1
|
Mahmoud NF, Omar NR, Mohamed GG, Sayed FN. Synthesis, structural characterization and in vitro antibacterial activity studies of ternary metal complexes of anti-inflammatory bromhexine drug. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Hendricks N, Olatunji OS, Gumbi BP. Occurrence and risk assessment of fullerene colloidal nanoparticles by ultrasonic-assisted dispersive liquid-liquid extraction and high-performance liquid chromatography in surface waters. Heliyon 2022; 8:e11454. [PMID: 36406672 PMCID: PMC9672311 DOI: 10.1016/j.heliyon.2022.e11454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
This paper presents a developed analytical technique for risk assessment of colloidal fullerene in surface waters by ultrasonic-assisted dispersive liquid-liquid extraction (UADLLE) and high-performance liquid chromatography ultraviolet-visible detector (HPLC-UV). Fullerene colloidal nanoparticles were synthesised and characterized by high-resolution transmission electron microscopy (HRTEM) and ultraviolet-visible spectroscopy (UV-Vis). Ultrasonication step, disperser solvent, and sodium chloride salt enhance the surface area of fullerene derivative aggregates for better contact and lowers the solubility of fullerene derivative to the aqueous solution, respectively promoting mass transfer of fullerene from aqueous into the organic phase. Several extraction parameters were optimized, and the optimal conditions were established: 5 mL toluene as extraction solvent (2 cycles); 200 mL water sample; 1% sodium chloride salt; 15 min ultrasonication, and 400 μL methanol as disperser solvent. The mean absolute recoveries established in drinking water, wastewater, and river water were 117%, 103%, and 93%, respectively. The proposed analytical technique was linear in the ranges between 0.25 μg L−1 – 250 μg L−1 with an r-squared of 0.9958. The limit of detection (LOD) determined from the signal-to-noise ratio of 3 was 0.11 μg L−1 and the limit of quantification (LOQ) from a signal-to-noise ratio of 10 was 0.38 μg L−1. The precision ranges from 2% to 11% and accuracy percent error ranged from 7%–14% for spiked concentration levels of 0.25 μg L−1, 50 μg L−1, and 250 μg L−1. The measured environmental concentration (MECs) for the fullerene in water samples ranged from not detected to 10.54 μg L−1 and ecological assessment showed the concentration level of the fullerene can pose risk. Overall, according to the author's knowledge, this is the earlier work on the occurrence and risk assessment of fullerene colloidal nanoparticles (C61-PCBM) in potable and wastewater on the African continent.
Collapse
|
3
|
Hendricks N, Olatunji OS, Gumbi BP. Quantification and Ecological Risk Assessment of Colloidal Fullerenes Nanoparticles in Sediments by Ultrasonic-Assisted Pressurized Liquid Extraction and High Performance Liquid Chromatography. NANOMATERIALS 2021; 11:nano11123319. [PMID: 34947668 PMCID: PMC8705665 DOI: 10.3390/nano11123319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Fullerenes engineered nanomaterials are regarded as emerging environmental contaminants. This is as their widespread application in many consumer products, as well as natural release, increases their environmental concentration. In this work, an ultrasonic-assisted pressurized liquid extraction (UAPLE) method followed by high performance liquid chromatography with ultraviolet-visible detector (HPLC-UV-vis) was developed for extraction and determination of fullerene in sediments. The method was validated and found to be suitable for environmental risk assessment. Thereafter, the method was used for the determination of fullerene (C61-PCBM) in sediment samples collected from Umgeni River, South Africa. The current method allows for adequate sensitivity within the linear range of 0.01–4 µg g−1, method limit detection of 0.0094 µg g−1 and recoveries ranged between 67–84%. All the parameters were determined from fortified sediments samples. The measured environmental concentration (MEC) of fullerene in the sediment samples ranged from not detected to 30.55 µg g−1. To the best of our knowledge, this is the first report on the occurrence and ecological risk assessment of carbonaceous fullerene nanoparticles in African sediments and biosolids.
Collapse
|
4
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
5
|
Marisa I, Asnicar D, Matozzo V, Martucci A, Finos L, Marin MG. Toxicological effects and bioaccumulation of fullerene C 60 (FC 60) in the marine bivalve Ruditapes philippinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111560. [PMID: 33254414 DOI: 10.1016/j.ecoenv.2020.111560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Fullerene C60 (FC60), with its unique physical properties, has been used in many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding the biological effects of FC60 to aquatic organisms. Nowadays, only few studies have analysed FC60 effects and bioaccumulation in marine organisms following in vivo exposure. To provide new data about FC60 toxicity, Ruditapes philippinarum was selected as target species to assess potential adverse effects of the contaminant. Clams were exposed for 1, 3 and 7 days to predicted environmental concentrations of FC60 (1 and 10 μg/L) and cellular and biochemical responses were evaluated in clams' gills, digestive gland and haemolymph. The FC60 content in gills and digestive gland was determined in all experimental conditions after 7 days of exposure. Results showed an increase in oxidative stress. In particular, a significant modulation in antioxidant enzyme activities, and changes in glutathione S-transferase activity were observed in gills. Moreover, damage to lipids and proteins was detected in FC60-treated (10 µg/L) clams. In digestive gland, slighter variations in antioxidant enzyme activities and damage to molecules were detected. CAT activity was significantly affected throughout the exposure, whereas damage to lipids was evident only at the end of exposure. FC60 accumulation was revealed in both gills and digestive gland, with values up to twelve-fold higher in the latter. Interestingly, haemolymph parameters were slightly affected by FC60 compared to the other tissues investigated. Indeed, only Single Cell Gel Electrophoresis and Neutral Red uptake assays showed increased values in FC60-exposed clams. Moreover, volume and diameter of haemocytes, haemocyte proliferation, and micronucleus assay highlighted significant variations in treated clams, but only in the first phases of exposure, and no changes were detected after 7 days. Our results suggested clam gills as the target tissue for FC60 toxicity under the exposure conditions tested: the high damage detected to lipids and proteins could contribute to long-term problems for the organism.
Collapse
Affiliation(s)
- Ilaria Marisa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Martucci
- Industrial Engineering Department and INSTM, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
6
|
Svendsen C, Walker LA, Matzke M, Lahive E, Harrison S, Crossley A, Park B, Lofts S, Lynch I, Vázquez-Campos S, Kaegi R, Gogos A, Asbach C, Cornelis G, von der Kammer F, van den Brink NW, Mays C, Spurgeon DJ. Key principles and operational practices for improved nanotechnology environmental exposure assessment. NATURE NANOTECHNOLOGY 2020; 15:731-742. [PMID: 32807878 DOI: 10.1038/s41565-020-0742-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals. Here we present the developing knowledge, practical considerations and key principles need to support exposure assessment for engineered nanomaterials for regulatory and research applications.
Collapse
Affiliation(s)
- Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Lee A Walker
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Marianne Matzke
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Elma Lahive
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Samuel Harrison
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Alison Crossley
- Department of Materials, Oxford University, Begbroke Science Park, Oxford, UK
| | | | - Stephen Lofts
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Ralf Kaegi
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Alexander Gogos
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Christof Asbach
- Department of Air Quality and Filtration, Institut für Energie- und Umwelttechnik e. V. (IUTA), Duisburg, Germany
| | - Geert Cornelis
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Nico W van den Brink
- Sub-department of Toxicology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | | | - David J Spurgeon
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK.
| |
Collapse
|
7
|
Wang Z, Li T, Shen C, Shang J, Shi K, Zhang Y, Li B. Humic acid induced weak attachment of fullerene nC 60 nanoparticles and subsequent detachment upon reduction of solution ionic strength in saturated porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 231:103630. [PMID: 32169749 DOI: 10.1016/j.jconhyd.2020.103630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/04/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Sand column experiments were performed under saturated conditions to investigate impact of humic acid (HA) on attachment of nC60 nanoparticles (NPs) in NaCl and CaCl2 at ionic strengths (ISs) from 1 mM to 100 mM and subsequent detachment via reducing solution IS. The attachment increased with increasing IS due to reduced repulsive Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy and accordingly increased retention in primary energy wells. More attachments occurred in CaCl2 compared to NaCl because Ca2+ exhibited greater charge screen ability and served as a bridging agent between the NPs and sand surfaces. The presence of HA significantly reduced nC60 NPs attachment on sand surfaces (especially on nanoscale physical heterogeneities) in 10 mM NaCl and 1 mM CaCl2 because of enhanced electrostatic and steric repulsions. Interestingly, although the HA did not cause reduction of attachment in 100 mM NaCl and 10 mM CaCl2 compared to the case in absence of HA, the HA caused weak attachment of nC60 on sand surfaces and then much more significant detachment by decreasing IS. The HA did not alter both attachment and detachment in 100 mM CaCl2, because the Ca2+ at the high concentration caused formation of very stable complex of HA and NPs, and strong interaction of the complex with the sand surfaces via cation bridge. Our study highlighted that the HA can not only enhance the transport of NPs by inhibiting attachment as revealed in the literature, but also by the continuous capture and release of the NPs from surfaces in subsurface environments.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China.; College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Tiantian Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China..
| | - Jianying Shang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Kaiyu Shi
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Yulong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China..
| |
Collapse
|
8
|
Sanchís J, Jiménez-Lamana J, Abad E, Szpunar J, Farré M. Occurrence of Cerium-, Titanium-, and Silver-Bearing Nanoparticles in the Besòs and Ebro Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3969-3978. [PMID: 32191837 DOI: 10.1021/acs.est.9b05996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The presence of anthropogenic nanoparticles (NPs) in the aquatic environment has become an emerging concern in terms of environmental and health safety. In the present study, we assessed the presence of Ag-bearing, Ti-bearing, and Ce-bearing NPs in the Barcelona catchment area, including the Besòs River basin and the Barcelona coast, and in the Ebro River Delta, using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Ti-NPs and Ce-NPs were ubiquitously detected in surface waters, and their presence was related to a high natural background. Concentrations of Ti-NPs ranged from 23.2 × 106 to 298 × 106 Ti-NPs/L, with high concentrations being detected in areas with little anthropogenic pressure, while the presence of nanosilver (17.9 × 106 to 45.1 × 106 Ag-NPs/L) in the analyzed rivers was limited to certain hotspots close to wastewater treatment plants discharge points. The concentrations of Ce-NPs in the river ranged from 18.1 × 106 to 278 × 106 NPs/L, and they were related to the natural occurrence of the mineral Monazite-(Ce). Overall, the concentrations of these nanomaterials in the Barcelonan coast were significantly attenuated by river-sea environmental dilution. Nevertheless, Ce-NPs were eventually detected in some seawater samples with low levels of lanthanum-NPs, suggesting anthropogenic inputs of nanoCeO2, probably from atmospheric deposition.
Collapse
Affiliation(s)
- Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain
- University of Girona, 17071, Girona, Catalonia, Spain
| | | | - Esteban Abad
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2SUPPA, CNRS, IPREM, Pau, France
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Kovač T, Šarkanj B, Borišev I, Djordjevic A, Jović D, Lončarić A, Babić J, Jozinović A, Krska T, Gangl J, Ezekiel CN, Sulyok M, Krska R. Fullerol C 60(OH) 24 Nanoparticles Affect Secondary Metabolite Profile of Important Foodborne Mycotoxigenic Fungi In Vitro. Toxins (Basel) 2020; 12:toxins12040213. [PMID: 32230978 PMCID: PMC7232364 DOI: 10.3390/toxins12040213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the efforts to control mycotoxin contamination worldwide, extensive contamination has been reported to occur in food and feed. The contamination is even more intense due to climate changes and different stressors. This study examined the impact of fullerol C60(OH)24 nanoparticles (FNP) (at 0, 1, 10, 100, and 1000 ng mL-1) on the secondary metabolite profile of the most relevant foodborne mycotoxigenic fungi from genera Aspergillus, Fusarium, Alternaria and Penicillium, during growth in vitro. Fungi were grown in liquid RPMI 1640 media for 72 h at 29 °C, and metabolites were investigated by the LC-MS/MS dilute and shoot multimycotoxin method. Exposure to FNP showed great potential in decreasing the concentrations of 35 secondary metabolites; the decreases were dependent on FNP concentration and fungal genus. These results are a relevant guide for future examination of fungi-FNP interactions in environmental conditions. The aim is to establish the exact mechanism of FNP action and determine the impact such interactions have on food and feed safety.
Collapse
Affiliation(s)
- Tihomir Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Correspondence: ; Tel.: +385-31-224-341; Fax: +385-31-207-115
| | - Bojan Šarkanj
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Ante Lončarić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Antun Jozinović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Tamara Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
| | - Johann Gangl
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria;
| | - Chibundu N. Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
| |
Collapse
|
10
|
Impact of fullerol C 60(OH) 24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Sci Rep 2020; 10:725. [PMID: 31959903 PMCID: PMC6971017 DOI: 10.1038/s41598-020-57706-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/07/2020] [Indexed: 01/15/2023] Open
Abstract
The impact of fullerene C60 water soluble daughter molecules - fullerols C60(OH)24 nanoparticles (FNP) on emerging (non-aflatoxin biosynthetic pathway) toxins production in mycelia and yeast extract sucrose (YES) media of A. flavus was investigated under growth conditions of 29 °C in the dark for a 168 h period. The FNP solution (10, 100 and 1000 ng mL−1) contained predominantly nanoparticles of 8 nm diameter and with zeta potential mean value of −33 mV. Ten emerging metabolites were produced at concentrations reaching 1,745,035 ng 50 mL−1 YES medium. Seven of the metabolites were found in mycelia and media, while three were only in mycelia. Majority of the metabolites were detected in higher quantity in mycelia than in media, at a ratio of 99:1 (m/m). However, higher metabolite quantities were found in media following FNP application, while FNP caused a decrease of total metabolite quantities in mycelia. The concentrations of the metabolites in media increased in the presence of 1000 ng mL−1 FNP while mycelial quantities of the metabolites decreased with increased applied FNP dose. The impacts of global climate changes on FNP availability in the environment and on mycotoxin occurrence in crops increase the relevance of this study for risk assessment of nanoparticles. Cordycepin is reported for the first time as metabolite of A. flavus.
Collapse
|
11
|
Sanchís J, Freixa A, López-Doval JC, Santos LHMLM, Sabater S, Barceló D, Abad E, Farré M. Bioconcentration and bioaccumulation of C 60 fullerene and C 60 epoxide in biofilms and freshwater snails (Radix sp.). ENVIRONMENTAL RESEARCH 2020; 180:108715. [PMID: 31648070 DOI: 10.1016/j.envres.2019.108715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Fullerenes are carbon nanomaterials that have awaken a strong interest due to their adsorption properties and potential applications in many fields. However, there are some gaps of information about their effects and bioconcentration potential in the aquatic biota. In the present work, freshwater biofilms and snails (Radix sp.) were exposed to fullerene C60 aggregates, at concentrations in the low μg/L order, in mesocosms specifically designed to mimic the conditions of a natural stream. The bioconcentration factors of C60 fullerene and its main transformation product, [6,6]C60O epoxide, were studied to the mentioned organisms employing analyses by liquid chromatography coupled to high-resolution mass spectrometry. Our results show that C60 fullerene and its [6,6]C60O present a low bioconcentration factor (BCF) to biofilms: BCFC60 = 1.34 ± 0.95 L/kgdw and BCFC60O = 1.43 ± 0.72 L/kgdw. This suggests that the sorption of these aggregates to biota may be less favoured than it would be suggested by its hydrophobic character. According to our model, the surface of fullerene aggregates is saturated with [6,6]C60O molecules, which exposes the polar epoxide moieties in the surface of the aggregates and decreases their affinity to biofilms. In contrast, freshwater snails showed a moderate capacity to actively retain C60 fullerenes in their organism (BAFC60 = 2670 ± 3070 L/kgdw; BAFC60O = 1330 ± 1680 L/kgdw), probably through ingestion. Our results indicate that the bioaccumulation of these carbon nanomaterials can be hardly estimated using their respective octanol-water partition coefficients, and that their colloidal properties, as well as the feeding strategies of the tested organism, play fundamental roles.
Collapse
Affiliation(s)
- Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - Julio C López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain; Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain
| | - Esteban Abad
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
López-Doval JC, Freixa A, Santos LHMLM, Sanchís J, Rodríguez-Mozaz S, Farré M, Barceló D, Sabater S. Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. ENVIRONMENTAL RESEARCH 2019; 176:108565. [PMID: 31280028 DOI: 10.1016/j.envres.2019.108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants occur in complex mixtures in rivers and have the potential to interact with freshwater organisms. The chronic effects of nominal exposure to 3 μg/L of fullerenes (C60) and 1 μg/L of triclosan (TCS) alone and in a binary mixture, were evaluated using the freshwater snail Radix balthica. Pollutants accumulation, reproductive output and feeding behavior were selected as sublethal endpoints. After 21 days of exposure, we did not observe interactive effects between TCS and C60 on the studied endpoints, except for the accumulation of C60 in R. balthica in TCS + C60 treatment, which was lower than when the fullerenes were alone. Neither TCS nor C60 caused significant effects on reproduction, expressed as number of eggs per individual, but an increase in the clutch size was observed in treatments with TCS at the third week of exposure, independently of the presence of C60 (16.15 ± 1.67 and 18.9 ± 4.01 eggs/egg mass in TCS and TCS + C60 treatments, respectively, vs. 13.17 ± 4.01 in control). The presence of C60 significantly enhanced the grazing activity of R. balthica during the first seven days (4.95 ± 1.35 and 3.91 ± 0.59% of the area grazed per individual in C60 and TCS + C60 treatments, respectively, vs 2.6 ± 0.39% in control). The accumulation of TCS was quite similar in treatments where this pollutant was present (BAF ≈ 1007 L/kg d.w.); however, the accumulation of C60 was higher when the nanoparticles were alone (BAF = 254.88 L/kg d.w.) than when it was in the binary mixture (BAF = 7.79 L/kg d.w). Overall, although TCS has been listed as an endocrine disrupter compound, no significant effects on reproduction were observed in the assayed conditions. Regarding C60, the limited effects on feeding activity and the low BAF obtained in this experiment indicate that fullerenes do not have ecological consequences of relevance at the studied environmental concentrations in freshwater snails.
Collapse
Affiliation(s)
- J C López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain.
| | - A Freixa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - J Sanchís
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - M Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071, Girona, Catalonia, Spain
| |
Collapse
|
13
|
Sanchís J, Milačič R, Zuliani T, Vidmar J, Abad E, Farré M, Barceló D. Occurrence of C 60 and related fullerenes in the Sava River under different hydrologic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1108-1116. [PMID: 30189528 DOI: 10.1016/j.scitotenv.2018.06.285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
The presence of nanomaterials in the environment has caught the attention of the scientific because of the uncertainties in their fate, mobility and potential toxic effects. However, few studies have determined experimentally their concentration levels in aquatic systems up to date, which complicates the development of an adequate risk assessment. In the present study, the occurrence of ten fullerenes has been assessed in the Sava River (Southeastern Europe): 27 freshwater samples and 12 sediment samples from 12 sampling points have been analysed during two sampling campaigns. C60 was the most ubiquitous fullerene, with concentrations of 8 pg/l-59 ng/l and 108-895 pg/gdw in water and sediments, respectively. Statistically significant differences existed between the levels in 2014 and 2015, which has been attributed to the extreme hydrologic conditions (severe floods and drought, respectively). C70 fullerene has been detected in most of the samples and the fullerene derivatives [6,6]-phenyl C61 butyric acid methyl ester and N‑methyl fulleropyrrolidine have been detected eventually, which highlights that nanotechnology research and development activities are responsible for emitting these emerging contaminants to the environment. The role of diverse potential anthropogenic sources (including oil refinery, general industrial activity, river navigation, urban emissions and nanotechnology) is discussed.
Collapse
Affiliation(s)
- Josep Sanchís
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Tea Zuliani
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Janja Vidmar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Esteban Abad
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain; Catalan Institute of Water Research (ICRA), C/Emili Grahit, 101, 17003 Girona, Catalonia, Spain
| |
Collapse
|
14
|
Encinas D, Gómez-de-Balugera Z. Fullerene C 60 in Atmospheric Aerosol and Its Relationship to Combustion Processes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:616-624. [PMID: 29651501 DOI: 10.1007/s00244-018-0524-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Fullerenes are emerging pollutants, and it is essential to determine and quantify these compounds to assess environmental risk and environmental flows. The goal of this work was to determine the fullerene C60 emission levels in the atmospheric aerosol and their relationship with combustion processes. To measure the concentration, a fullerene C60 extraction method with toluene was optimized in air samples using ultrasound, followed by analysis using high-pressure, liquid chromatography-diode array detector-mass spectrometry. This method has been applied to outdoor and indoor environmental samples collected in different places in Vitoria-Gasteiz (Spain), with diverse environmental characteristics, as well as at the exhaust outlets of different vehicles with and without catalytic converters. The maximum concentration of fullerene C60 present in the outdoor samples was 2.27 pg/m3, and the maximum concentration was 10.50 pg/m3 in indoor environments. The air samples collected at the exhaust outlets of vehicles without catalytic converters showed fullerene C60 concentrations above 170 pg/m3, while in the case of vehicles with catalytic converters, the detected concentration of fullerene C60 was lower than the limit of quantification.
Collapse
Affiliation(s)
- Dolores Encinas
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, 01006, Vitoria-Gasteiz, Spain.
| | - Zuriñe Gómez-de-Balugera
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
15
|
Freixa A, Acuña V, Gutierrez M, Sanchís J, Santos LHMLM, Rodriguez-Mozaz S, Farré M, Barceló D, Sabater S. Fullerenes Influence the Toxicity of Organic Micro-Contaminants to River Biofilms. Front Microbiol 2018; 9:1426. [PMID: 30018603 PMCID: PMC6037823 DOI: 10.3389/fmicb.2018.01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022] Open
Abstract
Organic micro-contaminants (OMCs) enter in freshwaters and interact with other contaminants such as carbon nanoparticles, becoming a problem of unknown consequences for river ecosystems. Carbon nanoparticles (as fullerenes C60) are good adsorbents of organic contaminants and their interaction can potentially affect their toxicity to river biofilms. We tested the C60 interactions with selected OMCs and their effects on river biofilms in different short-term experiments. In these, river biofilms were exposed to C60 and three OMCs (triclosan, diuron, or venlafaxine) and their respective mixtures with fullerenes (C60 + each OMC). The effects were evaluated on structural, molecular, and functional descriptors of river biofilms. Our results showed that C60 did not cause toxic effects in river biofilms, whereas diuron and triclosan significantly affected the heterotrophic and phototrophic components of biofilms and venlafaxine affected only the phototrophic component. The joint exposure of C60 with venlafaxine was not producing differences with respect to the former response of the toxicant, but the overall response was antagonistic (i.e., decreased toxicity) with diuron, and synergistic (i.e., increased toxicity) with triclosan. We suggest that differences in the toxic responses could be related to the respective molecular structure of each OMC, to the concentration proportion between OMC and C60, and to the possible competition between C60 pollutants on blocking the receptors of the biological cell membranes. We conclude that the presence of C60 at low concentrations modified the toxicity of OMC to river biofilms. These interactions should therefore be considered when predicting toxicity of OMC in river ecosystems.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research, Girona, Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research, Girona, Spain
| | | | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, Spanish National Research Council, Barcelona, Spain
| | | | | | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, Spanish National Research Council, Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research, Girona, Spain.,Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, Spanish National Research Council, Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, Girona, Spain.,Research Group on Ecology of Inland Waters, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
16
|
Sanchís J, Llorca M, Olmos M, Schirinzi GF, Bosch-Orea C, Abad E, Barceló D, Farré M. Metabolic Responses of Mytilus galloprovincialis to Fullerenes in Mesocosm Exposure Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1002-1013. [PMID: 29244952 DOI: 10.1021/acs.est.7b04089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, Mediterranean mussels (Mytilus galloprovincialis) were exposed through the diet to fullerene soot at three concentrations in parallel to a control group. Their metabolomics response was assessed by high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS). The experiments were conducted in marine mesocosms, during 35 days (7 days of acclimatization, 21 days of exposure, and 7 days of depuration). Real conditions were emulated in terms of physicochemical conditions of the habitat. Results confirmed the bioaccumulation of fullerenes, and the metabolome of the exposed organisms revealed significant differences in the concentrations of seven free amino acids in comparison to the control group. An increase in small nonpolar amino acids (e.g., alanine) and branched chain amino acids (leucine and isoleucine) were observed. Also, glutamine concentrations decreased significantly, suggesting the activation of facultative anaerobic energy metabolism. Branched chain amino acids, such as leucine and isoleucine, followed the opposite trend after the highest level of exposure, which can imply hormesis effects. Other significant differences were observed on lipids content, such as the general increase of free fatty acids, i.e., long-chain fatty acids (lauric, myristic, and palmitic acids) when the concentration of exposure was increased. These results were consistent with hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Josep Sanchís
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Mar Olmos
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Gabriella F Schirinzi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Cristina Bosch-Orea
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Esteban Abad
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
- Catalan Institute of Water Research (ICRA) , C/Emili Grahit 101, 17003 Girona, Catalonia, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Kovač T, Šarkanj B, Klapec T, Borišev I, Kovač M, Nevistić A, Strelec I. Antiaflatoxigenic effect of fullerene C 60 nanoparticles at environmentally plausible concentrations. AMB Express 2018; 8:14. [PMID: 29404802 PMCID: PMC5799089 DOI: 10.1186/s13568-018-0544-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/27/2018] [Indexed: 11/21/2022] Open
Abstract
Increased interest in fullerene C60 and derivatives in recent years implies an intensification of their environmental spread. Yet, the potential risks for living organisms are largely unknown, including the interaction of C60 with fungal organisms. This may be especially relevant for mycotoxigenic fungi since C60 may both scavenge and produce reactive oxygen species (ROS), and oxidative stress induces mycotoxin production in fungi. Therefore, this study examined effects of environmentally plausible concentrations of C60 (0, 10, 50, and 100 ng/mL) on Aspergillus flavus growth and aflatoxin production in culture media. In addition, ROS-dependent oxidative stress biomarkers—thiobarbituric acid reactive substances (TBARS), reduced and oxidised glutathione ratio, superoxide dismutase isoenzymes, catalase, glutathione peroxidase, and glutathione reductase were determined in mycelia. Nanoparticles of fullerene C60 (nC60) did not exhibit strong antifungal activity against A. flavus. At the same time, nC60 caused an antiaflatoxigenic effect at 10–100 ng/mL, and 50 ng/mL unexpectedly enhanced aflatoxin production. The TBARS content, reduced and oxidised glutathione ratio, and copper, zinc superoxide dismutase activity suggest that 10 ng/mL nC60 exerted antioxidative action and reduced aflatoxin B1 production within fungal cells. Detected prooxidative effects of 50 ng/mL fullerene exceeded cellular defenses and consequently enhanced aflatoxin B1 production. Finally, the results obtained with 100 ng/mL nC60 point to prooxidative effects, but the absence of increase in aflatoxin output may indicate additional, presumably cytotoxic effects of nC60. Thus, a range of rather low levels of nC60 in the environment has a potential to modify aflatoxin production in A. flavus. Due to possible implications, further studies should test these results in environmental conditions.
Collapse
|
18
|
Mehrabi K, Nowack B, Arroyo Rojas Dasilva Y, Mitrano DM. Improvements in Nanoparticle Tracking Analysis To Measure Particle Aggregation and Mass Distribution: A Case Study on Engineered Nanomaterial Stability in Incineration Landfill Leachates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5611-5621. [PMID: 28438022 DOI: 10.1021/acs.est.7b00597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Numerous nanometrology techniques have been developed in recent years to determine the size, concentration, and a number of other characteristics of engineered nanomaterials (ENM) in environmental matrices. Among the many available techniques, nanoparticle tracking analysis (NTA) can measure individual particles to create a size distribution and measure the particle number. Therefore, we explore the possibility to use these data to calculate the particle mass distribution. Additionally, we further developed the NTA methodology to explore its suitability for analysis of ENM in complex matrices by measuring ENM agglomeration and sedimentation in municipal solid waste incineration landfill leachates over time. 100 nm Au ENM were spiked into DI H2O and synthetic and natural leachates. We present the possibility of measuring ENM in the presence of natural particles based on differences in particle refractivity indices, delineate the necessity of creating a calibration curve to adjust the given NTA particle number concentration, and determine the instruments linear range under different conditions. By measuring the particle size and the particle number distribution, we were able to calculate the ENM mass remaining in suspension. By combining these metrics together with transmission electron microscopy (TEM) analyses, we could assess the extent of both homo- and heteroagglomeration as well as particle sedimentation. Reporting both size and mass based metrics is common in atmospheric particle measurements, but now, the NTA can give us the possibility of applying the same approach also to aqueous samples.
Collapse
Affiliation(s)
- Kamyar Mehrabi
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Yadira Arroyo Rojas Dasilva
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Electron Microscopy Center, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Denise M Mitrano
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Process Engineering, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
19
|
Di Y, Aminot Y, Schroeder DC, Readman JW, Jha AN. Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(α)pyrene and C60 fullerenes, either alone or in combination. Mutagenesis 2016; 32:77-90. [PMID: 28011749 DOI: 10.1093/mutage/gew049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Collapse
Affiliation(s)
- Yanan Di
- School of Biological Sciences and.,Present address: Institute of Marine Biology, Ocean College, Zhejiang University, People's Republic of China
| | - Yann Aminot
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Citadel Hill, Plymouth, PL1 2PB, UK and
| | - James W Readman
- School of Biological Sciences and.,School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK.,Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | | |
Collapse
|
20
|
Troester M, Brauch HJ, Hofmann T. Vulnerability of drinking water supplies to engineered nanoparticles. WATER RESEARCH 2016; 96:255-279. [PMID: 27060529 DOI: 10.1016/j.watres.2016.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP contamination. In karstic aquifers, however, there is an increased probability that if any ENPs enter the groundwater system they will reach the extraction point of a drinking water treatment plant (DWTP). The ability to remove ENPs during water treatment depends on the specific design of the treatment process. In conventional DWTPs with no flocculation step a proportion of ENPs, if present in the raw water, may reach the final drinking water. The use of ultrafiltration techniques improves drinking water safety with respect to ENP contamination.
Collapse
Affiliation(s)
- Martin Troester
- DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany; Department of Environmental Geosciences, University of Vienna, Althanstr. 14 UZA II, 1090 Vienna, Austria.
| | | | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstr. 14 UZA II, 1090 Vienna, Austria.
| |
Collapse
|
21
|
|
22
|
Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters. Eur J Pharm Biopharm 2016; 104:30-41. [PMID: 27108267 DOI: 10.1016/j.ejpb.2016.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Nanoparticle Tracking Analysis (NTA) is an emerging technique for detecting simultaneously sub-micron particle size distributions and particle concentrations of a sample. This study deals with the performance evaluation for the detection and characterisation of various particles by NTA. Our investigation focusses on the NTA measurement parameter set-ups, as will be shown in this study, are very crucial parameters to correctly analyse and interpret the data. In order to achieve this, we used (i) polystyrene standard particles as well as (ii) protein particles. We show the highly precise and reproducible detection of particle size and concentration in monodisperse polystyrene particle systems, under specified and constant parameter settings. On the other hand, our results exemplify potential risks and errors while setting inadequate parameters with regards to the results and thus interpretation thereof. In particular changes of the parameters, camera level (CL) and detection threshold (DT), led to significant changes in the determined particle concentration. We propose defined and specified "optimal" camera levels for monodisperse particle suspension characterisations in the size range of 20-1000nm. We illustrate that the results of polydisperse polystyrene standard particle solution measurements, highly depend on the used parameter settings, which are rarely published with the data. Changes in these settings led to the "appearance" or "disappearance" of particle populations ("peaks") for polydisperse systems. Thus, a correct evaluation of the particle size populations in the sample becomes very challenging. For the use of NTA in biopharmaceutical analysis, proteinaceous samples were investigated. We analysed protein particle suspensions and compared unstressed and stressed (formation of aggregates) protein samples similar to polystyrene particle analysis. We also studied these samples in two different measuring modes (general capture mode and live monitoring mode) that the commercially available analysis software is offering. Our results stated the live monitoring mode as more suitable for protein samples, as the results were more reproducible and less operator-depending. In conclusion, NTA is a potential technique and unique in quantitative evaluation of particle suspensions in the subvisible size range, especially for monodisperse suspensions. We strongly urge on not underestimating the influence of the measuring parameters on the obtained results, which should be presented with the data in order to better judge and interpret the NTA results.
Collapse
Affiliation(s)
- Julia Gross
- Philipps - University Marburg, Institute of Pharmaceutical Technology and Biopharmacy, D-35032 Marburg, Germany
| | - Sabrina Sayle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biopharmaceuticals, Protein Science, D-88397 Biberach an der Riss, Germany
| | - Anne R Karow
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biopharmaceuticals, Protein Science, D-88397 Biberach an der Riss, Germany
| | - Udo Bakowsky
- Philipps - University Marburg, Institute of Pharmaceutical Technology and Biopharmacy, D-35032 Marburg, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biopharmaceuticals, Protein Science, D-88397 Biberach an der Riss, Germany.
| |
Collapse
|
23
|
Tiwari AJ, Ashraf-Khorassani M, Marr LC. C60 fullerenes from combustion of common fuels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:254-260. [PMID: 26789363 DOI: 10.1016/j.scitotenv.2015.12.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Releases of C60 fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C60 requires an understanding of how its prevalence in the environment compares to that of natural and incidental C60. This work describes the characterization of incidental C60 present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C60 was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C60 per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C60 content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C60 to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr(-1), depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C60 produced on an annual basis. Consequent loading of incidental C60 to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C60.
Collapse
Affiliation(s)
- Andrea J Tiwari
- Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061, United States.
| | - Mehdi Ashraf-Khorassani
- Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Linsey C Marr
- Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061, United States.
| |
Collapse
|