1
|
Kose C, Ibanoglu MC, Erdogan K, Arslan B, Uzlu SE, Akpinar F, Karadeniz RS, Engin-Ustun Y. The effect of fetal hypoxia on myeloperoxidase levels in cord blood: a prospective study. Minerva Obstet Gynecol 2024; 76:1-6. [PMID: 35420291 DOI: 10.23736/s2724-606x.22.05090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We aimed to compare myeloperoxidase (MPO) levels in cord blood samples of mothers with and without perinatal hypoxia, since fetal hypoxia results in decreased pH, base excess, and an increase in pCO2 and lactate levels. METHODS We enrolled 42 pregnant women to this cross-sectional analytic study if they had met following criteria: uneventful gestational follow-ups, no known chronic or pregnancy-associated diseases, a BMI of <29.9, a singleton pregnancy, those with pregnancy over 34 weeks. The exclusion criteria for the study and control groups were as follows: presence of multiple pregnancies, fetal abnormality, any disease diagnosed before or during antenatal follow-up e.g., diabetes, hypertension, thyroid dysfunction, uncontrolled endocrine disease or abnormal kidney function, autoimmune disease, chronic inflammatory diseases, IUGR, preeclampsia), maternal age below 18 or above 35, intrauterine exitus, pregnancy with assisted reproductive technique, alcohol or smoking addiction, and any chronic drug use. The subjects were 1:1 randomized to either hypoxic newborns (N.=21) and those in the control group (N.=21) and their myeloperoxidase levels were measured from cord blood samples. Results were expressed as U/L. Patient data regarding age, gestation, parity, birth weight, birth length, APGAR scores, and neonatal complications were collected. All the women signed written informed consent forms and accepted verbal consent before being included in the study. RESULTS The mean age of the study population was 26.9±5.3 years. The mean BMI was 28.3±3.5 kg/m2. For the hypoxic group, 21 newborns with cord blood below 7.25 were included in the study group. The bloods with pH above 7.25 formed the control group. Mean pH and five (5) minute APGAR scores were found to be significantly lower in the study group, while base excess (BE) was found to be significantly higher. In this study, we compared the MPO levels of hypoxic newborns and those in the control group, and we did not find a significant difference between the two groups (P=0.147). Pearson Correlation Analysis is at -0.566 with P value (0.008) showing significant negative correlation between MPO and pH in the study group. CONCLUSIONS We found that MPO values are negatively correlated with cord blood pH among newborns diagnosed with fetal hypoxia.
Collapse
Affiliation(s)
- Caner Kose
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Mujde C Ibanoglu
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye -
| | - Kadriye Erdogan
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Burak Arslan
- Department of Biochemistry, Ankara Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Safiye E Uzlu
- Department of Neonatology, Ankara Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Funda Akpinar
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - R Sinan Karadeniz
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Yaprak Engin-Ustun
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| |
Collapse
|
2
|
Raffay TM, Di Fiore JM, Chen Z, Sánchez-Illana Á, Vento M, Piñeiro-Ramos JD, Kuligowski J, Martin RJ, Tatsuoka C, Minich NM, MacFarlane PM, Hibbs AM. Hypoxemia events in preterm neonates are associated with urine oxidative biomarkers. Pediatr Res 2023; 94:1444-1450. [PMID: 37188801 PMCID: PMC11459675 DOI: 10.1038/s41390-023-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Intermittent hypoxemia (IH) events are common in preterm neonates and are associated with adverse outcomes. Animal IH models can induce oxidative stress. We hypothesized that an association exists between IH and elevated peroxidation products in preterm neonates. METHODS Time in hypoxemia, frequency of IH, and duration of IH events were assessed from a prospective cohort of 170 neonates (<31 weeks gestation). Urine was collected at 1 week and 1 month. Samples were analyzed for lipid, protein, and DNA oxidation biomarkers. RESULTS At 1 week, adjusted multiple quantile regression showed positive associations between several hypoxemia parameters with various individual quantiles of isofurans, neurofurans, dihomo-isoprostanes, dihomo-isofurans, and ortho-tyrosine and a negative correlation with dihomo-isoprostanes and meta-tyrosine. At 1 month, positive associations were found between several hypoxemia parameters with quantiles of isoprostanes, dihomo-isoprostanes and dihomo-isofurans and a negative correlation with isoprostanes, isofurans, neuroprostanes, and meta-tyrosine. CONCLUSIONS Preterm neonates experience oxidative damage to lipids, proteins, and DNA that can be analyzed from urine samples. Our single-center data suggest that specific markers of oxidative stress may be related to IH exposure. Future studies are needed to better understand mechanisms and relationships to morbidities of prematurity. IMPACT Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. The mechanisms by which hypoxemia events result in adverse neural and respiratory outcomes may include oxidative stress to lipids, proteins, and DNA. This study begins to explore associations between hypoxemia parameters and products of oxidative stress in preterm infants. Oxidative stress biomarkers may assist in identifying high-risk neonates.
Collapse
Affiliation(s)
- Thomas M Raffay
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| | - Juliann M Di Fiore
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Department of Analytical Chemistry, Universtitat de València, Burjassot, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe (HULAFE), Valencia, Spain
| | | | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | | | - Nori M Minich
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Anna Maria Hibbs
- Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Parra-Llorca A, Pinilla-Gonzlez A, Torrejón-Rodríguez L, Lara-Cantón I, Kuligowski J, Collado MC, Gormaz M, Aguar M, Vento M, Serna E, Cernada M. Effects of Sepsis on Immune Response, Microbiome and Oxidative Metabolism in Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:602. [PMID: 36980160 PMCID: PMC10046958 DOI: 10.3390/children10030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
This is a narrative review about the mechanisms involved in bacterial sepsis in preterm infants, which is an illness with a high incidence, morbidity, and mortality. The role of the innate immune response and its relationship with oxidative stress in the pathogenesis are described as well as their potential implementation as early biomarkers. Moreover, we address the impact that all the mechanisms triggered by sepsis have on the dysbiosis and the changes on neonatal microbiota.
Collapse
Affiliation(s)
- Anna Parra-Llorca
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Alejandro Pinilla-Gonzlez
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Laura Torrejón-Rodríguez
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Inmaculada Lara-Cantón
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - María Gormaz
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Aguar
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| | - Eva Serna
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), 46026 Valencia, Spain
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain
| |
Collapse
|
4
|
García-Robles A, Solaz-García Á, Verdú-Andrés J, Andrés JLP, Cañada-Martínez AJ, Pericás CC, Ponce-Rodriguez HD, Vento M, González PS. The association of salivary caffeine levels with serum concentrations in premature infants with apnea of prematurity. Eur J Pediatr 2022; 181:4175-4182. [PMID: 36169712 DOI: 10.1007/s00431-022-04628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
UNLABELLED The purpose of this paper is to verify whether the concentrations of caffeine in saliva are comparable to serum concentrations in preterm infants who are treated with caffeine for apnea of prematurity. This is a prospective observational study. Eligible participants were newborn infants < 37 weeks of gestational age treated with oral or intravenous caffeine for apnea of prematurity. Two paired samples of saliva and blood were collected per patient. Tube solid-phase microextraction coupled online to capillary liquid chromatography with diode array detection was used for analysis. A total of 47 infants with a median gestational age of 28 [26-30] weeks and a mean of 1.11 ± 0.4 kg of birth weight. Median postmenstrual age, when samples were collected, was 31 [29-33] weeks. Serum caffeine median levels of 19.30 μg/mL [1.9-53.90] and salivary caffeine median levels of 16.36 μg/mL [2.20-56.90] were obtained. There was a strong positive Pearson's correlation between the two variables r = 0.83 (p < 0.001). CONCLUSION The measurement of salivary caffeine concentrations after intravenous or oral administration offers an alternative to serum caffeine monitoring in apnea of prematurity. Measurement of salivary concentration minimizes blood draws, improves blood conservation, and subsequently minimizes painful procedures in premature infants. WHAT IS KNOWN • Salivary sampling may be useful when is applied to extremely low birth weight infant, in whom blood sampling must be severely restricted. WHAT IS NEW • The measurement of caffeine salivary concentrations after intravenous or oral administration offers an alternative to serum caffeine monitoring in apnoea of prematurity. • Salivary sampling may be a valid non-invasive alternative that could be used to individualize and optimize caffeine dose.
Collapse
Affiliation(s)
- Ana García-Robles
- Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Álvaro Solaz-García
- Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jorge Verdú-Andrés
- MINTOTA Research Group, Departament de Química Analítica. Facultat de Química, Universitat de València, Valencia, Spain
| | | | | | - Consuelo Cháfer Pericás
- Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Pilar Sáenz González
- Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain. .,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|
5
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
6
|
Solaz‐García A, Lara‐Cantón I, Peña‐Bautista C, Cháfer‐Pericás C, Cañada‐Martínez AJ, Pinilla‐González A, Vento M, Sáenz‐González P. Non-invasive monitoring of saliva can be used to identify oxidative stress biomarkers in preterm and term newborn infants. Acta Paediatr 2021; 110:3255-3260. [PMID: 34403512 DOI: 10.1111/apa.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to appraise the feasibility and reproducibility of applying a validated analytical method to determine salivary oxidative stress biomarkers in newborn infants. METHODS Prospective observational single-centre study was carried out in level III neonatal intensive care unit. Eligible patients were preterm infants and healthy full-term newborn infants. Salivary samples were analysed in the chromatographic system. RESULTS A total of 23 premature newborn infants and 13 full-term newborns were included. We analysed salivary levels of oxidative stress biomarkers for 5-F2t isoprostane, 15-E2t isoprostane, prostaglandin E2 and prostaglandin F2α. The multivariate predictive model showed a positive association between female and 5-F2t isoprostonae, and between female sex and prostglandin F2α. In addition, we found a positive association between gestational age and levels of prostaglandin E2 . Furthermore, in the premature group, we found a positive association between the inspired fraction of oxygen and levels of prostaglandin G2 . CONCLUSION We identified and determined lipid peroxidation biomarkers in term and preterm newborn infants' saliva using specific and validated mass spectrometry technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Máximo Vento
- Neonatal Research Unit Health Research Institute La Fe Valencia Spain
- Division of Neonatology University and Polytechnic Hospital La Fe Valencia Spain
| | - Pilar Sáenz‐González
- Neonatal Research Unit Health Research Institute La Fe Valencia Spain
- Division of Neonatology University and Polytechnic Hospital La Fe Valencia Spain
| |
Collapse
|
7
|
Analysis of Lipid Peroxidation by UPLC-MS/MS and Retinoprotective Effects of the Natural Polyphenol Pterostilbene. Antioxidants (Basel) 2021; 10:antiox10020168. [PMID: 33498744 PMCID: PMC7912566 DOI: 10.3390/antiox10020168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alterations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant polyphenol, is an effective therapy against diabetic retinopathy development, although its protective effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits, control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Diabetes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment restored control values, showing its ability to prevent early and main alterations in the development of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic acid, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic retinopathy in plasmas or urine.
Collapse
|
8
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
10
|
Shah VP, Raffay TM, Martin RJ, Vento M, Sánchez-Illana Á, Piñeiro-Ramos JD, Kuligowski J, Di Fiore JM. The Relationship between Oxidative Stress, Intermittent Hypoxemia, and Hospital Duration in Moderate Preterm Infants. Neonatology 2020; 117:577-583. [PMID: 32799210 PMCID: PMC7854776 DOI: 10.1159/000509038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Lipid peroxidation products are present following oxidation of polyunsaturated fatty acids in the eye, brain, and various cell membranes. Elevated levels of lipid peroxidation products and increased intermittent hypoxemia (IH) events have been associated with adverse outcomes in extremely preterm infants. The moderate preterm newborn has a still-developing oxidant defense system and immature respiratory control, but little is known about lipid peroxidation levels and IH in this larger and more common preterm population. OBJECTIVE To determine the association between oxidative stress and IH in moderate preterm infants. METHOD Oxygen saturation was continuously monitored in 51 moderate preterm infants (i.e., 31 + 0/7 to 33 + 6/7 weeks' gestation). Urine samples were collected at the end of the first and second weeks of life. Samples were analyzed for total lipid peroxidation products (neurofurans, isofurans, neuroprostanes, isoprostanes, and di-homo-isofurans). RESULT At week 1, there was a correlation between increased IH frequency and neurofurans (p < 0.04) and di-homo-isofurans (p < 0.003). At week 2, there was no correlation between IH and lipid peroxidation markers. Ele-vations in neurofurans, isofurans, neuroprostanes, and di-homo-isofurans in the first and/or second week of life were associated with a longer stay in hospital. CONCLUSION Elevations in lipid peroxidation biomarkers in moderate preterm infants during their first weeks of life are associated with a higher frequency of IH and prolonged hospitalization.
Collapse
Affiliation(s)
- Vidhi P Shah
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard J Martin
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | | | | | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA,
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA,
| |
Collapse
|
11
|
Lorente-Pozo S, Parra-Llorca A, Lara-Cantón I, Solaz A, García-Jiménez JL, Pallardó FV, Vento M. Oxygen in the neonatal period: Oxidative stress, oxygen load and epigenetic changes. Semin Fetal Neonatal Med 2020; 25:101090. [PMID: 32014366 DOI: 10.1016/j.siny.2020.101090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preterm infants frequently require positive pressure ventilation and oxygen supplementation in the first minutes after birth. It has been shown that the amount of oxygen provided during stabilization, the oxygen load, if excessive may cause hyperoxia, and oxidative damage to DNA. Epidemiologic studies have associated supplementation with pure oxygen in the first minutes after birth with childhood cancer. Recent studies have shown that the amount of oxygen supplemented to preterm infants after birth modifies the epigenome. Of note, the degree of DNA hyper-or hypomethylation correlates with the oxygen load provided upon stabilization. If these epigenetic modifications would persist, oxygen supplied in the first minutes after birth could have long term consequences. Further studies with a robust power calculation and long-term follow up are needed to bear out the long-term consequences of oxygen supplementation during postnatal stabilization of preterm infants.
Collapse
Affiliation(s)
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| | | | - Alvaro Solaz
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| | | | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine, University of Valencia-INCLIVA, CIBERER, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|
12
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Matyas M, Hasmasanu MG, Zaharie G. Antioxidant Capacity of Preterm Neonates Assessed by Hydrogen Donor Value. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E720. [PMID: 31671553 PMCID: PMC6915410 DOI: 10.3390/medicina55110720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022]
Abstract
Background and objectives: Premature newborns have a number of oxidative stress-inducing disorders. Antioxidant defense is deficient in premature newborns. Hydrogen donors can be used to evaluate the non-enzymatic antioxidant defense. By measuring hydrogen donors, a group of antioxidants can be assessed: tocopherol, ascorbic acid, and glutathione. These represent the most relevant group of non-enzymatic antioxidants. The main aim of this study was to evaluate the non-enzymatic antioxidant defense capacity of premature newborns by measuring hydrogen donors. Materials and Methods: We evaluated the non-enzymatic antioxidant capacity by hydrogen donor measurement in 24 premature newborns with various oxidative stress-inducing disorders and in 14 premature newborns without oxidative stress-inducing conditions. Statistical analysis was performed using the Statistica program (v. 8, StatSoft, Round Rock, TX, USA). Differences between groups were tested with Wilcoxon matched test for quantitative paired data or Mann-Whitney test for quantitative independent data. The Z test for proportions was used to compare qualitative data among subgroups. Results: Hydrogen donors in the study group had a significantly lower value on the first day of life compared to the value of the control group. Also, the hydrogen donor value in the study group was significantly lower on the first day compared to the third day of life (p < 0.05). Neonates with mild respiratory distress (14 cases) had increased hydrogen donor values on their third day of life compared to the first day of life. Conclusions: The antioxidant capacity is influenced by oxidative stress-inducing disorders. Respiratory distress influenced the hydrogen donor value and antioxidant defense. Antioxidant defense gradually improves after birth according to gestational age.
Collapse
Affiliation(s)
- Melinda Matyas
- Neonatology Department, University of Medicine and Pharmacy, Cluj-Napoca, 400006, str. V. Babes no. 8, Romania.
- 1st Neonatology Department, County Emergency Hospital Cluj-Napoca, 400006, str. Clinicilor no. 3-5, Romania.
| | - Monica G Hasmasanu
- Neonatology Department, University of Medicine and Pharmacy, Cluj-Napoca, 400006, str. V. Babes no. 8, Romania.
- 1st Neonatology Department, County Emergency Hospital Cluj-Napoca, 400006, str. Clinicilor no. 3-5, Romania.
| | - Gabriela Zaharie
- Neonatology Department, University of Medicine and Pharmacy, Cluj-Napoca, 400006, str. V. Babes no. 8, Romania.
- 1st Neonatology Department, County Emergency Hospital Cluj-Napoca, 400006, str. Clinicilor no. 3-5, Romania.
| |
Collapse
|
14
|
Sánchez-Illana Á, Shah V, Piñeiro-Ramos JD, Di Fiore JM, Quintás G, Raffay TM, MacFarlane PM, Martin RJ, Kuligowski J. Adrenic acid non-enzymatic peroxidation products in biofluids of moderate preterm infants. Free Radic Biol Med 2019; 142:107-112. [PMID: 30818053 PMCID: PMC6800232 DOI: 10.1016/j.freeradbiomed.2019.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Oxidative stress plays an essential role in processes of signaling and damage to biomolecules during early perinatal life. Isoprostanoids and isofuranoids from the free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs) are widely recognized as reliable biomarkers of oxidative stress. However, their quantification is not straightforward due to high structural similarity of the compounds formed. In this work, a semiquantitative method for the analysis of adrenic acid (AdA, C22:4 n-6) non-enzymatic peroxidation products (i.e. dihomo-isoprostanes and dihomo-isofurans) was developed. The proposed ultra-performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) method was applied to the analysis of blood plasma and urine from preterm infants providing information about AdA peroxidation.
Collapse
Affiliation(s)
- Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Vidhi Shah
- Department of Pediatrics, Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Juliann M Di Fiore
- Department of Pediatrics, Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Analytical Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Thomas M Raffay
- Department of Pediatrics, Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
15
|
Domínguez-Perles R, Gil-Izquierdo A, Ferreres F, Medina S. Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns - Nutritional and dietary effects. Free Radic Biol Med 2019; 142:38-51. [PMID: 30902759 DOI: 10.1016/j.freeradbiomed.2019.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
The scientific background of perinatal pathology, regarding both mother and offspring, from the lipidomic perspective, has highlighted the possibility of identifying new, promising clinical markers of oxidative stress and inflammation, closely related to the normal development of unborn and newborn children, together with their application. In this regard, in recent years, significant advances have been achieved, assisted by both newly developed analytical tools and basic knowledge on the biological implications of oxylipins. Hence, in the light of this recent progress, this review aims to provide an update on the relevance of human oxylipins during pregnancy and in the unborn and newborn child, covering two fundamental aspects. Firstly, the evidence from human clinical studies and dietary intervention trials will be used to shed light on the extent to which dietary supplementation can modulate the lipidomic markers of oxidative stress and inflammation in the perinatal state, emphasizing the role of the placenta and metabolic disturbances in the mother and fetus. The second part of this article comprises a review of existing data on specific pathophysiological aspects of human reproduction, in relation to lipidomic markers in pregnant women, unborn children, and newborn children. The information reviewed here evidences the current opportunity to correct reproductive disturbances, in the framework of lipidomics, by fine-tuning dietary interventions.
Collapse
Affiliation(s)
- R Domínguez-Perles
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| | - A Gil-Izquierdo
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain.
| | - F Ferreres
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| | - S Medina
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| |
Collapse
|
16
|
Peña-Bautista C, Durand T, Vigor C, Oger C, Galano JM, Cháfer-Pericás C. Non-invasive assessment of oxidative stress in preterm infants. Free Radic Biol Med 2019; 142:73-81. [PMID: 30802488 DOI: 10.1016/j.freeradbiomed.2019.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Preterm newborns have an immature antioxidant defense system and are especially susceptible to oxidative stress. Resuscitation, mechanical ventilation, intermittent hypoxia and apneic episodes require frequently oxygen supplementation which leads to oxidative stress in preterm newborns. The consequences of oxidative damage are increased short and long-term morbidities, neurodevelopmental impairment and increased mortality. Oxidative stress biomarkers are determined in blood samples from preterm children during their stay in neonatal intensive care units especially for research purposes. However, there is a tendency towards reducing invasive and painful techniques in the NICU (Neonatal Intensive Care Unit) and avoiding excessive blood extractions procedures. In this paper, it has been described some studies that employed non-invasive samples to determine oxidative stress biomarkers form preterm infants in order to perform a close monitoring biomarker with a significant greater predictive value. Among these methods we describe a previously developed and validated high-performance liquid chromatography tandem mass spectrometry method that allow to accurately determine the most reliable biomarkers in biofluids, which are non-invasively and painlessly obtained.
Collapse
Affiliation(s)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | | |
Collapse
|
17
|
Intermittent hypoxemia and oxidative stress in preterm infants. Respir Physiol Neurobiol 2019; 266:121-129. [PMID: 31100375 DOI: 10.1016/j.resp.2019.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 01/11/2023]
Abstract
Intermittent hypoxemia events (IH) are common in extremely preterm infants and are associated with many poor outcomes including retinopathy or prematurity, wheezing, bronchopulmonary dysplasia, cognitive or language delays and motor impairment. More recent data in animal and rodent models have suggested that specific patterns of IH may increase the risk for morbidity. The pathway by which these high risk patterns of IH initiate a pathological cascade is unknown but animal models suggest that oxidative stress may play a role. This review describes early postnatal patterns of IH in preterm infants, their relationship with morbidity, oxidative stress biomarkers relevant to the newborn infant and the relationship between IH and reactive oxygen species.
Collapse
|
18
|
Qin X, Cheng J, Zhong Y, Mahgoub OK, Akter F, Fan Y, Aldughaim M, Xie Q, Qin L, Gu L, Jian Z, Xiong X, Liu R. Mechanism and Treatment Related to Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. Front Mol Neurosci 2019; 12:88. [PMID: 31031592 PMCID: PMC6470360 DOI: 10.3389/fnmol.2019.00088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is a type of neonatal brain injury, which occurs due to lack of supply and oxygen deprivation to the brain. It is associated with a high morbidity and mortality rate. There are several therapeutic strategies that can be used to improve outcomes in patients with HIE. These include cell therapies such as marrow mesenchymal stem cells (MSCs) and umbilical cord blood stem cells (UCBCs), which are being incorporated into the new protocols for the prevention of ischemic brain damage. The focus of this review is to discuss the mechanism of oxidative stress in HIE and summarize the current available treatments for HIE. We hope that a better understanding of the relationship between oxidative stress and HIE will provide new insights on the potential therapy of this devastating condition.
Collapse
Affiliation(s)
- Xingping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Farhana Akter
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States.,Department of Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yanqin Fan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mohammed Aldughaim
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Qiurong Xie
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingxia Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renzhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Massaro AN, Wu YW, Bammler TK, MacDonald JW, Mathur A, Chang T, Mayock D, Mulkey SB, van Meurs K, Afsharinejad Z, Juul SE. Dried blood spot compared to plasma measurements of blood-based biomarkers of brain injury in neonatal encephalopathy. Pediatr Res 2019; 85:655-661. [PMID: 30661082 DOI: 10.1038/s41390-019-0298-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Data correlating dried blood spots (DBS) and plasma concentrations for neonatal biomarkers of brain injury are lacking. We hypothesized that candidate biomarker levels determined from DBS can serve as a reliable surrogate for plasma levels. METHODS In the context of a phase II multi-center trial evaluating erythropoietin for neuroprotection in neonatal encephalopathy (NE), DBS were collected at enrollment ( < 24 h), day 2, 4, and 5. Plasma was collected with the first and last DBS. The relationship between paired DBS-plasma determinations of brain-specific proteins and cytokines was assessed by correlation and Bland-Altman analyses. For analytes with consistent DBS-plasma associations, DBS-derived biomarker levels were related to brain injury by MRI and 1-year outcomes. RESULTS We enrolled 50 newborns with NE. While S100B protein, tumor necrosis factor α, interleukin (IL)1 β, IL-6, IL-8 demonstrated significant DBS-plasma correlations, Bland-Altman plots demonstrated that the methods are not interchangeable, with a 2 to 4-fold error between measurements. No significant relationships were found between DBS levels of TNFα, IL-6, and IL-8 and outcomes. CONCLUSION Further work is needed to optimize elution and assay methods before using DBS specimens as a reliable surrogate for plasma levels of candidate brain injury biomarkers in NE.
Collapse
Affiliation(s)
- An N Massaro
- Pediatrics - Division of Neonatology, Children's National Health Systems and The George Washington University School of Medicine, Washington, DC, USA.
| | - Yvonne W Wu
- Neurology and Pediatrics, UCSF, San Francisco, CA, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Amit Mathur
- Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Taeun Chang
- Neurology and Pediatrics, Children's National Health Systems and The George Washington University School of Medicine, Washington, DC, USA
| | - Dennis Mayock
- Pediatrics-Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Sarah B Mulkey
- Neurology and Pediatrics, Children's National Health Systems and The George Washington University School of Medicine, Washington, DC, USA
| | | | - Zahra Afsharinejad
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sandra E Juul
- Pediatrics-Division of Neonatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Rausell D, García-Blanco A, Correcher P, Vitoria I, Vento M, Cháfer-Pericás C. Newly validated biomarkers of brain damage may shed light into the role of oxidative stress in the pathophysiology of neurocognitive impairment in dietary restricted phenylketonuria patients. Pediatr Res 2019; 85:242-250. [PMID: 30333522 DOI: 10.1038/s41390-018-0202-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023]
Abstract
Despite a strict dietary control, patient with hyperphenylalaninemia or phenylketonuria may show cognitive and/or behavioral disorders. These comorbid deficits are of great concern to patients, families, and health organizations. However, biomarkers capable of detecting initial stages of neurological damage are not commonly employed. The pathogenesis of phenylketonuria is complex in nature. Increasingly, the role of oxidative stress has gained acceptance and biomarkers reflecting oxidative damage to the brain and easily accessible in peripheral biofluids have been validated using mass spectrometry techniques. In the present review, the role of oxidative stress in the pathogenesis of phenylketonuria and hyperphenylalaninemia has been updated. Moreover, we report on newly validated brain-specific lipid peroxidation biomarkers and inform on their relevance in the detection and monitoring of neurological damage in phenylketonuric patients. In preliminary studies, a correlation between lipid peroxidation biomarkers and neurological dysfunction in patients with PKU was reported. However, there is a need of adequately powered trials to confirm the validity of these biomarkers for early detection of brain damage, initiation of treatment, and reliably monitor evolving disease both in phenylketonuria and hyperphenylalaninemia.
Collapse
Affiliation(s)
- Dolores Rausell
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana García-Blanco
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Patricia Correcher
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Isidro Vitoria
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | | |
Collapse
|
21
|
Nuñez-Ramiro A, Benavente-Fernández I, Valverde E, Cordeiro M, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Kuligowski J, Loureiro B, Moral-Pumarega MT, Pavón A, Sánchez-Illana A, Tofé I, Hervás D, García-Robles A, Parra-Llorca A, Cernada M, Martinez-Rodilla J, Lorente-Pozo S, Llorens R, Marqués R, Vento M. Topiramate plus Cooling for Hypoxic-Ischemic Encephalopathy: A Randomized, Controlled, Multicenter, Double-Blinded Trial. Neonatology 2019; 116:76-84. [PMID: 31091527 DOI: 10.1159/000499084] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Therapeutic interventions to improve the efficacy of whole-body cooling for hypoxic-ischemic encephalopathy (HIE) are desirable. Topiramate has been effective in reducing brain damage in experimental studies. However, in the clinical setting information is limited to a small number of feasibility trials. We launched a randomized controlled double-blinded topiramate/placebo multicenter trial with the primary objective being to reduce the antiepileptic activity in cooled neonates with HIE and assess if brain damage would be reduced as a consequence. STUDY DESIGN Neonates were randomly assigned to topiramate or placebo at the initiation of hypothermia. Topiramate was administered via a nasogastric tube. Brain electric activity was continuously monitored. Topiramate pharmacokinetics, energy-related and Krebs' cycle intermediates, and lipid peroxidation biomarkers were determined using liquid chromatography-mass spectrometry and MRI for assessing brain damage. RESULTS Out of 180 eligible patients 110 were randomized, 57 (51.8%) to topiramate and 53 (48.2%) to placebo. No differences in the perinatal or postnatal variables were found. The topiramate group exhibited less seizure burden in the first 24 h of hypothermia (topiramate, n = 14 [25.9%] vs. placebo, n = 22 [42%]); needed less additional medication, and had lower mortality (topiramate, n = 5 [9.2%] vs. placebo, n = 10 [19.2%]); however, these results did not achieve statistical significance. Topiramate achieved a therapeutic range in 37.5 and 75.5% of the patients at 24 and 48 h, respectively. A significant association between serum topiramate levels and seizure activity (p < 0.016) was established. No differences for oxidative stress, energy-related metabolites, or MRI were found. CONCLUSIONS Topiramate reduced seizures in patients achieving therapeutic levels in the first hours after treatment initiation; however, they represented only a part of the study population. Our results warrant further studies with higher loading and maintenance dosing of topiramate.
Collapse
Affiliation(s)
- Antonio Nuñez-Ramiro
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Eva Valverde
- Division of Neonatology, University Hospital La Paz, Madrid, Spain
| | - Malaika Cordeiro
- Division of Neonatology, University Hospital La Paz, Madrid, Spain
| | - Dorotea Blanco
- Division of Neonatology, University Hospital Gregorio Marañón, Madrid, Spain
| | - Hector Boix
- Department of Neonatology, University Hospital Vall d'Hebrón, Barcelona, Spain
| | - Fernando Cabañas
- Division of Neonatology, University Hospital Quirónsalud Madrid, Madrid, Spain
| | - Mercedes Chaffanel
- Division of Neonatology, Regional University Hospital Málaga, Málaga, Spain
| | | | | | | | - Begoña Loureiro
- Division of Neonatology, University Hospital Cruces, Bilbao, Spain
| | | | - Antonio Pavón
- Division of Neonatology, University Hospital Virgen del Rocío, Sevilla, Spain
| | | | - Inés Tofé
- Division of Neonatology, University Hospital Reina Sofía, Córdoba, Spain
| | - David Hervás
- Department of Biostatistics, Health Research Institute La Fe, Valencia, Spain
| | - Ana García-Robles
- Division of Neonatology, University Hospital Complex of Vigo, Vigo, Spain
| | - Anna Parra-Llorca
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Maria Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | - Roberto Llorens
- Department of Radiology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Remedios Marqués
- Departament of Pharmacy, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain, .,Health Research Institute La Fe, Valencia, Spain,
| | | |
Collapse
|
22
|
Millán I, Piñero-Ramos JD, Lara I, Parra-Llorca A, Torres-Cuevas I, Vento M. Oxidative Stress in the Newborn Period: Useful Biomarkers in the Clinical Setting. Antioxidants (Basel) 2018; 7:E193. [PMID: 30558164 PMCID: PMC6316621 DOI: 10.3390/antiox7120193] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Aerobic metabolism is highly efficient in providing energy for multicellular organisms. However, even under physiological conditions, an incomplete reduction of oxygen produces reactive oxygen species and, subsequently, oxidative stress. Some of these chemical species are highly reactive free radicals capable of causing functional and structural damage to cell components (protein, lipids, or nucleotides). Oxygen is the most used drug in ill-adapted patients during the newborn period. The use of oxygen may cause oxidative stress-related diseases that increase mortality and cause morbidity with adverse long-term outcomes. Conditions such as prematurity or birth asphyxia are frequently treated with oxygen supplementation. Both pathophysiological situations of hypoxia⁻reoxygenation in asphyxia and hyperoxia in premature infants cause a burst of reactive oxygen species and oxidative stress. Recently developed analytical assays using mass spectrometry have allowed us to determine highly specific biomarkers with minimal samples. The detection of these metabolites will help improve the diagnosis, evolution, and response to therapy in oxidative stress-related conditions during the newborn period.
Collapse
Affiliation(s)
- Iván Millán
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | | | - Inmaculada Lara
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain.
| |
Collapse
|
23
|
Tomai P, Martinelli A, Gasperi T, Bianchi M, Purcaro V, Teofili L, Papacci P, Cori MS, Vento G, Curini R, Fanali S, Gentili A. Rotating-disc micro-solid phase extraction of F2-isoprostanes from maternal and cord plasma by using oxidized buckypaper as sorbent membrane. J Chromatogr A 2018; 1586:30-39. [PMID: 30563692 DOI: 10.1016/j.chroma.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
This paper describes the development of an original micro-solid phase extraction device and its evaluation for the isolation of F2-isoprostanes (F2-IsoPs) from cord and maternal plasma samples. The unit is very simple and consists in a rotating disc (1.8 cm diameter) of oxidized buckypaper (BP), enwrapped in a polypropylene mesh pouch. Even if the selected F2-IsoPs have logP and pKa values that make them suitable candidates for their sorption on BP, several parameters were optimized to maximize recoveries: time of adsorption and desorption; stirring speed; volume, pH and ionic strength of the sample; type, volume, and fractions of the elution solvent; oxidation grade of BP. Among all, the last one was crucial in affecting extraction yields because of the analyte interactions with polar functionalities, introduced by a preliminary oxidative acid treatment. The investigation established the optimal oxidation time and highlighted the pros and cons of the acid activation step. All extracts were analyzed by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Validation was performed according to the main FDA guidelines for bioanalytical methods. Depending on the spike level and analyte, recoveries ranged between 30 and 120% with precision and accuracy values lower than 20%. Quantitative analysis was accomplished by matrix-matched calibration curves whose determination coefficients were higher than 0.95. Lower limit of quantitation (LLOQ) spanned the range 2.45-6.77 μg L-1. The validated method was applied to the analysis of eight pairs of mother/child plasma samples, revealing the presence of 8-iso-15-keto-PGF2α and 8-iso-PGE2 at a concentration of about 10 μg L-1 in most cord plasma samples of preterm newborns.
Collapse
Affiliation(s)
- Pierpaolo Tomai
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Maria Bianchi
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Velia Purcaro
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Luciana Teofili
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Patrizia Papacci
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Maria Sofia Cori
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Giovanni Vento
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Roberta Curini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy
| | - Salvatore Fanali
- PhD School in Natural Science and Engineering, University of Verona, 37129 Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy.
| |
Collapse
|
24
|
García-Blanco A, Peña-Bautista C, Oger C, Vigor C, Galano JM, Durand T, Martín-Ibáñez N, Baquero M, Vento M, Cháfer-Pericás C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta 2018; 184:193-201. [DOI: 10.1016/j.talanta.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
|
25
|
Nuñez A, Benavente I, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Loureiro B, Moral MT, Pavón A, Tofé I, Valverde E, Vento M. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy. An Pediatr (Barc) 2018. [DOI: 10.1016/j.anpede.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
26
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal Chim Acta 2017; 996:88-97. [DOI: 10.1016/j.aca.2017.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
|
28
|
Nuñez A, Benavente I, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Loureiro B, Moral MT, Pavón A, Tofé I, Valverde E, Vento M. [Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy]. An Pediatr (Barc) 2017. [PMID: 28648366 DOI: 10.1016/j.anpedi.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Birth asphyxia is one of the principal causes of early neonatal death. In survivors it may evolve to hypoxic-ischaemic encephalopathy and major long-term neurological morbidity. Prolonged and intense asphyxia will lead to energy exhaustion in tissues exclusively dependent on aerobic metabolism, such as the central nervous system. Energy deficit leads to ATP-dependent pumps blockage, with the subsequent loss of neuronal transmembrane potential. The most sensitive areas of the brain will die due to necrosis. In more resistant areas, neuronal hyper-excitability, massive entrance of ionic calcium, activation of NO-synthase, free radical generation, and alteration in mitochondrial metabolism will lead to a secondary energy failure and programmed neuronal death by means of the activation of the caspase pathways. A third phase has recently been described that includes persistent inflammation and epigenetic changes that would lead to a blockage of oligodendrocyte maturation, alteration of neurogenesis, axonal maturation, and synaptogenesis. In this scenario, oxidative stress plays a critical role causing direct damage to the central nervous system and activating metabolic cascades leading to apoptosis and inflammation. Moderate whole body hypothermia to preserve energy stores and to reduce the formation of oxygen reactive species attenuates the mechanisms that lead to the amplification of cerebral damage upon resuscitation. The combination of hypothermia with coadjuvant therapies may contribute to improve the prognosis.
Collapse
Affiliation(s)
- Antonio Nuñez
- Hospital Universitario y Politécnico La Fe, Valencia, España
| | | | | | - Héctor Boix
- Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Fernando Cabañas
- Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, Madrid, España
| | | | | | | | - Begoña Loureiro
- Hospital Universitario de Cruces, Barakaldo, Vizcaya, España
| | | | - Antonio Pavón
- Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Inés Tofé
- Hospital Universitario Reina Sofía, Córdoba, España
| | | | - Máximo Vento
- Hospital Universitario y Politécnico La Fe, Valencia, España.
| |
Collapse
|
29
|
Embleton ND, Berrington JE, Dorling J, Ewer AK, Juszczak E, Kirby JA, Lamb CA, Lanyon CV, McGuire W, Probert CS, Rushton SP, Shirley MD, Stewart CJ, Cummings SP. Mechanisms Affecting the Gut of Preterm Infants in Enteral Feeding Trials. Front Nutr 2017; 4:14. [PMID: 28534028 PMCID: PMC5420562 DOI: 10.3389/fnut.2017.00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Large randomized controlled trials (RCTs) in preterm infants offer unique opportunities for mechanistic evaluation of the risk factors leading to serious diseases, as well as the actions of interventions designed to prevent them. Necrotizing enterocolitis (NEC) a serious inflammatory gut condition and late-onset sepsis (LOS) are common feeding and nutrition-related problems that may cause death or serious long-term morbidity and are key outcomes in two current UK National Institutes for Health Research (NIHR) trials. Speed of increasing milk feeds trial (SIFT) randomized preterm infants to different rates of increases in milk feeds with a primary outcome of survival without disability at 2 years corrected age. Enteral lactoferrin in neonates (ELFIN) randomizes infants to supplemental enteral lactoferrin or placebo with a primary outcome of LOS. This is a protocol for the mechanisms affecting the gut of preterm infants in enteral feeding trials (MAGPIE) study and is funded by the UK NIHR Efficacy and Mechanistic Evaluation programme. MAGPIE will recruit ~480 preterm infants who were enrolled in SIFT or ELFIN. Participation in MAGPIE does not change the main trial protocols and uses non-invasive sampling of stool and urine, along with any residual resected gut tissue if infants required surgery. Trial interventions may involve effects on gut microbes, metabolites (e.g., short-chain fatty acids), and aspects of host immune function. Current hypotheses suggest that NEC and/or LOS are due to a dysregulated immune system in the context of gut dysbiosis, but mechanisms have not been systematically studied within large RCTs. Microbiomic analysis will use next-generation sequencing, and metabolites will be assessed by mass spectrometry to detect volatile organic and other compounds produced by microbes or the host. We will explore differences between disease cases and controls, as well as exploring the actions of trial interventions. Impacts of this research are multiple: translation of knowledge of mechanisms promoting gut health may explain outcomes or suggest alternate strategies to improve health. Results may identify new non-invasive diagnostic or monitoring techniques, preventative or treatment strategies for NEC or LOS, or provide data useful for risk stratification in future studies. Mechanistic evaluation might be especially informative where there are not clear effects on the primary outcome (ISRCTN 12554594).
Collapse
Affiliation(s)
- Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Janet E Berrington
- Newcastle Neonatal Service, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Dorling
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew K Ewer
- College of Medical and Dental Sciences, Institute of Metabolism and Systems Research, Birmingham University, Birmingham, UK
| | | | - John A Kirby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Clare V Lanyon
- Department for Biomedical Sciences, School of Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - William McGuire
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Christopher S Probert
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Mark D Shirley
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Department for Biomedical Sciences, School of Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen P Cummings
- School of Science and Engineering, Teesside University, Middlesbrough, UK
| |
Collapse
|
30
|
Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol 2017; 12:674-681. [PMID: 28395175 PMCID: PMC5388914 DOI: 10.1016/j.redox.2017.03.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/12/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a challenge for the immediate future since accurate evaluation of oxidative stress would contribute to improve the quality of care of our neonatal patients.
Collapse
Affiliation(s)
- Isabel Torres-Cuevas
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Anna Parra-Llorca
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Angel Sánchez-Illana
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Nuñez-Ramiro
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Kuligowski
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Cernada
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Justo Escobar
- Scientific Department, Sabartech SL, Biopolo Instituto Investigación Sanitaria La Fe, Valencia, Spain
| | - Máximo Vento
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
31
|
Xiao Y, Fu X, Pattengale P, Dien Bard J, Xu YK, O'Gorman MR. A sensitive LC-MS/MS method for the quantification of urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) including pediatric reference interval. Clin Chim Acta 2016; 460:128-34. [DOI: 10.1016/j.cca.2016.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 01/07/2023]
|
32
|
Chafer-Pericas C, Cernada M, Rahkonen L, Stefanovic V, Andersson S, Vento M. Preliminary case control study to establish the correlation between novel peroxidation biomarkers in cord serum and the severity of hypoxic ischemic encephalopathy. Free Radic Biol Med 2016; 97:244-249. [PMID: 27296840 DOI: 10.1016/j.freeradbiomed.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) has deleterious neurological consequences. To identify patients at risk of neuronal damage deserving implementation of neuroprotective strategies clinicians have relied on prenatal sentinel events, postnatal clinical assessment (Apgar score), and blood gas analysis. This feasibility study aimed to assess if lipid peroxidation byproducts associated with neuronal damage correlated with cord blood metabolic acidemia in patients with HIE. POPULATION AND METHODS This is a case/control study in which cases were newborn infants with severe acidemia (pH<7.00; base excess ≥12mmol/L) while control babies exhibited normal gases (pH=7.20-7.40; base excess=-4 to +4mmol/L) in the first cord blood analysis performed immediately after birth. Concomitantly, lipid peroxidation byproducts were determined using ultra performance liquid chromatography coupled to mass spectrometry in the same cord blood sample. RESULTS A total of 19 controls and 20 cases were recruited. No differences in gestational characteristics were present. However, cases exhibited profound metabolic alterations as compared to controls (Cases vs. CONTROL pH=6.90±0.1 vs. 7.33±0.03; base excess=-15±3 vs. -1±2mmol/L), 85% were admitted to the NICU, and 50% developed symptoms of HIE. 8-iso-15(R)-PGF2α (P=0.01) and total isoprostanes (P=0.045) presented statistically significant differences between cases and control groups and correlated with level of HIE. CONCLUSIONS The 8-iso-15(R)-PGF2α and isoprostanes reflecting oxidative damage are significantly increased in severe postnatal acidemia. Follow up studies with adequate power are necessary to confirm if these biomarkers measured in cord blood serum could be predictive of neonatal encephalopathy.
Collapse
Affiliation(s)
| | - María Cernada
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Leena Rahkonen
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University Hospital, Finland
| | - Vedran Stefanovic
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University Hospital, Finland
| | - Sture Andersson
- Children׳s Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|
33
|
Development of a reliable analytical method to determine lipid peroxidation biomarkers in newborn plasma samples. Talanta 2016; 153:152-7. [DOI: 10.1016/j.talanta.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
34
|
Rodriguez NA, Vento M, Claud EC, Wang CE, Caplan MS. Oropharyngeal administration of mother's colostrum, health outcomes of premature infants: study protocol for a randomized controlled trial. Trials 2015; 16:453. [PMID: 26458907 PMCID: PMC4603349 DOI: 10.1186/s13063-015-0969-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/21/2015] [Indexed: 12/03/2022] Open
Abstract
Background Extremely premature (birth weight < 1250 g) infants are at high risk for acquiring late-onset sepsis and necrotizing enterocolitis, which are associated with significant mortality and morbidity. Own mother's milk contains protective (immune and trophic) biofactors which provide antimicrobial, anti-inflammatory, antioxidant, and immunomodulatory functions, enhance intestinal microbiota, and promote intestinal maturation. Many of these biofactors are most highly concentrated in the milk expressed by mothers of extremely premature infants. However, since extremely premature infants do not receive oral milk feeds until 32 weeks post-conceptional age, they lack the potential benefit provided by milk (biofactor) exposure to oropharyngeal immunocompetent cells, and this deficiency could contribute to late-onset sepsis and necrotizing enterocolitis. Therefore, oropharyngeal administration of own mother's milk may improve the health outcomes of these infants. Objectives To compare the effects of oropharyngeal administration of mother’s milk to a placebo, for important clinical outcomes, including (1A) reducing the incidence of late-onset sepsis (primary outcome) and (1B) necrotizing enterocolitis and death (secondary outcomes). To identify the biomechanisms responsible for the beneficial effects of oropharyngeal mother’s milk for extremely premature infants, including; (2A) enhancement of gastrointestinal (fecal) microbiota (2B) improvement in antioxidant defense maturation or reduction of pro-oxidant status, and (2C) maturation of immunostimulatory effects as measured by changes in urinary lactoferrin. Methods/Design A 5-year, multi-center, double-blind, randomized controlled trial designed to evaluate the safety and efficacy of oropharyngeal mother’s milk to reduce the incidence of (1A) late-onset sepsis and (1B) necrotizing enterocolitis and death in a large cohort of extremely premature infants (n = 622; total patients enrolled). Enrolled infants are randomly assigned to one of 2 groups: Group A infants receive 0.2 mL of own mother's milk, via oropharyngeal administration, every 2 hours for 48 hours, then every 3 hours until 32 weeks corrected-gestational age. Group B infants receive a placebo (0.2 mL sterile water) following the same protocol. Milk, urine, oral mucosal swab, and stool samples are collected at various time points, before, during and after the treatment periods. Health outcome and safety data are collected throughout the infant’s stay. Trial registration ClinicalTrials.gov identifier: NCT02116699 on 11 April 2014. Last updated: 26 May 2015
Collapse
Affiliation(s)
- Nancy A Rodriguez
- NorthShore University HealthSystem, Evanston, IL, USA. .,University of Chicago Pritzker School of Medicine, Chicago, IL, USA. .,Clinician Researcher, Pritzker School of Medicine, Neonatal Nurse Practitioner, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL, 60201, USA.
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| | - Erika C Claud
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| | | | - Michael S Caplan
- NorthShore University HealthSystem, Evanston, IL, USA. .,University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| |
Collapse
|
35
|
Cháfer-Pericás C, Rahkonen L, Sánchez-Illana A, Kuligowski J, Torres-Cuevas I, Cernada M, Cubells E, Nuñez-Ramiro A, Andersson S, Vento M, Escobar J. Ultra high performance liquid chromatography coupled to tandem mass spectrometry determination of lipid peroxidation biomarkers in newborn serum samples. Anal Chim Acta 2015; 886:214-20. [DOI: 10.1016/j.aca.2015.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
|
36
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|