is evaluated using direct interparticle hybridization between DNA-bound PMMA and complementary DNA-anchored AuNPs. Interestingly, the bp-number selectivity can be enlarged by lowering the reactant concentrations. Thus, the threshold bp, at which no density change is detected, can be adjusted by controlling the reactant concentrations. This strategy is extended to the sensing of HIV-2 DNA and single nucleotide polymorphism (SNP) detection of the KRAS gene by sandwich hybridization. In SNP detection, the present method selectively distinguishes wild-type DNA from mutant DNA differing by one nucleotide in the 21-nucleotide sequence by optimizing the lengths of probe DNAs and particle concentrations. This approach allows the detection of 1000 DNA molecules.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
13
|
Bartold K, Pietrzyk-Le A, Golebiewska K, Lisowski W, Cauteruccio S, Licandro E, D'Souza F, Kutner W. Oligonucleotide Determination via Peptide Nucleic Acid Macromolecular Imprinting in an Electropolymerized CG-Rich Artificial Oligomer Analogue. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27562-27569. [PMID: 30071156 DOI: 10.1021/acsami.8b09296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We devised and fabricated a chemosensor for determination of the genetically relevant 5'-GCGGCGGC-3' (G = guanine; C = cytosine) oligonucleotide. For that, we simultaneously electrosynthesized and electrode-immobilized a sequence-defined octakis(2,2'-bithien-5-yl) DNA hybridizing probe using both a "macromolecular imprinting in polymer strategy" and a sequence-programmable peptide nucleic acid (PNA) template. With electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) transductions under stagnant-solution and flow injection analysis (FIA) conditions, respectively, we determined the above oligonucleotide with 200-pM EIS limit of detection. With its EIS-determined apparent imprinting factor of ∼4.0, the chemosensor was discriminative to both mismatched oligonucleotides and Dulbecco's modified Eagle's medium sample interferences.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Karolina Golebiewska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Silvia Cauteruccio
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Emanuela Licandro
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle , No. 305070, Denton , Texas 76203-5017 , United States
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences , Cardinal Stefan Wyszynski University in Warsaw , Wóycickiego 1/3 , 01-938 Warsaw , Poland
| |
Collapse
|
14
|
A COTS-Based Portable System to Conduct Accurate Substance Concentration Measurements. SENSORS 2018; 18:s18020539. [PMID: 29439424 PMCID: PMC5855506 DOI: 10.3390/s18020539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 02/04/2023]
Abstract
Traditionally, electrochemical procedures aimed at determining substance concentrations have required a costly and cumbersome laboratory environment. Specialized equipment and personnel obtain precise results under complex and time-consuming settings. Innovative electrochemical-based sensors are emerging to alleviate this difficulty. However, they are generally scarce, proprietary hardware and/or software, and focused only on measuring a restricted range of substances. In this paper, we propose a portable, flexible, low-cost system, built from commercial off-the-shelf components and easily controlled, using open-source software. The system is completed with a wireless module, which enables the transmission of measurements to a remote database for their later processing. A well-known PGSTAT100 Autolab device is employed to validate the effectiveness of our proposal. To this end, we select ascorbic acid as the substance under consideration, evaluating the reliability figure and obtaining the calibration curves for both platforms. The final outcomes are shown to be feasible, accurate, and repeatable.
Collapse
|
15
|
Analysis of the evolution of the detection limits of electrochemical nucleic acid biosensors II. Anal Bioanal Chem 2017; 409:4335-4352. [DOI: 10.1007/s00216-017-0377-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 01/07/2023]
|
16
|
An electrochemical DNA sensor without electrode pre-modification. Biosens Bioelectron 2017; 91:110-114. [DOI: 10.1016/j.bios.2016.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/19/2023]
|
17
|
Ozkan-Ariksoysal D, Kayran YU, Yilmaz FF, Ciucu AA, David IG, David V, Hosgor-Limoncu M, Ozsoz M. DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples. Talanta 2017; 166:27-35. [PMID: 28213234 DOI: 10.1016/j.talanta.2017.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
This paper introduces DNA-wrapped multi-walled carbon nanotube (MWCNT)-modified genosensor for the detection of Escherichia coli (E. coli) from polymerase chain reaction (PCR)-amplified real samples while Staphylococcus aureus (S. aureus) was used to investigate the selectivity of the biosensor. The capture probe specifically recognizing E. coli DNA and it was firstly interacted with MWCNTs for wrapping of single-stranded DNA (ssDNA) onto the nanomaterial. DNA-wrapped MWCNTs were then immobilised on the surface of disposable pencil graphite electrode (PGE) for the detection of DNA hybridization. Electrochemical behaviors of the modified PGEs were investigated using Raman spectroscopy and differential pulse voltammetry (DPV). The sequence selective DNA hybridization was determined and evaluated by changes in the intrinsic guanine oxidation signal at about 1.0V by DPV. Numerous factors affecting the hybridization were optimized such as target concentration, hybridization time, etc. The designed DNA sensor can well detect E. coli DNA in 20min detection time with 0.5pmole of detection limit in 30µL of sample volume.
Collapse
Affiliation(s)
- Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey.
| | - Yasin Ugur Kayran
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | - Fethiye Ferda Yilmaz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | - Anton Alexandru Ciucu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Avenue, District 5, 050663 Bucharest, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Avenue, District 5, 050663 Bucharest, Romania
| | - Vasile David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Avenue, District 5, 050663 Bucharest, Romania
| | - Mine Hosgor-Limoncu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | - Mehmet Ozsoz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
18
|
Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol 2016; 34:922-941. [DOI: 10.1016/j.tibtech.2016.05.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/21/2022]
|
19
|
Nassi A, Guillon FX, Amar A, Hainque B, Amriche S, Maugé D, Markova E, Tsé C, Bigey P, Lazerges M, Bedioui F. Electrochemical DNA-biosensors based on long-range electron transfer: optimization of the amperometric detection in the femtomolar range using two-electrode setup and ultramicroelectrode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R. Sensitive detection of multiple pathogens using a single DNA probe. Biosens Bioelectron 2016; 86:398-405. [PMID: 27414245 DOI: 10.1016/j.bios.2016.06.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP.
Collapse
Affiliation(s)
- Noordiana Nordin
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Son Radu
- Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Roozbeh Hushiarian
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia.
| |
Collapse
|
21
|
Bronder TS, Poghossian A, Scheja S, Wu C, Keusgen M, Mewes D, Schöning MJ. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20068-75. [PMID: 26327272 DOI: 10.1021/acsami.5b05146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.
Collapse
Affiliation(s)
- Thomas S Bronder
- Institute of Nano- and Biotechnologies, FH Aachen , Campus Jülich, 52428 Jülich, Germany
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen , Campus Jülich, 52428 Jülich, Germany
- Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH , 52425 Jülich, Germany
| | - Sabrina Scheja
- Institute of Nano- and Biotechnologies, FH Aachen , Campus Jülich, 52428 Jülich, Germany
| | - Chunsheng Wu
- Institute of Nano- and Biotechnologies, FH Aachen , Campus Jülich, 52428 Jülich, Germany
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University , Hangzhou 310027, China
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg , 35032 Marburg, Germany
| | - Dieter Mewes
- Institute of Measurement and Automatic Control, Leibniz University Hannover , 30167 Hannover, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen , Campus Jülich, 52428 Jülich, Germany
- Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH , 52425 Jülich, Germany
| |
Collapse
|
22
|
Kongpeth J, Jampasa S, Chaumpluk P, Chailapakul O, Vilaivan T. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe. Talanta 2015; 146:318-25. [PMID: 26695270 DOI: 10.1016/j.talanta.2015.08.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/04/2023]
Abstract
Electrochemical detection provides a simple, rapid, sensitive and inexpensive method for DNA detection. In traditional electrochemical DNA biosensors, the probe is immobilized onto the electrode. Hybridization with the DNA target causes a change in electrochemical signal, either from the intrinsic signal of the probe/target or through a label or a redox indicator. The major drawback of this approach is the requirement for probe immobilization in a controlled fashion. In this research, we take the advantage of different electrostatic properties between PNA and DNA to develop an immobilization-free approach for highly sequence-specific electrochemical DNA sensing on a screen-printed carbon electrode (SPCE) using a square-wave voltammetric (SWV) technique. Anthraquinone-labeled pyrrolidinyl peptide nucleic acid (AQ-PNA) was employed as a probe together with an SPCE that was modified with a positively-charged polymer (poly quaternized-(dimethylamino-ethyl)methacrylate, PQDMAEMA). The electrostatic attraction between the negatively-charged PNA-DNA duplex and the positively-charged modified SPCE attributes to the higher signal of PNA-DNA duplex than that of the electrostatically neutral PNA probe, resulting in a signal change. The calibration curve of this proposed method exhibited a linear range between 0.35 and 50 nM of DNA target with a limit of detection of 0.13 nM (3SD(blank)/Slope). The sub-nanomolar detection limit together with a small sample volume required (20 μL) allowed detection of <10 fmol (<1 ng) of DNA. With the high specificity of the pyrrolidinyl PNA probe used, excellent discrimination between complementary and various single-mismatched DNA targets was obtained. An application of this new platform for a sensitive and specific detection of isothermally-amplified shrimp's white spot syndrome virus (WSSV) DNA was successfully demonstrated.
Collapse
Affiliation(s)
- Jutatip Kongpeth
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Sakda Jampasa
- Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Piyasak Chaumpluk
- Laboratory of Plant Transgenic Technology and Biosensor, Department of Botany, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
23
|
Galán T, Prieto-Simón B, Alvira M, Eritja R, Götz G, Bäuerle P, Samitier J. Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes. Biosens Bioelectron 2015. [PMID: 26210592 DOI: 10.1016/j.bios.2015.07.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event. A limit of detection of 0.13 nM was achieved using this highly selective PEDOT-based genosensor, without the need for labeling techniques or microelectrode fabrication processes. These results are promising for the development of label-free and reagentless DNA hybridization sensors based on conducting polymeric substrates. Biosensors can be easily prepared using any DNA sequence containing an alkyne moiety. The data presented here reveal the potential of this DNA sensor for diagnostic applications in the screening of diseases, such as "Hepatitis C", and genetic mutations.
Collapse
Affiliation(s)
- Teresa Galán
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Electronics Department, University of Barcelona (UB), Martí i Franquès 1-11, Barcelona 08028, Spain.
| | | | - Margarita Alvira
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Fundació Bosch i Gimpera, Baldiri Reixac, 4-8, Parc Científic Barcelona, Torre D, 08028 Barcelona, Spain.
| | - Ramón Eritja
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Günther Götz
- Institute of Organic Chemistry II and New Materials, University Ulm, Albert-Einstein-Allee 11, d-89081 Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and New Materials, University Ulm, Albert-Einstein-Allee 11, d-89081 Ulm, Germany.
| | - Josep Samitier
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Electronics Department, University of Barcelona (UB), Martí i Franquès 1-11, Barcelona 08028, Spain.
| |
Collapse
|
24
|
Santos AS, Costa VC, Felício RC. Comparative Study of Nanostructured Matrices Employed in the Development of Biosensors Based on HRP Enzyme for Determination of Phenolic Compounds. ELECTROANAL 2015. [DOI: 10.1002/elan.201400730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Aydemir N, McArdle H, Patel S, Whitford W, Evans CW, Travas-Sejdic J, Williams DE. A Label-Free, Sensitive, Real-Time, Semiquantitative Electrochemical Measurement Method for DNA Polymerase Amplification (ePCR). Anal Chem 2015; 87:5189-97. [PMID: 25946200 DOI: 10.1021/acs.analchem.5b00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligonucleotide hybridization to a complementary sequence that is covalently attached to an electrochemically active conducting polymer (ECP) coating the working electrode of an electrochemical cell causes an increase in reaction impedance for the ferro-ferricyanide redox couple. We demonstrate the use of this effect to measure, in real time, the progress of DNA polymerase chain reaction (PCR) amplification of a minor component of a DNA extract. The forward primer is attached to the ECP. The solution contains other PCR components and the redox couple. Each cycle of amplification gives an easily measurable impedance increase. Target concentration can be estimated by cycle count to reach a threshold impedance. As proof of principle, we demonstrate an electrochemical real-time quantitative PCR (e-PCR) measurement in the total DNA extracted from chicken blood of an 844 base pair region of the mitochondrial Cytochrome c oxidase gene, present at ∼1 ppm of total DNA. We show that the detection and semiquantitation of as few as 2 copies/μL of target can be achieved within less than 10 PCR cycles.
Collapse
Affiliation(s)
| | | | - Selina Patel
- ∇School of Biological Sciences, University of Auckland, Auckland 1022, New Zealand
| | - Whitney Whitford
- ∇School of Biological Sciences, University of Auckland, Auckland 1022, New Zealand
| | - Clive W Evans
- ∇School of Biological Sciences, University of Auckland, Auckland 1022, New Zealand
| | | | | |
Collapse
|
26
|
A Label-Free Impedimetric DNA Sensor Based on a Nanoporous SnO₂ Film: Fabrication and Detection Performance. SENSORS 2015; 15:10686-704. [PMID: 25954951 PMCID: PMC4481975 DOI: 10.3390/s150510686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 11/28/2022]
Abstract
Nanoporous SnO2 thin films were elaborated to serve as sensing electrodes for label-free DNA detection using electrochemical impedance spectroscopy (EIS). Films were deposited by an electrodeposition process (EDP). Then the non-Faradic EIS behaviour was thoroughly investigated during some different steps of functionalization up to DNA hybridization. The results have shown a systematic decrease of the impedance upon DNA hybridization. The impedance decrease is attributed to an enhanced penetration of ionic species within the film volume. Besides, the comparison of impedance variations upon DNA hybridization between the liquid and vapour phase processes for organosilane (APTES) grafting on the nanoporous SnO2 films showed that vapour-phase method is more efficient. This is due to the fact that the vapour is more effective than the solution in penetrating the nanopores of the films. As a result, the DNA sensors built from vapour-treated silane layer exhibit a higher sensitivity than those produced from liquid-treated silane, in the range of tested target DNA concentration going to 10 nM. Finally, the impedance and fluorescence response signals strongly depend on the types of target DNA molecules, demonstrating a high selectivity of the process on nanoporous SnO2 films.
Collapse
|
27
|
Karsten SL, Tarhan MC, Kudo LC, Collard D, Fujita H. Point-of-care (POC) devices by means of advanced MEMS. Talanta 2015; 145:55-9. [PMID: 26459443 DOI: 10.1016/j.talanta.2015.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 12/21/2022]
Abstract
Microelectromechanical systems (MEMS) have become an invaluable technology to advance the development of point-of-care (POC) devices for diagnostics and sample analyses. MEMS can transform sophisticated methods into compact and cost-effective microdevices that offer numerous advantages at many levels. Such devices include microchannels, microsensors, etc., that have been applied to various miniaturized POC products. Here we discuss some of the recent advances made in the use of MEMS devices for POC applications.
Collapse
Affiliation(s)
- Stanislav L Karsten
- NeuroInDx, Inc., E. 28th Street, Signal Hill, CA 90755, USA; Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Mehmet C Tarhan
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Lili C Kudo
- NeuroInDx, Inc., E. 28th Street, Signal Hill, CA 90755, USA
| | - Dominique Collard
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hiroyuki Fujita
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Wu C, Bronder T, Poghossian A, Werner CF, Schöning MJ. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer. NANOSCALE 2015; 7:6143-50. [PMID: 25771844 DOI: 10.1039/c4nr07225a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.
Collapse
Affiliation(s)
- Chunsheng Wu
- Institute of Nano- and Biotechnologies, FH Aachen, Campus Jülich, 52428 Jülich, Germany.
| | | | | | | | | |
Collapse
|
29
|
Le MH, Fradetal L, Delabouglise D, Mai AT, Stambouli V. Fluorescence and Label Free Impedimetric DNA Detection on SnO2Nanopillars. ELECTROANAL 2015. [DOI: 10.1002/elan.201400595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
|
31
|
Saikrishnan D, Goyal M, Rossiter S, Kukol A. A cellulose-based bioassay for the colorimetric detection of pathogen DNA. Anal Bioanal Chem 2014; 406:7887-98. [DOI: 10.1007/s00216-014-8257-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023]
|
32
|
Primo EN, Oviedo MB, Sánchez CG, Rubianes MD, Rivas GA. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA. Bioelectrochemistry 2014; 99:8-16. [DOI: 10.1016/j.bioelechem.2014.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/03/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
|
33
|
Esfandiari L, Lorenzini M, Kocharyan G, Monbouquette HG, Schmidt JJ. Sequence-specific DNA detection at 10 fM by electromechanical signal transduction. Anal Chem 2014; 86:9638-43. [PMID: 25203740 PMCID: PMC4188267 DOI: 10.1021/ac5021408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Target DNA fragments at 10 fM concentration (approximately 6 × 10(5) molecules) were detected against a DNA background simulating the noncomplementary genomic DNA present in real samples using a simple, PCR-free, optics-free approach based on electromechanical signal transduction. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is highly desired for a range of diverse applications. We previously described a potentially low-cost device for sequence-specific nucleic acid detection based on conductance change measurement of a pore blocked by electrophoretically mobilized bead-(peptide nucleic acid probe) conjugates upon hybridization with target nucleic acid. Here, we demonstrate the operation of our device with longer DNA targets, and we describe the resulting improvement in the limit of detection (LOD). We investigated the detection of DNA oligomers of 110, 235, 419, and 1613 nucleotides at 1 pM to 1 fM and found that the LOD decreased as DNA length increased, with 419 and 1613 nucleotide oligomers detectable down to 10 fM. In addition, no false positive responses were obtained with noncomplementary, control DNA fragments of similar length. The 1613-base DNA oligomer is similar in size to 16S rRNA, which suggests that our device may be useful for detection of pathogenic bacteria at clinically relevant concentrations based on recognition of species-specific 16S rRNA sequences.
Collapse
Affiliation(s)
- Leyla Esfandiari
- Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|