1
|
Kraemer D, Schmidt K, Klimpel F, Rauch U, Ernst DM, Paul SAL, Haeckel M, Koschinsky A, Bau M. Tracking the distribution of persistent and mobile wastewater-derived substances in the southern and central North Sea using anthropogenic gadolinium from MRI contrast agents as a far-field tracer. MARINE POLLUTION BULLETIN 2024; 207:116794. [PMID: 39154573 DOI: 10.1016/j.marpolbul.2024.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
The use of the rare earth element gadolinium (Gd) in contrast agents for magnetic resonance imaging has led to a significant (micro-)contamination of riverine and coastal environments in many parts of the world. This study comprises a detailed investigation on the rare earth elements and yttrium inventory of the North Sea and also reports data for the major tributaries Thames, Rhine, Ems, Weser and Elbe. We show that large parts of the southern North Sea, including the Wadden Sea UNESCO Natural World Heritage site, are (micro)contaminated with Gd from Gd-based contrast agents (GBCA). Their dispersion reveals their estuarine input and allows to effectively track water masses and currents. The chemical persistence and conservative behavior of GBCA, coupled with the low detection limits of state-of-the-art analytical methods, makes the anthropogenic Gd a sensitive screening proxy for monitoring similarly stable, but potentially hazardous, persistent chemical/pharmaceutical substances in natural waters.
Collapse
Affiliation(s)
- Dennis Kraemer
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany.
| | - Katja Schmidt
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Franziska Klimpel
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Uwe Rauch
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - David M Ernst
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sophie A L Paul
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany; GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Matthias Haeckel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Andrea Koschinsky
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Michael Bau
- School of Science, Constructor University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
2
|
Luo X, Wei L, Liu S, Wu K, Huang D, Xiao S, Guo E, Lei L, Qiu X, Zeng X. Correlation between urinary rare earth elements and liver function in a Zhuang population aged 35-74 years in Nanning. J Trace Elem Med Biol 2024; 84:127426. [PMID: 38579497 DOI: 10.1016/j.jtemb.2024.127426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Animal studies have shown that exposure to REEs can cause severe liver damage, but evidence from population studies is still lacking. Therefore, we investigated the relationship between REEs concentrations in urine and liver function in the population. METHODS We conducted a cross-sectional study on 1024 participants in Nanning, China. An inductively coupled plasma mass spectrometer (ICP-MS) was used to detect the concentrations of 12 REEs in urine. The relationship between individual exposure to individual REE and liver function was analyzed by multiple linear regression. Finally, the effects of co-exposure to 5 REEs on liver function were assessed by a weighted sum of quartiles (WQS) regression model and a Bayesian kernel machine regression (BKMR) model. RESULTS The detection rate of 5 REEs, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and dysprosium (Dy), is greater than 60%. After multiple factor correction, La, Ce, Pr, Nd, and Dy were positively correlated with serum ALP, Ce, Pr, and Nd were positively correlated with serum AST, while Ce was negatively correlated with serum TBIL and DBIL. Both WQS and BKMR results indicate that the co-exposure of the 5 REEs is positively correlated with serum ALP and AST, while negatively correlated with serum DBIL. There were potential interactions between La and Ce, La and Dy in the association of co-exposure of the 5 REEs with serum ALP. CONCLUSIONS The co-exposure of the 5 REEs was positively correlated with serum ALP and AST, and negatively correlated with serum DBIL.
Collapse
Affiliation(s)
- Xingxi Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liling Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kaili Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Suyang Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Erna Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lei Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541000, China.
| |
Collapse
|
3
|
Sönmez VZ, Akarsu C, Sivri N. The new era hypothesis of coastal degradation: G(s) elements-gallium, gadolinium, and germanium. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8803-8822. [PMID: 37755578 DOI: 10.1007/s10653-023-01743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Mining of precious metals contributes to environmental pollution, especially in coastal areas, and conventional treatment methods are not always effective in removing metal contaminants. Some of these metals, such as gadolinium, germanium and gallium, have caused increasing concern worldwide, as little is known about their current concentrations in the aquatic environment and their biological significance. Therefore, the aim of this study was to determine for the first time the variation of average G(s) concentrations (gallium, gadolinium and germanium) by month/season/site differences along the coast of Istanbul. The ecological risk index was calculated to assess the contamination of seawater and to serve as a diagnostic tool for the mitigation of water pollution. The average distribution G(s) in seawater was in the following order: Ga > Gd > Ge. In addition, the potential ecological risk in the sampling areas ranged from 68 to 1049. Of the three metals, Gd poses the highest ecological risk (grade III). In the spatial distribution of ecological risks, Gd mainly originated from discharges from wastewater treatment plants. Therefore, the sources of the anthropogenic Gd anomaly in wastewater should be identified, as this indicates the possibility of human exposure to potentially harmful anthropogenic compounds.
Collapse
Affiliation(s)
- Vildan Zülal Sönmez
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ceyhun Akarsu
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Nüket Sivri
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
4
|
Zadokar A, Negi S, Kumar P, Bhargava B, Sharma R, Irfan M. Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84829-84849. [PMID: 37138125 DOI: 10.1007/s11356-023-27299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Rare earth elements (REEs) that include 15 lanthanides, scandium, and yttrium are a special class of elements due to their remarkable qualities such as magnetism, corrosion resistance, luminescence, and electroconductivity. Over the last few decades, the implication of REEs in agriculture has increased substantially, which was driven by rare earth element (REE)-based fertilizers to increase crop growth and yield. REEs regulate different physiological processes by modulating the cellular Ca2+ level, chlorophyll activities, and photosynthetic rate, promote the protective role of cell membranes, and increase the plant's ability to withstand various stresses and other environmental factors. However, the use of REEs in agriculture is not always beneficial because REEs regulate plant growth and development in dose-dependent manner and excessive usage of them negatively affects plants and agricultural yield. Moreover, increasing applications of REEs together with technological advancement is also a rising concern as they adversely impact all living organisms and disturb different ecosystems. Several animals, plants, microbes, and aquatic and terrestrial organisms are subject to acute and long-term ecotoxicological impacts of various REEs. This concise overview of REEs' phytotoxic effects and implications on human health offers a context for continuing to sew fabric scraps to this incomplete quilt's many layers and colors. This review deals with the applications of REEs in different fields, specifically agriculture, the molecular basis of REE-mediated phytotoxicity, and the consequences for human health.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, -176061, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Kapsner LA, Balbach EL, Folle L, Laun FB, Nagel AM, Liebert A, Emons J, Ohlmeyer S, Uder M, Wenkel E, Bickelhaupt S. Image quality assessment using deep learning in high b-value diffusion-weighted breast MRI. Sci Rep 2023; 13:10549. [PMID: 37386021 PMCID: PMC10310703 DOI: 10.1038/s41598-023-37342-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
The objective of this IRB approved retrospective study was to apply deep learning to identify magnetic resonance imaging (MRI) artifacts on maximum intensity projections (MIP) of the breast, which were derived from diffusion weighted imaging (DWI) protocols. The dataset consisted of 1309 clinically indicated breast MRI examinations of 1158 individuals (median age [IQR]: 50 years [16.75 years]) acquired between March 2017 and June 2020, in which a DWI sequence with a high b-value equal to 1500 s/mm2 was acquired. From these, 2D MIP images were computed and the left and right breast were cropped out as regions of interest (ROI). The presence of MRI image artifacts on the ROIs was rated by three independent observers. Artifact prevalence in the dataset was 37% (961 out of 2618 images). A DenseNet was trained with a fivefold cross-validation to identify artifacts on these images. In an independent holdout test dataset (n = 350 images) artifacts were detected by the neural network with an area under the precision-recall curve of 0.921 and a positive predictive value of 0.981. Our results show that a deep learning algorithm is capable to identify MRI artifacts in breast DWI-derived MIPs, which could help to improve quality assurance approaches for DWI sequences of breast examinations in the future.
Collapse
Affiliation(s)
- Lorenz A Kapsner
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
- Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany.
| | - Eva L Balbach
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Lukas Folle
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 3, 91058, Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Andrzej Liebert
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Julius Emons
- Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054, Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Evelyn Wenkel
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Sebastian Bickelhaupt
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Wysocka IA, Rogowska AM, Kostrz-Sikora P. Investigation of anthropogenic gadolinium in tap water of polish cities: Gdańsk, Kraków, Warszawa, and Wrocław. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121289. [PMID: 36791951 DOI: 10.1016/j.envpol.2023.121289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In urban areas where tap water is often produced by a purification of water supplied from a river bank filtration, a significant fraction of gadolinium (Gd) total pool is of an anthropogenic origin. It happens because Gd-based contrast agents used in Magnetic Resonance Imaging (MRI) are not removed during wastewater treatment and they are discharged to the environment and returned to the water cycle. Despite the growing number of MRI examinations worldwide, little is known about the anthropogenic Gd in Polish surface water as well as drinking water. The aim of this pilot study was to gain information about the occurrence of emergent pollution as Gd in potable water available for inhabitants of Polish municipal areas. Tap water samples from Gdańsk, Kraków, Wrocław and Warszawa were analyzed by an inductively coupled plasma quadrupole mass spectrometry after their preconcentration by a seaFAST-pico chromatographic system. In this study, the sum of REE was in the range registered in the drinking waters of European urban regions (usually below 100 ng/L). The highest values of the sum of REE total concentrations were observed in the tap water samples collected in Warszawa (37.7 ng/L) and Wrocław (35.9 ng/L and 32.9 ng/L), where water supplies originate from the Wisła River and Oława River, respectively. The highest total Gd concentration was observed in the tap water of Warszawa city where the anthropogenic Gd fraction represented about 90% of the total Gd. The lowest values of the sum REE were registered in tap waters of Gdańsk (sum of REE below 2.2 ng/L) with up to 17% of the anthropogenic Gd. Thus, our study showed the occurrence of the anthropogenic Gd in all analyzed tap waters.
Collapse
Affiliation(s)
- Irena Agnieszka Wysocka
- Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland.
| | - Anna Maria Rogowska
- Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
| | - Paulina Kostrz-Sikora
- Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
| |
Collapse
|
7
|
Feng S, Shen S, Yao Y, Liang M, Chen Y, Liu H. Comparison of different analytical methods for speciation of seven gadolinium-based magnetic resonance imaging contrast agents and the applications in wastewater and whole blood. J Sep Sci 2023; 46:e2200575. [PMID: 36525388 DOI: 10.1002/jssc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Three methods, high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry, high-performance liquid chromatography-tandem mass spectrometry, and ion chromatography, were compared for simultaneous speciation of seven commercial gadolinium-based contrast agents for magnetic resonance imaging. Optimizations of experimental conditions for individual method were conducted, respectively. Methods of high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry showed the capability of speciation for all seven target compounds, whereas ion chromatography was only suitable for three of them when using electronic conductivity detector. The limits of detection and limits of qualification by the three methods were compared, and high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry was found to be the most sensitive one. The limits of detection for seven target compounds by high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry were in the range of 0.15-0.55 pg. Thus, high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry was chosen as the final method and successfully applied to speciation analysis of seven gadolinium-based contrast agents in wastewater and whole blood. Compounds of gadoxetic acid disodium, gadobenate dimeglumine, gadodiamide, and gadobentetate dimeglumine were found in wastewater.
Collapse
Affiliation(s)
- Shunqing Feng
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Suyun Shen
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yao Yao
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Minsi Liang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yuxin Chen
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hongtao Liu
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
8
|
Oluwasola IE, Ahmad AL, Shoparwe NF, Ismail S. Gadolinium based contrast agents (GBCAs): Uniqueness, aquatic toxicity concerns, and prospective remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 250:104057. [PMID: 36130428 DOI: 10.1016/j.jconhyd.2022.104057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The current toxicity concerns of gadolinium-based contrast agents (GBCAs) have birthed the need to regulate and, sometimes restrict its clinical administration. However, tolerable concentration levels of Gd in the water sector have not been set. Therefore, the detection and speedy increase of the anthropogenic Gd-GBCAs in the various water bodies, including those serving as the primary source of drinking water for adults and children, is perturbing. Nevertheless, the strongly canvassed risk-benefit considerations and superior uniqueness of GBCAs compared to the other ferromagnetic metals guarantees its continuous administration for Magnetic resonance imaging (MRI) investigations regardless of the toxicity concerns. Unfortunately, findings have shown that both the advanced and conventional wastewater treatment processes do not satisfactorily remove GBCAs but rather risk transforming the chelated GBCAs to their free ionic metal (Gd 3+) through inadvertent degradation processes. This unintentional water processing-induced GBCA dechelation leads to the intricate pathway for unintentional human intake of Gd ion. Hence exposure to its probable ecotoxicity and several reported inimical effects on human health such as; digestive symptoms, twitching or weakness, cognitive flu, persistent skin diseases, body pains, acute renal and non-renal adverse reactions, chronic skin, and eyes changes. This work proposed an economical and manageable remediation technique for the potential remediation of Gd-GBCAs in wastewater, while a precautionary limit for Gd in public water and commercial drinks is advocated.
Collapse
Affiliation(s)
- Idowu Ebenezer Oluwasola
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia; School of Science and Computer Studies, Food Technology Department, The Federal Polytechnic, Ado Ekiti, Ekiti State 360231, Nigeria.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
| | - Noor Fazliani Shoparwe
- Gold, Rare Earth, and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia.
| | - Suzylawati Ismail
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
| |
Collapse
|
9
|
Inoue K, Fukushi M, Sahoo SK, Veerasamy N, Furukawa A, Soyama S, Sakata A, Isoda R, Taguchi Y, Hosokawa S, Sagara H, Natarajan T. Measurements and future projections of Gd-based contrast agents for MRI exams in wastewater treatment plants in the Tokyo metropolitan area. MARINE POLLUTION BULLETIN 2022; 174:113259. [PMID: 34952407 DOI: 10.1016/j.marpolbul.2021.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Large amounts of Gd-based contrast agents are used in magnetic resonance imaging (MRI) that are then excreted in urine. These agents are subsequently discharged into the environment because they are difficult to remove by usual sewage treatment techniques. In this study, changes of the Gd anomaly during wastewater treatment processes were determined by analyzing wastewater samples and the possibility for future prediction of the changes was evaluated based on the relationship between the Gd anomaly and the number of MRI devices in use. After the wastewater treatment processes, the values of final effluent were increased 1.8 times compared to those of influent, and the Gd anomaly of effluent had a positive correlation to the number of MRI devices. The finding suggested that the changes of environmental impact were predictable based on the number of MRI devices.
Collapse
Affiliation(s)
- Kazumasa Inoue
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Masahiro Fukushi
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Sarata Kumar Sahoo
- Environmental Radionuclides Research Group, National Institutes for Quantum and Radiological Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nimelan Veerasamy
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Environmental Radionuclides Research Group, National Institutes for Quantum and Radiological Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Furukawa
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Sho Soyama
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Ami Sakata
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Ryo Isoda
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yoshiaki Taguchi
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Shota Hosokawa
- Graduate School of Health Sciences, Department of Radiation Science, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Hiroaki Sagara
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Thennaarassan Natarajan
- Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| |
Collapse
|
10
|
Macke M, Quarles CD, Sperling M, Karst U. Fast and automated monitoring of gadolinium-based contrast agents in surface waters. WATER RESEARCH 2021; 207:117836. [PMID: 34798450 DOI: 10.1016/j.watres.2021.117836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are frequently used for magnetic resonance imaging to improve image contrast. These inert complexes are excreted unmetabolized from the human body and pass through wastewater treatment plants almost unaffected, leading to a significant release of anthropogenic Gd into the environment. However, long-term ecotoxicological effects of GBCAs are mainly unknown and thus powerful methods of speciation analysis are required to monitor their distribution and fate in aquatic systems. In this work, a rapid and efficient monitoring method was developed utilizing a fully automated single platform system for total metal analysis and syringe-driven chromatography in combination with inductively coupled plasma-mass spectrometry (ICP-MS). An anion-exchange chromatography (IC) method was developed and applied to achieve a rapid separation and sensitive detection of the five complexes Gd-HP-DO3A, Gd-BT-DO3A, Gd-DOTA, Gd-DTPA, and Gd-BOPTA that are commonly administered in the European Union. Furthermore, the use of an automated inline-dilution function allowed a fast-external calibration from single stock standards. A chromatographic run time of less than 2 min and species-specific detection limits between 11 and 19 pmol L-1 on a quadrupole ICP-MS proved to be competitive compared to previously published methods, but without the use of aerosol desolvation and/or sector field ICP-MS to enhance sensitivity. The automated IC-ICP-MS method was applied for quantitative GBCA monitoring in a multitude of surface water samples that were obtained in the German state of North Rhine-Westphalia. The complexes Gd-HP-DO3A, Gd-BT-DO3A, and Gd-DOTA, were detected and quantified. In addition, the occurrence of an unidentified Gd species was observed for one of the sampled river systems.
Collapse
Affiliation(s)
- Marcel Macke
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE 68022, United States
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany; European Virtual Institute for Speciation Analysis (EVISA), Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
11
|
Souza LA, Pedreira RMA, Miró M, Hatje V. Evidence of high bioaccessibility of gadolinium-contrast agents in natural waters after human oral uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148506. [PMID: 34182440 DOI: 10.1016/j.scitotenv.2021.148506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Considering the large occurrence of anthropogenic Gd concentrations in natural waters, its continuous usage increase in technology developments and products and the lack of data on potential Gd human exposure due to ingestion of contaminated waters, it is urgently needed to understand how gadolinium contrast agents (Gd-CAs) reacts in the human digestive system. Here, we aimed to identify through in vitro bioaccessibility tests whether Gd-CAs can be potentially assimilated by humans after oral uptake and if there is a significant difference between contrast agents. We also roughly estimated the potential bioaccessibility of anthropogenic Gd for tap waters worldwide. Gd-CAs are highly bioaccessible (77 to 112%). The macrocyclic complexes pose the highest potential risk, because there are more stable than linear complexes in the gastrointestinal tract and, as such, tend to remain in solution and thus might bring Gd at the intestinal barrier making it potentially bioavailable. The estimated range of potential intake of Gd varied from 13 to 4839 μg in a lifespan of 70 years. The high bioaccessibility of anthropogenic Gd in tap waters calls for appropriate actions to develop better practices to treat wastewater contaminated by Gd-CAs in order to safeguard population and ecosystem health.
Collapse
Affiliation(s)
- Lais A Souza
- Centro Interdisciplinar de Energia e Ambiente & Inst. de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil.
| | - Rodrigo M A Pedreira
- Centro Interdisciplinar de Energia e Ambiente & Inst. de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain.
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente & Inst. de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, BA 40170-290, Brazil.
| |
Collapse
|
12
|
Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Gwenzi W. Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic organic contaminants in the funeral industry continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141819. [PMID: 33207461 DOI: 10.1016/j.scitotenv.2020.141819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/18/2020] [Accepted: 08/18/2020] [Indexed: 05/06/2023]
Abstract
The occurrence and health risks of toxic organic contaminants (TOCs) in the funeral industry are relatively under-studied compared to other industries. An increasing body of literature reports TOCs including emerging contaminants in the funeral industry, but comprehensive reviews of the evidence are still lacking. Hence, evidence was analysed to address the proposition that, the funeral industry constitutes several hotspot reservoirs of a wide spectrum of TOCs posing ecological and human health risks. TOCs detected include embalming products, persistent organic pollutants, synthetic pesticides, pharmaceuticals, personal care products and illicit drugs. Human cadavers, solid wastes, wastewaters and air-borne particulates from autopsy, thanatopraxy care facilities (mortuaries, funeral homes), cemeteries and crematoria are hotspots of TOCs. Ingestion of contaminated water, and aquatic and marine foods constitutes non-occupational human exposure, while occupational exposure occurs via inhalation and dermal intake. Risk factors promoting exposure to TOCs include unhygienic burial practices, poor solid waste and wastewater disposal, and weak and poorly enforced regulations. The generic health risks of TOCs are quite diverse, and include; (1) genotoxicity, endocrine disruption, teratogenicity and neurodevelopmental disorders, (2) development of antimicrobial resistance, (3) info-disruption via biomimicry, and (4) disruption of ecosystem functions and trophic interactions. Barring formaldehyde and inferential evidence, the epidemiological studies linking TOCs in the funeral industry to specific health outcomes are scarce. The reasons for the lack of evidence, and limitations of current health risk assessment protocols are discussed. A comprehensive framework for hazard identification, risk assessment and mitigation (HIRAM) in the funeral industry is proposed. The HIRAM includes regulatory, surveillance and control systems such as prevention and removal of TOCs. Future directions on the ecotoxicology of mixtures, behaviour, and health risks of TOCs are highlighted. The opportunities presented by emerging tools, including isotopic labelling, genomics, big data analytics (e.g., machine learning), and in silico techniques in toxicokinetic modelling are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
14
|
Okabayashi S, Kawane L, Mrabawani NY, Iwai T, Narukawa T, Tsuboi M, Chiba K. Speciation analysis of Gadolinium-based contrast agents using aqueous eluent-hydrophilic interaction liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Talanta 2021; 222:121531. [PMID: 33167239 DOI: 10.1016/j.talanta.2020.121531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
Gadolinium chelates are widely used as contrast agents for magnetic resonance imaging (MRI). In recent decades, the amount of Gd in river water has been increasing owing to the input of Gd-based contrast agents. To identify and quantify the Gd-based contrast agents in river water, the novel technique of hydrophilic interaction liquid chromatography (HILIC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was developed. To avoid deposition of carbon on the ICP-MS interface, a mobile phase consisting of an ammonium acetate buffer diluted with pure water was applied to separate Gd-based contrast agents. Despite the absence of an organic solvent in the mobile phase, six Gd-based contrast agents, Gd-DTPA, Gd-EOB-DTPA, Gd-DOTA, Gd-DTPA-BMA, Gd-BT-DO3A, and Gd-HP-DO3A, were successfully separated. This technique was applied for river water samples. As a result, Gd-DOTA, Gd-BT-DO3A, and Gd-HP-DO3A were observed from the sample near the outfall of a wastewater treatment plant (WWTP), indicating that at least some of the Gd-based contrast agents are passed through treatment in a WWTP. In addition to Gd-based contrast agents, unidentified Gd compounds were found to be present in river water. These results infer that transformation and/or dissociation of Gd chelates may be caused during the treatment procedure in a WWTP.
Collapse
Affiliation(s)
- Satoki Okabayashi
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Leona Kawane
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Nanda Yusentri Mrabawani
- Transforming the Mining Value Chain (TMVC), An Australia Research Council (ARC) Industrial Transformation Research Hub, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Takahiro Iwai
- Forensic Science Group, Photon Science Research Division, RIKEN Spring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomohiro Narukawa
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Motohiro Tsuboi
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Koichi Chiba
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
15
|
Itoh A, Yaida A, Zhu Y. Potential Anthropogenic Pollution of High-technology Metals with a Focus on Rare Earth Elements in Environmental Water. ANAL SCI 2021; 37:131-143. [PMID: 33162416 DOI: 10.2116/analsci.20sar16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the utilization of high-technology metals such as rare earth elements (REEs), which exist in extremely low quantities in the Earth, has rapidly increased with the development of new types of industrial materials and pharmaceutical products. This review provides an overview of a new type of potential anthropogenic pollution caused by high-technology metals, with a focus on REEs released into environmental waters from waste treatment plants. In this paper, potential anthropogenic pollution was defined as pollution caused by metals gradually enriched in the environment by human activity, although standard and guideline concentrations of these elements are not regulated by environmental quality standards for water pollution. We review the analytical methods of REEs and the potential anthropogenic pollution of REEs with a focus on Gd, from the viewpoints of a comparison of the degree of Gd anomaly, chemical speciation, ecotoxicology, and bioaccessibility. Moreover, we also highlight the comprehensive analysis based on multielement analysis of high-technology metals as well as REEs for the further screening for potential anthropogenic pollution.
Collapse
Affiliation(s)
- Akihide Itoh
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe Chuo, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Akane Yaida
- Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe Chuo, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yanbei Zhu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| |
Collapse
|
16
|
Ananthanarayanan R, Sivaramakrishna M, Panigrahi B. Trace determination of gadolinium by conductivity-based approach. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A conductivity-based technique is developed for the determination of Gd3+ in the heavy water moderators of pressurized heavy water reactors (PHWRs). The method involves monitoring extremely small shifts in conductivity, in the order of few nS/cm, due to the continuous addition of a suitable complexing agent to Gd3+ in aqueous medium. The resulting plot gives two distinct regions with vastly differing slopes. Two multidentate ligands, ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaaceticacid (DTPA), as complexing agents are compared. A high performing conductivity detector based on a new class of sensors called pulsating sensors that works entirely in the digital domain is deployed to monitor the conductivity shifts. Titration plots are studied in both H2O and D2O, and the observed difference between the plots in the two matrices is discussed in detail. Boron did not interfere in the analysis. The method was validated using the UV–vis spectrophotometric technique. The method is sensitive and rapid, as each analysis takes 3 min. The limit of detection in H2O and D2O are 1.27×10−7 mol/L and 5.1×10−7 mol/L, respectively. The precision in analysis lies between 1.9% and 5.3%. This method has important application in the nuclear industry for the routine analysis of gadolinium.
Collapse
Affiliation(s)
- R. Ananthanarayanan
- Innovative Sensors Section, Security and Innovative Sensors Division, Electronics and Instrumentation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - M. Sivaramakrishna
- Innovative Sensors Section, Security and Innovative Sensors Division, Electronics and Instrumentation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - B.S. Panigrahi
- Safety, Quality and Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| |
Collapse
|
17
|
Liu M. Lifecycle of Gadolinium-Based Contrast Agents. J Magn Reson Imaging 2020; 53:1295-1299. [PMID: 32989902 DOI: 10.1002/jmri.27374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Michael Liu
- Department of Radiology, Columbia University, New York, New York, USA
| |
Collapse
|
18
|
Wysocka I. Determination of rare earth elements concentrations in natural waters - A review of ICP-MS measurement approaches. Talanta 2020; 221:121636. [PMID: 33076156 DOI: 10.1016/j.talanta.2020.121636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/05/2023]
Abstract
Since the rare earth elements (REEs) determination in waters is still not a routine procedure, different analytical protocols have been developed to deal with complexity and variability of sample matrices, problems caused by spectral and non-spectral interferences, insufficient instruments sensitivity, potential contamination and lack of certified reference materials. The aim of this work is to review the current measurement approaches given for REEs total concentrations in natural water samples, including surface and groundwaters as well as rain water and Antarctic ice. As inductively coupled plasma mass spectrometry (ICP-MS) has become the most widely employed technique for analysis of trace concentrations of REEs in aqueous samples it has been intended to present the common issues affecting the measurement results. Apart from a sample preparation step, various configurations of mass spectrometers and sample introduction systems, means of interferences elimination or correction, and calibration strategies used in analytical approaches for REEs analysis are discussed and compared.
Collapse
Affiliation(s)
- Irena Wysocka
- Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975, Warsaw, Poland.
| |
Collapse
|
19
|
Knoll S, Rösch T, Huhn C. Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal Bioanal Chem 2020; 412:6149-6165. [PMID: 32710277 PMCID: PMC7442764 DOI: 10.1007/s00216-020-02811-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
Recent years showed a boost in knowledge about the presence and fate of micropollutants in the environment. Instrumental and methodological developments mainly in liquid chromatography coupled to mass spectrometry hold a large share in this success story. These techniques soon complemented gas chromatography and enabled the analysis of more polar compounds including pesticides but also household chemicals, food additives, and pharmaceuticals often present as traces in surface waters. In parallel, sample preparation techniques evolved to extract and enrich these compounds from biota and water samples. This review article looks at very polar and ionic compounds using the criterion log P ≤ 1. Considering about 240 compounds, we show that (simulated) log D values are often even lower than the corresponding log P values due to ionization of the compounds at our reference pH of 7.4. High polarity and charge are still challenging characteristics in the analysis of micropollutants and these compounds are hardly covered in current monitoring strategies of water samples. The situation is even more challenging in biota analysis given the large number of matrix constituents with similar properties. Currently, a large number of sample preparation and separation approaches are developed to meet the challenges of the analysis of very polar and ionic compounds. In addition to reviewing them, we discuss some trends: for sample preparation, preconcentration and purification efforts by SPE will continue, possibly using upcoming mixed-mode stationary phases and mixed beds in order to increase comprehensiveness in monitoring applications. For biota analysis, miniaturization and parallelization are aspects of future research. For ionic or ionizable compounds, we see electromembrane extraction as a method of choice with a high potential to increase throughput by automation. For separation, predominantly coupled to mass spectrometry, hydrophilic interaction liquid chromatography applications will increase as the polarity range ideally complements reversed phase liquid chromatography, and instrumentation and expertise are available in most laboratories. Two-dimensional applications have not yet reached maturity in liquid-phase separations to be applied in higher throughput. Possibly, the development and commercial availability of mixed-mode stationary phases make 2D applications obsolete in semi-targeted applications. An interesting alternative will enter routine analysis soon: supercritical fluid chromatography demonstrated an impressive analyte coverage but also the possibility to tailor selectivity for targeted approaches. For ionic and ionizable micropollutants, ion chromatography and capillary electrophoresis are amenable but may be used only for specialized applications such as the analysis of halogenated acids when aspects like desalting and preconcentration are solved and the key advantages are fully elaborated by further research. Graphical abstract.
Collapse
Affiliation(s)
- Sarah Knoll
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, Germany
| | - Tobias Rösch
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, Germany.
| |
Collapse
|
20
|
Brünjes R, Hofmann T. Anthropogenic gadolinium in freshwater and drinking water systems. WATER RESEARCH 2020; 182:115966. [PMID: 32599421 PMCID: PMC7256513 DOI: 10.1016/j.watres.2020.115966] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/17/2023]
Abstract
The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.
Collapse
Affiliation(s)
- Robert Brünjes
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Environmental Geosciences, Althanstraße 14, UZA2, 1090, Vienna, Austria
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Environmental Geosciences, Althanstraße 14, UZA2, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Detection and imaging of gadolinium accumulation in human bone tissue by micro- and submicro-XRF. Sci Rep 2020; 10:6301. [PMID: 32286449 PMCID: PMC7156386 DOI: 10.1038/s41598-020-63325-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are frequently used in patients undergoing magnetic resonance imaging. In GBCAs gadolinium (Gd) is present in a bound chelated form. Gadolinium is a rare-earth element, which is normally not present in human body. Though the blood elimination half-life of contrast agents is about 90 minutes, recent studies demonstrated that some tissues retain gadolinium, which might further pose a health threat due to toxic effects of free gadolinium. It is known that the bone tissue can serve as a gadolinium depot, but so far only bulk measurements were performed. Here we present a summary of experiments in which for the first time we mapped gadolinium in bone biopsy from a male patient with idiopathic osteoporosis (without indication of renal impairment), who received MRI 8 months prior to biopsy. In our studies performed by means of synchrotron radiation induced micro- and submicro-X-ray fluorescence spectroscopy (SR-XRF), gadolinium was detected in human cortical bone tissue. The distribution of gadolinium displays a specific accumulation pattern. Correlation of elemental maps obtained at ANKA synchrotron with qBEI images (quantitative backscattered electron imaging) allowed assignment of Gd structures to the histological bone structures. Follow-up beamtimes at ESRF and Diamond Light Source using submicro-SR-XRF allowed resolving thin Gd structures in cortical bone, as well as correlating them with calcium and zinc.
Collapse
|
22
|
Wei J, Wang C, Yin S, Pi X, Jin L, Li Z, Liu J, Wang L, Yin C, Ren A. Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal neural tube defects. ENVIRONMENT INTERNATIONAL 2020; 137:105542. [PMID: 32059143 DOI: 10.1016/j.envint.2020.105542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Rare earth elements (REEs) are ubiquitous in the environment. Animal experiments have shown that many REEs have adverse impacts on the health of fetuses. However, data from humans are scarce. In this study, we examined the associations between concentrations of 10 REEs in maternal serum and the risk for fetal neural tube defects (NTDs). The study included 200 pregnant women with pregnancies affected by NTDs and 400 pregnant women with healthy fetuses/infants. Fifteen REEs in maternal serum were assessed; 10 of them were detectable in over 60% of samples and were included in statistical analyses, including lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), terbium (Tb), dysprosium (Dy), lutetium (Lu), and yttrium (Y). When the elements were considered individually with the use of Logistic regression model, the risk for NTDs increased by 2.78-fold (1.25-6.17) and 4.31-fold (1.93-9.62) for La, and 1.52-fold (0.70-3.31) and 4.73-fold (2.08-10.76) for Ce, in the second and third tertiles, respectively, compared to the lowest concentration tertile. When Bayesian kernel machine regression was used to examine the joint effect of exposure to all 10 REEs, the risk for NTDs increased with overall levels of these REEs and the association between La and NTD risk remained when other nine elements were taken into consideration simultaneously. Taken together, this study shows that the risk for NTDs increases with La concentrations when single REEs are considered and with concentrations of all 10 REEs when these REEs are considered as a co-exposure mixture.
Collapse
Affiliation(s)
- Jing Wei
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Shengju Yin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xin Pi
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| |
Collapse
|
23
|
Schmidt K, Bau M, Merschel G, Tepe N. Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1401-1408. [PMID: 31412473 DOI: 10.1016/j.scitotenv.2019.07.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 05/22/2023]
Abstract
Gadolinium-based contrast agents used in magnetic resonance imaging are difficult to impossible to remove in wastewater treatment plants, and may enter groundwater production wells and hence municipal tap water via bank filtration. As anthropogenic gadolinium (Gd) may be accompanied by other, more harmful waste water-derived (micro)pollutants such as endocrine disruptors, we investigated the potential pathway of anthropogenic Gd into popular tap water-based beverages sold in highly frequented fast food restaurants. We, therefore, determined the concentration and distribution of geogenic and anthropogenic rare earth elements (REE) in tap water and in a related tap water-based popular soft drink (Coca Cola) from two fast food franchises (McDonalds and Burger King) in six major German cities. We observed anthropogenic Gd in both tap water and corresponding soft drinks in all investigated cities, extending the database for anthropogenic Gd in tap waters and highlighting its widespread distribution. In Berlin and Düsseldorf, where tap water is (mainly) produced by river bank filtration, 85 to 99% of the total Gd is of anthropogenic origin. The surprisingly high anthropogenic fraction (91%) in tap water from Munich reveals that even the shallow groundwater tapped in two Alpine valleys is eventually exposed to anthropogenic pollution. The REE distribution in post-mix soft drinks generally follows that of the corresponding tap water, except for enrichments of ytterbium (Yb), lutetium (Lu) and cerium (Ce), which are derived from the syrup. The concentration of anthropogenic Gd is similar in the soft drinks and in the corresponding tap water, demonstrating that the highly stable Gd-based contrast agents are not removed in soda fountains but are directly transferred to the beverages. This study highlights a pathway for anthropogenic waste water-derived xenobiotics such as pharmaceuticals and endocrine disruptors into the food chain, and hence, reveals the potential for human exposure to potentially harmful anthropogenic compounds.
Collapse
Affiliation(s)
- Katja Schmidt
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Michael Bau
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Gila Merschel
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Nathalie Tepe
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
24
|
Gadolinium Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig Study With High Similarity to Clinical Conditions. Invest Radiol 2019; 53:278-285. [PMID: 29319556 PMCID: PMC5902136 DOI: 10.1097/rli.0000000000000440] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. Material and Methods Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. Results Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. Conclusion Multiple exposure to macrocyclic gadobutrol is not associated with Gd deposition in brain tissue of healthy pigs. A single additional administration of linear Gd-DTPA is sufficient for Gd accumulation in the nucleus dentatus and globus pallidus, underlining the importance of obtaining a complete GBCA history in clinical studies.
Collapse
|
25
|
Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9020093] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As a result of high doses of paramagnetic gadolinium (Gd) chelates administered in magnetic resonance imaging (MRI) exams, their unmetabolized excretion, and insufficient removal in wastewater treatment plants (WWTPs), large amounts of anthropogenic Gd (Gdanth) are released into surface water. The upward trend of gadolinium-based contrast agent (Gd-CA) administrations is expected to continue growing and consequently higher and higher anthropogenic Gd concentrations are annually recorded in water resources, which can pose a great threat to aquatic organisms and human beings. In addition, the feasibility of Gd retention in patients administered with Gd-CAs repeatedly, and even potentially fatal diseases, including nephrogenic systemic fibrosis (NSF), due to trace amounts of Gd have recently arisen severe health concerns. Thus, there is a need to investigate probable adverse health effects of currently marketed Gd-CAs meticulously and to modify the actual approach in using Gd contrast media in daily practice in order to minimize unknown possible health risks. Furthermore, the employment of enhanced wastewater treatment processes that are capable of removing the stable contrast agents, and the evaluation of the ecotoxicity of Gd chelates and human exposure to these emerging contaminants through dermal and ingestion pathways deserve more attention. On the other hand, point source releases of anthropogenic Gd into the aquatic environment presents the opportunity to assess surface water—groundwater interactions and trace the fate of wastewater plume as a proxy for the potential presence of other microcontaminants associated with treated wastewater in freshwater and marine systems.
Collapse
|
26
|
Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:299-313. [PMID: 29709849 DOI: 10.1016/j.scitotenv.2018.04.235] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 05/18/2023]
Abstract
Recent studies show that high-technology rare earth elements (REEs) of anthropogenic origin occur in the environment including in aquatic systems, suggesting REEs are contaminants of emerging concern. However, compared to organic contaminants, there is a lack of comprehensive reviews on the anthropogenic sources, environmental behaviour, and public and ecological health risks of REEs. The current review aims to: (1) identify anthropogenic sources, transfer mechanisms, and environmental behaviour of REEs; (2) highlight the human and ecological health risks of REEs and propose mitigation measures; and (3) identify knowledge gaps and future research directions. Out of the 17 REEs, La, Gd, Ce and Eu are the most studied. The main sources of anthropogenic REE include; medical facilities, petroleum refining, mining and technology industries, fertilizers, livestock feeds, and electronic wastes and recycling plants. REEs are mobilized and transported in the environment by hydrological and wind-driven processes. Ecotoxicological effects include reduced plant growth, function and nutritional quality, genotoxicity and neurotoxicity in animals, trophic bioaccumulation, chronic and acute toxicities in soil organisms. Human exposure to REEs occurs via ingestion of contaminated water and food, inhalation, and direct intake during medical administration. REEs have been detected in human hair, nails, and biofluids. In humans, REEs cause nephrogenic systemic fibrosis and severe damage to nephrological systems associated with Gd-based contrast agents, dysfunctional neurological disorder, fibrotic tissue injury, oxidative stress, pneumoconiosis, cytotoxicity, anti-testicular effects, and male sterility. Barring REEs in medical devices, epidemiological evidence directly linking REEs in the environment to human health conditions remains weak. To minimize health risks, a conceptual framework and possible mitigation measures are highlighted. Future research is needed to better understand sources, environmental behaviour, ecotoxicology, and human epidemiology. Moreover, research on REEs in developing regions, including Africa, is needed given prevailing conditions predisposing humans to health risks (e.g., untreated drinking water).
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe.
| | - Lynda Mangori
- Department of Environmental Sciences and Technology, School of Agricultural Sciences, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Concilia Danha
- Department of Environmental Sciences and Technology, School of Agricultural Sciences, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Nhamo Chaukura
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Nothando Dunjana
- Department of Soil Science, Marondera University of Agricultural Sciences and Technology, P. Bag 35, Marondera, Zimbabwe
| | - Edmond Sanganyado
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China 515063
| |
Collapse
|
27
|
Wojcieszek J, Szpunar J, Lobinski R. Speciation of technologically critical elements in the environment using chromatography with element and molecule specific detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Clases D, Sperling M, Karst U. Analysis of metal-based contrast agents in medicine and the environment. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Rogowska J, Olkowska E, Ratajczyk W, Wolska L. Gadolinium as a new emerging contaminant of aquatic environments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1523-1534. [PMID: 29473658 DOI: 10.1002/etc.4116] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 02/21/2018] [Indexed: 05/22/2023]
Abstract
Since the 1980s, gadolinium (Gd)-based contrast agents (GBCAs) have been routinely used in magnetic resonance imaging as stable chelates of the Gd3+ ion, without toxic effects. Generally, GBCAs are considered some of the safest contrast agents. However, it has been observed that they can accumulate in patient tissue, bone, and probably brain (causing nephrogenic systemic fibrosis in patients with kidney failure or insufficiency and disturbance of calcium homeostasis in the organism). The GBCAs are predominantly removed renally without metabolization. Subsequently, they do not undergo degradation processes in wastewater-treatment plants and are emitted into the aquatic ecosystem. Their occurrence was confirmed in surface waters (up to 1100 ng/L), sediments (up to 90.5 μg/g), and living organisms. Based on a literature review, there is a need to investigate the contamination of different ecosystems and to ascertain the environmental fate of Gd. Long-term ecotoxicological data, degradation, metabolism, bioaccumulation processes, and biochemical effects of the Gd complexes should be explored. These data can be used to assess detailed environmental risks because currently only hotspots with high levels of Gd can be marked as dangerous for aquatic environments according to environmental risk assessments. Environ Toxicol Chem 2018;37:1523-1534. © 2018 SETAC.
Collapse
Affiliation(s)
- Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Ratajczyk
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
30
|
Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA's Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents. Invest Radiol 2018; 52:317-323. [PMID: 28368880 DOI: 10.1097/rli.0000000000000374] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis. The result of actions taken by the European Medicines Agency and the US Food and Drug Administration, stratifying the agents by risk and contraindicating specific agents in severe renal dysfunction, has led to no new cases being identified in North America or Europe. Subsequently, in 2014, long-term deposition in the brain of gadolinium was first shown, after administration of 2 nonionic linear chelates, gadodiamide, and gadopentetate dimeglumine. This has led to an intense focus on the question of in vivo distribution, possible dechelation, and subsequent deposition of gadolinium, together with substantial clarification of the phenomenon as well as stratification of the agents on this basis. This review focuses on 8 critical questions regarding gadolinium deposition in the brain and body, with the answers and discussion therein important for future regulatory decisions and clinical practice. It is now clear that dechelation of gadolinium occurs in vivo with the linear agents and is responsible for this phenomenon, with key experts in the field recommending, except where there is no suitable alternative, a shift in clinical practice from the linear to macrocyclic agents. In addition, on March 10, 2017, the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency recommended suspension of the marketing authorization for 4 linear gadolinium contrast agents-specifically Omniscan, Optimark, Magnevist, and MultiHance (gadodiamide, gadoversetamide, gadopentetate dimeglumine, and gadobenate dimeglumine)-for intravenous injection. Cited in the report was convincing evidence of gadolinium deposition in the brain months after injection of these linear agents. Primovist/Eovist (gadoxetic acid disodium) will remain available, being used at a lower dose for liver imaging, because it meets an important diagnostic need. In addition, a formulation of Magnevist for intra-articular injection will remain available because of its very low gadolinium concentration.
Collapse
|
31
|
Salas D, Borrull F, Fontanals N, Marcé RM. Hydrophilic interaction liquid chromatography coupled to mass spectrometry-based detection to determine emerging organic contaminants in environmental samples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Beck S, Trog S, Knizia S, Linscheid MW. Fragmentation behavior of DOTA complexes under different activation conditions. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:442-451. [PMID: 28455851 DOI: 10.1002/jms.3942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We have investigated the fragmentation behavior of a number of DOTA-metal complexes under collision-induced dissociation, infrared-multiphoton dissociation and higher-energy collisional dissociation activation conditions. Both, positive and negative ion mode electrospray ionization was applied. The results show that characteristic fragmentations were obtained for the metal-complexes under the investigated conditions. All elemental compositions of fragment ions have been unambiguously identified by high resolution-accurate mass measurements. Certain trends, for instance eliminations of carbon dioxide, alkyl and amine residues, were observed that coincide with the size of the metal and its location within the periodic table. Additionally, lanthanide, aluminium and indium species with even oxidation state or containing a radical have been detected. To further investigate the observed water capture during activation, deuterium labeling experiments have also been carried out. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- S Beck
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - S Trog
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - S Knizia
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - M W Linscheid
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| |
Collapse
|
33
|
Telgmann L, Lindner U, Lingott J, Jakubowski N. Analysis and Speciation of Lanthanoides by ICP-MS. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup.
From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences.
Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents.
Collapse
|
34
|
Hajós P, Lukács D, Farsang E, Horváth K. High Performance Anion Chromatography of Gadolinium Chelates. J Chromatogr Sci 2016; 54:1752-1760. [DOI: 10.1093/chromsci/bmw133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/22/2016] [Indexed: 11/13/2022]
|
35
|
Muldoon LL, Neuwelt EA. Dose-Dependent Neurotoxicity (Seizures) Due to Deposition of Gadolinium-based Contrast Agents in the Central Nervous System. Radiology 2016; 277:925-6. [PMID: 26599933 DOI: 10.1148/radiol.2015151028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leslie L Muldoon
- Departments of Cell, Developmental and Cancer Biology, *,Neurology, † and
| | - Edward A Neuwelt
- Neurology, † and.,Neurosurgery, ‡ Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L603, Portland, OR 97239.,Portland Veterans Affairs Medical Center, Portland, Ore §
| |
Collapse
|
36
|
Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis. J Chromatogr A 2016; 1440:105-111. [DOI: 10.1016/j.chroma.2016.02.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/08/2016] [Accepted: 02/14/2016] [Indexed: 11/21/2022]
|
37
|
Birka M, Roscher J, Holtkamp M, Sperling M, Karst U. Investigating the stability of gadolinium based contrast agents towards UV radiation. WATER RESEARCH 2016; 91:244-50. [PMID: 26802476 DOI: 10.1016/j.watres.2016.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 05/28/2023]
Abstract
Since the 1980s, the broad application of gadolinium(Gd)-based contrast agents for magnetic resonance imaging (MRI) has led to significantly increased concentrations of Gd in the aqueous environment. Little is known about the stability of these highly polar xenobiotics under environmental conditions, in wastewater and in drinking water treatment. Therefore, the stability of frequently applied Gd-based MRI contrast agents towards UV radiation was investigated. The hyphenation of hydrophilic interaction liquid chromatography (HILIC) with inductively coupled plasma mass spectrometry (ICP-MS) and of HILIC with electrospray ionization mass spectrometry (ESI-MS) provided quantitative elemental information as well as structural information. The contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A showed a high stability in irradiation experiments applying a wavelength range from 220 nm to 500 nm. Nevertheless, the degradation of Gd-BOPTA as well as the formation of Gd-containing transformation products was observed by means of HILIC-ICP-MS. Matrix-dependent irradiation experiments showed a degradation of Gd-BOPTA down to 3% of the initial amount in purified water after 300 min, whereas the degradation was slowed down in drinking water and surface water. Furthermore, it was observed that the sum of species continuously decreased with proceeding irradiation in all matrices. After irradiation in purified water for 300 min only 16% of the sum of species was left. This indicates a release of Gd(III) ions from the complex in course of irradiation. HILIC-ESI-MS measurements revealed that the transformation products mostly resulted from O-dealkylation and N-dealkylation reactions. In good correlation with retention times, the majority of transformation products were found to be more polar than Gd-BOPTA itself. Based on accurate masses, sum formulas were obtained and structures could be proposed.
Collapse
Affiliation(s)
- Marvin Birka
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Jörg Roscher
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Michael Holtkamp
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Michael Sperling
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany; European Virtual Institute for Speciation Analysis (EVISA), Mendelstraße 11, 48149 Münster, Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany.
| |
Collapse
|
38
|
Liu X, Chen B, Zhang L, Song S, Cai Y, He M, Hu B. TiO₂ nanoparticles functionalized monolithic capillary microextraction online coupled with inductively coupled plasma mass spectrometry for the analysis of Gd ion and Gd-based contrast agents in human urine. Anal Chem 2015; 87:8949-56. [PMID: 26239367 DOI: 10.1021/acs.analchem.5b02111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, a novel method of TiO2 nanoparticles (NPs) functionalized monolithic capillary microextraction (CME) online coupling with inductively coupled plasma mass spectrometry (ICPMS) was developed for the sequential determination of Gd(3+) and Gd-based contrast agents in human urine samples. The monolithic capillary was prepared by embedding anatase TiO2 NPS in the poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EDMA) framework. The Gd(3+) and Gd-based contrast agents (such as gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) and Gd-DTPA-bismethylamide (Gd-DTPA-BMA)) display different adsorption behaviors on the prepared monolithic capillary which possesses the adsorption properties of both anatase TiO2 NPS and poly(MAA-EDMA) monolith. Under the optimized conditions, the limits of detection (LODs) were found to be 3.6, 3.2, and 4.5 ng L(-1) for Gd(3+), Gd-DTPA, and Gd-DTPA-BMA, respectively, which are the lowest up to date. The enrichment factor was 25-fold with the sample throughput of 5 h(-1). The proposed method was validated by the analysis of Gd(3+) and Gd-DTPA in the healthy human urine samples as well as Gd(3+) and Gd-DTPA-BMA in patient urine samples. It was found that only a small amount of the free Gd(3+) was released from Gd-DTPA-BMA, and accurate results could be obtained since no oxidation/reduction or subtraction is involved in this method. This method is simple, sensitive, and rapid and provides a very attractive nonchromatography strategy for the speciation of Gd(3+) and Gd-based contrast agents in urine samples.
Collapse
Affiliation(s)
- Xiaolan Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| | - Lin Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| | - Shiyao Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| | - Yabing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, China
| |
Collapse
|
39
|
Beuvier L, Bresson C, Nonell A, Vio L, Henry N, Pichon V, Chartier F. Simple separation and characterization of lanthanide–polyaminocarboxylic acid complexes by HILIC ESI-MS. RSC Adv 2015. [DOI: 10.1039/c5ra16078b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lanthanide complexes with EDTA and DTPA ligands were separated and characterized by HILIC ESI-MS for the first time.
Collapse
Affiliation(s)
- L. Beuvier
- CEA
- DEN
- DPC
- SEARS
- Laboratoire de Développement Analytique Nucléaire
| | - C. Bresson
- CEA
- DEN
- DPC
- SEARS
- Laboratoire de Développement Analytique Nucléaire
| | - A. Nonell
- CEA
- DEN
- DPC
- SEARS
- Laboratoire de Développement Analytique Nucléaire
| | - L. Vio
- CEA
- DEN
- DPC
- SEARS
- Laboratoire de Développement Analytique Nucléaire
| | - N. Henry
- ESPCI ParisTech
- Laboratoire Sciences Analytiques
- Bioanalytiques et Miniaturisation
- UMR CBI 8231 (CNRS – ESPCI Paris Tech)
- PSL Research University
| | - V. Pichon
- ESPCI ParisTech
- Laboratoire Sciences Analytiques
- Bioanalytiques et Miniaturisation
- UMR CBI 8231 (CNRS – ESPCI Paris Tech)
- PSL Research University
| | - F. Chartier
- CEA
- DEN
- Département de Physico Chimie
- F-91191 Gif-sur-Yvette
- France
| |
Collapse
|