1
|
Li X, Tian S, Riezman I, Qin Y, Riezman H, Feng S. A sensitive, expandable AQC-based LC-MS/MS method to measure amino metabolites and sphingolipids in cell and serum samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124256. [PMID: 39094252 DOI: 10.1016/j.jchromb.2024.124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Sphingolipids are a major lipid species found in all eukaryotes. Among structurally complex and diversified lipids, sphingoid bases have been heavily linked to various metabolic diseases. However, most current LC-MS-based methods lack the sensitivity to detect low-abundant sphingoid bases. The 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization reagent, which efficiently forms covalent bonds with amino groups, has been widely used for amino acid detection. Nevertheless, the commonly used reverse-phase HPLC method for amino acid analysis is not suitable for amphipathic sphingolipids. To address this issue, we report a robust reverse-phase HPLC-MS/MS method capable of separating and detecting hydrophilic amino acids and sphingoid bases in a single run with high sensitivity. This method is also inclusive of other amino metabolites with an expandable target list. We tested this method under various conditions and samples, demonstrating its high reproducibility and sensitivity. Using this approach, we systematically analyzed human serum samples from healthy individuals, dyslipidemia, and type II diabetes mellitus (T2DM) patients, respectively. Two sphingolipids and five amino acids were identified with significant differences between the control and T2DM groups, highlighting the potential of this method in clinical studies.
Collapse
Affiliation(s)
- Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwei Tian
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71000, Shanxi, China
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Yujiao Qin
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Castillo-Ribelles L, Arranz-Amo JA, Hernández-Vara J, Samaniego-Toro D, Enriquez-Calzada S, Pozo SLD, Camprodon-Gomez M, Laguna A, Gonzalo MA, Ferrer R, Martinez-Vicente M, Carnicer-Caceres C. Evaluation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Analysis of Glucosylceramide and Galactosylceramide Isoforms in Cerebrospinal Fluid of Parkinson's Disease Patients. Anal Chem 2024; 96:12875-12882. [PMID: 39047057 PMCID: PMC11308999 DOI: 10.1021/acs.analchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson's disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.
Collapse
Affiliation(s)
- Laura Castillo-Ribelles
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Antonio Arranz-Amo
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
| | | | - Silvia Enriquez-Calzada
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Sara Lucas-Del Pozo
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
- Department
of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Maria Camprodon-Gomez
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Unit
of Hereditary Metabolic Disorders, Internal Medicine Department, Vall d’Hebron University Hospital, Barcelona 08035, Spain
| | - Ariadna Laguna
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Mercedes Arrúe Gonzalo
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Roser Ferrer
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Martinez-Vicente
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Clara Carnicer-Caceres
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
3
|
Shalaby YM, Al-Zohily B, Raj A, Yasin J, Al Hamad S, Antoniades C, Akawi N, Aburawi EH. Circulating ceramide levels and ratios in Emirati youth under 18 years: associations with cardiometabolic risk factors. Lipids Health Dis 2024; 23:93. [PMID: 38561799 PMCID: PMC10983633 DOI: 10.1186/s12944-024-02080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Circulating ceramide (Cer) drives various pathological processes associated with cardiovascular diseases, liver illness, and diabetes mellitus. Although recognized as predictors of cardiometabolic diseases (CMD) in research and clinical settings, their potential for predicting CMD risk in individuals under 18 remains unexplored. OBJECTIVES This study was designed to utilize Liquid Chromatography-Mass Spectrometry (LC-MS/MS) methodology to determine the biological reference ranges for Cer in plasma samples of Emirati children and develop a risk assessment score (CERT-1) based on Cer concentrations. METHODS Using LC-MS/MS, we developed a method to measure five Cer species in plasma samples of 582 Emirati participants aged 5-17. We used the circulating concentrations of these Cer to determine their reference intervals in this population. We employed traditional statistical analyses to develop a risk score (CERT-1) and assess the association between Cer levels and conventional biomarkers of CMD. RESULTS We validated a high-throughput methodology using LC-MS/MS to quantify five Cer species in human plasma. Reference values for this population (n = 582) were quantified: CerC16:0 (0.12-0.29 µmol/L), CerC18:0 (0.019-0.067 µmol/L), CerC22:0 (0.102-0.525 µmol/L), CerC24:0 (0.65-1.54 µmol/L) and CerC24:1 (0.212-0.945 µmol/L). We devised a risk assessment score (CERT-1) based on plasma Cer content in the study participants, showing that 72.5% have low to moderate risk and 9.3% are at a higher risk of developing CMD. Our analyses also revealed a significant correlation (P < 0.05) between this score and the conventional risk factors linked to CMD, indicating its potential clinical implication. CONCLUSION This study presents a clinical-scaled LC-MS/MS methodology for assessing clinically relevant Cer, setting reference ranges, and developing a risk score (CERT-1) for young Emirati individuals. Our findings can enhance primary risk prediction and inform the management and follow-up of CMD from an early age.
Collapse
Affiliation(s)
- Youssef M Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Bashar Al-Zohily
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Raj
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sania Al Hamad
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| | - Elhadi H Aburawi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
4
|
Luque-Córdoba D, Calderón-Santiago M, Rangel-Zúñiga OA, Camargo A, López-Miranda J, Priego-Capote F. Comprehensive profiling of ceramides in human serum by liquid chromatography coupled to tandem mass spectrometry combining data independent/dependent acquisition modes. Anal Chim Acta 2024; 1287:342115. [PMID: 38182388 DOI: 10.1016/j.aca.2023.342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Ceramides are sphingolipids with a structural function in the cell membrane and are involved in cell differentiation, proliferation and apoptosis. Recently, these chemical species have been pointed out as potential biomarkers in different diseases, due to their abnormal levels in blood. In this research, we present an overall strategy combining data-independent and dependent acquisitions (DIA and DDA, respectively) for identification, confirmation, and quantitative determination of ceramides in human serum. By application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in DIA mode we identified 49 ceramides including d18:1, d18:0, d18:2, d16:1, d17:1 and t18:0 species. Complementary, quantitative determination of ceramides was based on a high-throughput and fully automated method consisting of solid-phase extraction on-line coupled to LC-MS/MS in DDA to improve analytical features avoiding the errors associated to sample processing. Quantitation limits were at pg mL-1 level, the intra-day and between-days variability were below 20 and 25 %, respectively; and the accuracy, expressed as bias, was always within ±25 %. The proposed method was tested with the CORDIOPREV cohort in order to obtain a qualitative and quantitative profiling of ceramides in human serum. This characterization allowed identifying d18:1 ceramides as the most concentrated with 70.8% of total concentration followed by d18:2 and d18:0 with 13.0 % and 8.8 %, respectively. Less concentrated ceramides, d16:1, d17:1 and t18:0, reported a 7.1 % of the total content. Combination of DIA and DDA LC-MS/MS analysis enabled to profile qualitative and quantitatively ceramides in human serum.
Collapse
Affiliation(s)
- D Luque-Córdoba
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - O A Rangel-Zúñiga
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - A Camargo
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J López-Miranda
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain.
| |
Collapse
|
5
|
Kale D, Fatangare A, Phapale P, Sickmann A. Blood-Derived Lipid and Metabolite Biomarkers in Cardiovascular Research from Clinical Studies: A Recent Update. Cells 2023; 12:2796. [PMID: 38132115 PMCID: PMC10741540 DOI: 10.3390/cells12242796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The primary prevention, early detection, and treatment of cardiovascular disease (CVD) have been long-standing scientific research goals worldwide. In the past decades, traditional blood lipid profiles have been routinely used in clinical practice to estimate the risk of CVDs such as atherosclerotic cardiovascular disease (ASCVD) and as treatment targets for the primary prevention of adverse cardiac events. These blood lipid panel tests often fail to fully predict all CVD risks and thus need to be improved. A comprehensive analysis of molecular species of lipids and metabolites (defined as lipidomics and metabolomics, respectively) can provide molecular insights into the pathophysiology of the disease and could serve as diagnostic and prognostic indicators of disease. Mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based lipidomics and metabolomics analysis have been increasingly used to study the metabolic changes that occur during CVD pathogenesis. In this review, we provide an overview of various MS-based platforms and approaches that are commonly used in lipidomics and metabolomics workflows. This review summarizes the lipids and metabolites in human plasma/serum that have recently (from 2018 to December 2022) been identified as promising CVD biomarkers. In addition, this review describes the potential pathophysiological mechanisms associated with candidate CVD biomarkers. Future studies focused on these potential biomarkers and pathways will provide mechanistic clues of CVD pathogenesis and thus help with the risk assessment, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| | | | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| |
Collapse
|
6
|
Coeli-Lacchini FB, da Silva G, Belentani M, Alves JSF, Ushida TR, Lunardelli GT, Garcia CB, Silva TA, Lopes NP, Leopoldino AM. Spermidine Suppresses Oral Carcinogenesis through Autophagy Induction, DNA Damage Repair, and Oxidative Stress Reduction. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2172-2181. [PMID: 37741450 DOI: 10.1016/j.ajpath.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Autophagy has been proposed to play a dual role in cancer-as a tumor suppressor in early stages and oncogenic in late stages of tumorigenesis. This study investigated the role of autophagy in oral carcinogenesis using the model of oral squamous cell carcinoma (OSCC) induced by carcinogen 4-nitroquinoline 1-oxide (4NQO), mimicking molecular and histopathologic aspects of human OSCC. The induction of autophagy by spermidine (SPD) treatment reduced the severity of lesions and the incidence of OSCC in mice exposed to 4NQO. On the other hand, autophagy inhibition by chloroquine treatment had no protection. The comet assay indicated that SPD reduced 4NQO-induced DNA damage, likely related to the activation of DNA repair and the decrease of reactive oxygen species. As sphingolipid alterations have been reported in OSCC, sphingolipids in the tongue and plasma of animals were analyzed and plasma C16 ceramide levels were shown to increase proportionally to lesion severity, indicating its potential as a biomarker. Mice exposed to 4NQO plus SPD had lower levels of C16 ceramide than the 4NQO group, which indicated SPD's ability to prevent the 4NQO-induced carcinogenesis. Together, these data indicate that activation of autophagy has a tumor suppressor role during the early stages of oral carcinogenesis. Because of its ability to induce autophagy accompanied by reduced oxidative stress and DNA damage, SPD may have a protective action against chemically induced oral cancer.
Collapse
Affiliation(s)
- Fernanda B Coeli-Lacchini
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Gabriel da Silva
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Monica Belentani
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Jovelina S F Alves
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Tatiane R Ushida
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Glauce T Lunardelli
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Cristiana B Garcia
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Tarcília A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Norberto P Lopes
- Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Andréia M Leopoldino
- Departments of Clinical Analyses, Toxicology, and Food Sciences, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte.
| |
Collapse
|
7
|
Bettioui T, Chipeaux C, Ben Arfa K, Héron S, Belmatoug N, Franco M, de Person M, Moussa F. Development of a new online SPE-HPLC-MS/MS method for the profiling and quantification of sphingolipids and phospholipids in red blood cells - Application to the study of Gaucher's disease. Anal Chim Acta 2023; 1278:341719. [PMID: 37709430 DOI: 10.1016/j.aca.2023.341719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Red blood cells (RBCs) are the subject of clinical attention due to their biological importance. Recently, it has been shown that certain erythrocyte pathologies could be linked to an abnormal lipid composition. In this work, we have developed a simple and fast method using online sample preparation with liquid chromatography coupled to mass spectrometry (SPE-HPLC-MS/MS), to identify a large number of sphingolipids (SL) and phospholipids (PL). The use of online sample preparation considerably reduces analysis times (15 min including extraction and separation of lipids + 2 min for system re-equilibration) and facilitates experimentation while ensuring very good extraction yields. This method was then successfully applied to the quantification of 30 sphingolipids and phospholipids in plasma and erythrocyte extracts from a cohort of individuals with Gaucher disease, treated or not by enzymotherapy. Our results for the study of this disease, led us to establish the lipid profile of the healthy red blood cells, still not very well-known to date. For this, we adopted a semi-targeted approach, based on the use of a triple-quadrupole analyzer and identified more than two hundred different lipid species. These promising results will hopefully enable us to enrich our knowledge of the normal red blood cells lipidome.
Collapse
Affiliation(s)
- Terkia Bettioui
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Caroline Chipeaux
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Kaouther Ben Arfa
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Sylvie Héron
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Nadia Belmatoug
- Assistance publique-Hôpitaux de Paris, Centre de Référence des Maladies Lysosomales, Service de Médecine Interne, Hôpital Beaujon, Sorbonne Université, F-92110, Clichy, France
| | - Mélanie Franco
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75014, Paris, France
| | - Marine de Person
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris Saclay, 91405, Orsay Cedex, France.
| | - Fathi Moussa
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris Saclay, 91405, Orsay Cedex, France
| |
Collapse
|
8
|
Ma Z, Sheng N, Zhang J. A feasible protocol to profile bile acids in dried blood spots from rats using a UHPLC-MS/MS method combining a surrogate matrix. Analyst 2023; 148:5190-5202. [PMID: 37721130 DOI: 10.1039/d3an00900a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Dried blood spot (DBS) sampling is a promising method for microliter blood sample collection with the advantages of convenient transportation, storage and clinical operations. However, it is challenging to develop an analytical protocol to determine endogenous metabolites, such as bile acids (BAs) in DBSs, due to the low-blood-volume character of DBSs and the complex features of filter paper. Herein, we developed a method of fast ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) to profile and quantify BAs in DBSs. The pretreatment methods were optimized and a two-step solvent addition method, where a small amount of water was firstly added to moisten the DBS and then methanol was added, showed high extraction efficiency for multiple BAs in DBSs. The UHPLC-MS/MS conditions were optimized and 35BAs in different types could be profiled with good resolution and quantified with acceptable precision and accuracy. Preparation of a DBS surrogate matrix without endogenous BAs has been well developed using rat erythrocytes in BSA solution and showed good performance on both the signal suppression/enhancement percentage and parallelism assessment evaluation of three different stable-isotope-labeled (SIL) BAs. The established protocol was successfully applied to profile BAs in DBSs of intrahepatic cholestasis model and healthy control rats with good repeatability. To our knowledge, it is the first time that 35 BAs in DBSs could be well profiled and an appropriate DBS surrogate matrix has been developed. This protocol presents future-oriented applications of DBSs for relevant preclinical studies to profile BAs and probe biomarkers.
Collapse
Affiliation(s)
- Ziying Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| |
Collapse
|
9
|
Liessi N, Tomati V, Capurro V, Loberto N, Garcia-Aloy M, Franceschi P, Aureli M, Pedemonte N, Armirotti A. The combination elexacaftor/tezacaftor/ivacaftor (ETI) modulates the de novo synthethic pathway of ceramides in a genotype-independent manner. J Cyst Fibros 2023; 22:680-682. [PMID: 37088636 DOI: 10.1016/j.jcf.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054 Segrate (MI)
| | - Mar Garcia-Aloy
- Centro di Ricerca e Innovazione, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Trento, Italy
| | - Pietro Franceschi
- Centro di Ricerca e Innovazione, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Trento, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054 Segrate (MI)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
10
|
Stepwise solid phase extraction integrated with chemical derivatization for all-in-one injection LC-MS/MS analysis of metabolome and lipidome. Anal Chim Acta 2023; 1241:340807. [PMID: 36657877 DOI: 10.1016/j.aca.2023.340807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The metabolome and lipidome are critical components in illustrating biological processes and pathological mechanisms. Generally, two or more independent methods are required to analyze the two compound panels due to their distinct chemical properties and polarity differences. Here, a novel strategy integrating stepwise solid-phase extraction (SPE) and dansyl chemical derivatization was proposed for all-in-one injection LC-MS/MS analysis of serum metabolome and lipidome. In this workflow, a stepwise elution procedure was firstly optimized to separate the metabolome and lipidome fractions using an Ostro plate. Dansyl chemical derivatization was then applied to label amine/phenol, carboxyl, and carbonyl-containing sub-metabolomes. Our results demonstrated that the dansyl labeling could significantly improve chromatographic separation, enhance the MS response, and overcome the matrix effect of co-eluting lipids. Ultimately, an all-in-one injection LC-MS/MS method measuring 256 lipids (covering 20 subclasses) and 212 metabolites (including amino acids, bile acids, fatty acids, acylcarnitines, indole derivatives, ketones and aldehydes, nucleic acid metabolism, polyamines, etc.) was established. This method was applied to investigate the metabolic changes in cisplatin-induced nephrotoxicity in rats and the results were compared with previous untargeted metabolomics. The presented strategy could predominantly improve the analytical coverage and throughput and can be of great use in discovering reliable potential biomarkers in various applications.
Collapse
|
11
|
Pepe G, Capocci L, Marracino F, Realini N, Lenzi P, Martinello K, Bovier TF, Bichell TJ, Scarselli P, Di Cicco C, Bowman AB, Digilio FA, Fucile S, Fornai F, Armirotti A, Parlato R, Di Pardo A, Maglione V. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington's disease. Mol Ther 2023; 31:282-299. [PMID: 36116006 PMCID: PMC9840122 DOI: 10.1016/j.ymthe.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.
Collapse
Affiliation(s)
| | | | | | - Natalia Realini
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Tiziana Francesca Bovier
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; Department of Pediatrics Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York 10032, NY, USA
| | - Terry Jo Bichell
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | | | | | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Filomena A Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Physiology and Pharmacology, Sapienza Rome University, Rome 00185, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosanna Parlato
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim Heidelberg University, Mannheim 68167, Germany
| | | | | |
Collapse
|
12
|
Segrado F, Cavalleri A, Cantalupi A, Mariani L, Dagnino S, Krogh V, Venturelli E, Agnoli C. A software-assisted untargeted liquid chromatography-mass spectrometry method for lipidomic profiling of human plasma samples. Int J Biol Markers 2022; 37:368-376. [PMID: 36310449 DOI: 10.1177/03936155221132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION In this paper, an analytical pipeline designed for untargeted lipidomic profiling in human plasma is proposed. The analytical pipeline was developed for case-control studies nested in prospective cohorts. METHODS The procedure consisted of isopropanol protein precipitation followed by reverse phase liquid chromatography coupled to high resolution mass spectrometry and software-assisted data processing. The compounds are putatively annotated by matching experimental mass spectrometry data with spectral library data using LipidSearch software. The lipid profile of a pool of plasma samples from 10 healthy volunteers was detected in both positive and negative polarity modes. The impact of the chosen polarity on the number and quality of the lipid identification has been evaluated. RESULTS More than 1000 lipids from 12 different classes were detected, 1150 in positive mode and 273 in negative mode. Nearly half of them were unambiguously identified by the software in positive mode, and about one-third in negative mode. The method repeatability was assessed on the plasma pool samples by means of variance components analysis. The intra- and inter-assay precision was measured for 10 lipids chosen among the most abundant found within the different lipid classes. The intra-assay coefficients of variation ranged from 2.56% to 4.56% while intra- and inter-day coefficients of variance never exceeded the 15% benchmark adopted. The lipidomic profiles of the 10 healthy volunteers were also investigated. DISCUSSION This method detects a wide range of lipids and reports their degree of identification. It is particularly fit and well-designed for large case-control epidemiologic studies.
Collapse
Affiliation(s)
- Francesco Segrado
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Cantalupi
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Laboratorio Chimica, Mercelogia e Biologia Molecolare, Centro Ricerche sul Riso, Ente Nazionale Risi, Castello d'Agogna, Italy
| | - Luigi Mariani
- Clinical Epidemiology and Trial Organization Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sonia Dagnino
- MRC Centre for Environment and Health, School of Public Health, 4615Imperial College London, London, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Venturelli
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
13
|
Genetic Variants Associated with Elevated Plasma Ceramides in Individuals with Metabolic Syndrome. Genes (Basel) 2022; 13:genes13081497. [PMID: 36011408 PMCID: PMC9407997 DOI: 10.3390/genes13081497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex condition of metabolic disorders and shows a steady onset globally. Ceramides are known as intracellular signaling molecules that influence key metabolism through various pathways such as MetS and insulin resistance. Therefore, it is important to identify novel genetic factors related to increased plasma ceramides in subjects with MetS. Here we first measured plasma ceramides levels in 37 subjects with MetS and in 38 healthy subjects by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Specifically, levels of C16 ceramide (Cer-16), C18 ceramide (Cer-18), C20 ceramide (Cer-20), C18 dihydroceramide (DhCer-18), C24 dihydroceramide (DhCer-24), and C24:1 dihydroceramide (DhCer-24:1) were significantly increased in MetS group (p < 5.0 × 10−2). We then performed single nucleotide polymorphism (SNP) genotyping to identify variants associated with elevated plasma ceramides in MetS group using Axiom® Korea Biobank Array v1.1 chip. We also performed linear regression analysis on genetic variants involved in ceramide synthesis and significantly elevated plasma ceramides and dihydroceramides. Ten variants (rs75397325, rs4246316, rs80165332, rs62106618, rs12358192, rs11006229, rs10826014, rs149162405, rs6109681, and rs3906631) across six genes (ACER1, CERS3, CERS6, SGMS1, SPTLC2, and SPTLC3) functionally involved in ceramide biosynthesis showed significant associations with the elevated levels of at least one of the ceramide species in MetS group at a statistically significant threshold of false discovery rate (FDR)-adjusted p < 5.0 × 10−2. Our findings suggest that the variants may be genetic determinants associated with increased plasma ceramides in individuals with MetS.
Collapse
|
14
|
McNally BD, Ashley DF, Hänschke L, Daou HN, Watt NT, Murfitt SA, MacCannell ADV, Whitehead A, Bowen TS, Sanders FWB, Vacca M, Witte KK, Davies GR, Bauer R, Griffin JL, Roberts LD. Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nat Commun 2022; 13:1748. [PMID: 35365625 PMCID: PMC8975934 DOI: 10.1038/s41467-022-29363-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing lipid cell non-autonomous signal(s). Lipidomics identifies that palmitate-induced cell stress induces long-chain ceramide 40:1 and 42:1 secretion. Ceramide synthesis through the ceramide synthase 2 de novo pathway is regulated by UPR kinase Perk. Inactivation of CerS2 in mice reduces systemic and muscle ceramide signals and muscle UPR activation. The ceramides are packaged into extracellular vesicles, secreted and induce UPR activation in naïve myotubes through dihydroceramide accumulation. This study furthers our understanding of ER stress by identifying UPR-inducing cell non-autonomous signals.
Collapse
Affiliation(s)
- Ben D McNally
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Dean F Ashley
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Lea Hänschke
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, 53115, Bonn, Germany
| | - Hélène N Daou
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicole T Watt
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | | | - Anna Whitehead
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - T Scott Bowen
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Michele Vacca
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.,Clinica Medica "Frugoni", Interdisciplinar Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Klaus K Witte
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Graeme R Davies
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Reinhard Bauer
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, 53115, Bonn, Germany
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
15
|
A simple and rapid method for extraction and measurement of circulating sphingolipids using LC-MS/MS: a targeted lipidomic analysis. Anal Bioanal Chem 2022; 414:2041-2054. [PMID: 35066602 DOI: 10.1007/s00216-021-03853-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023]
Abstract
Sphingolipids are a class of lipids with high structural diversity and biological pleiotropy. Mounting evidence supports a role for sphingolipids in regulating pathophysiology of cardiometabolic diseases, and they have been proposed as potential cardiometabolic biomarkers. Current methods for quantifying sphingolipids require laborious pretreatment and relatively large sample volumes, and cover limited species, hindering their application in epidemiological studies. Herein, we applied a time-, labor-, and sample-saving protocol simply using methanol for plasma sphingolipid extraction. It was compared with classical liquid-liquid extraction methods and showed significant advantages in terms of simplicity, sphingolipid coverage, and sample volume. By coupling the protocol with liquid chromatography using a wide-span mobile phase polarity parameter and tandem mass spectrometry operated in dynamic multiple reaction monitoring mode, 37 sphingolipids from 8 classes (sphingoid base, sphingoid base phosphate, ceramide-1-phosphate, lactosylceramide, hexosylceramide, sphingomyelin, ceramide, and dihydroceramide) were quantified within 16 min, using only 10 μL of human plasma. The current method showed good performance in terms of linearity (R2 > 0.99), intra- and interbatch accuracy (70-123%) and precision (RSD < 12%), matrix effect (91-121%), recovery (96-101%), analyte chemical stability (deviation < 19%), and carryover (< 16%). We successfully applied this method to quantify 33 detectable sphingolipids from 579 plasma samples of an epidemiological study within 10 days. The quantified sphingolipid concentrations were comparable with previous studies. Positive associations of ceramide C22:0/C24:0 and their precursors with homeostasis model assessment of insulin resistance suggested that the synthesis of the ceramides might be involved in insulin resistance. This novel method constitutes a simple and rapid approach to quantify circulating sphingolipids for epidemiological studies using targeted lipidomic analysis, which will help elucidate the sphingolipid-regulated pathways underlying cardiometabolic diseases.
Collapse
|
16
|
Quantitation of a plasma biomarker profile for the early detection of Gaucher disease type 1 patients. Bioanalysis 2022; 14:223-240. [PMID: 35118875 DOI: 10.4155/bio-2021-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Gaucher disease (GD) is caused by a deficiency of the lysosomal enzyme acid β-glucocerebrosidase. Recent metabolomic studies highlighted several new metabolites increased in the plasma of GD patients. We aimed to develop and validate a UPLC-MS/MS method allowing a relative quantitation of lyso-Gb1 and lyso-Gb1 analogs -28, -12, -2, +14, +16 and +18 Da in addition to sphingosylphosphorylcholine, N-palmitoyl-O-phosphocholine to study potential correlations with clinical manifestations. Methodology & results: Following solid-phase extraction, plasma samples were evaporated and resuspended in 100 μl of resuspension solution. Three microliter is injected into the UPLC-MS/MS for analysis. Conclusion: All biomarkers studied were increased in GD patients. Significant correlations were observed between specific analogs and hematological, and visceral complications, as well as overall disease severity.
Collapse
|
17
|
Tuccinardi D, Di Mauro A, Lattanzi G, Rossini G, Monte L, Beato I, Spiezia C, Bravo M, Watanabe M, Soare A, Kyanvash S, Armirotti A, Bertozzi SM, Gastaldelli A, Pedone C, Khazrai YM, Pozzilli P, Manfrini S. An extra virgin olive oil-enriched chocolate spread positively modulates insulin-resistance markers compared with a palm oil-enriched one in healthy young adults: A double-blind, cross-over, randomised controlled trial. Diabetes Metab Res Rev 2022; 38:e3492. [PMID: 34435429 PMCID: PMC9286378 DOI: 10.1002/dmrr.3492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 01/28/2023]
Abstract
AIMS To investigate if extra virgin olive oil (EVOO) or palm oil enriched chocolate spreads consumption leads to different results in terms of plasma ceramides concentration, glucose and lipid metabolism, inflammatory markers and appetite regulation in young healthy subjects. METHODS In a 2-week, double-blind, cross-over, randomised controlled trial, 20 healthy, normal-weight subjects with a mean age of 24.2 years (SD: 1.2), consumed chocolate spread snacks (73% of energy [%E] from fat, 20% from carbohydrates and 7% from proteins), providing 570 Kcal/day added to an isocaloric diet. The chocolate spreads were identical, except for the type of fat: EVOO oil, rich in monounsaturated fatty acids (MUFAs), or palm oil, rich in Saturated Fatty Acids (SFAs). RESULTS EVOO-enriched chocolate spread consumption led to better circulating sphingolipids and glucose profile, with reduced plasma ceramide C16:0, ceramide C16:0/ceramide C22:0-ceramide C24:0 ratio and sphingomyelin C18:0 (P = 0.030, P= 0.032 and P = 0.042, respectively) compared to the palm oil-enriched chocolate spread diet. HOMA-IR and plasma insulin were lower, while the Quicki and the McAuley Index were higher after the EVOO diet compared to the palm oil diet (P = 0.046, P = 0.045, P = 0.018 and P = 0.039 respectively). Subjects maintained a stable weight throughout the study. No major significant changes in total cholesterol, triglycerides, HDL, inflammatory markers, and appetite-regulating hormones/visual analogue scale were observed between the groups. CONCLUSIONS Partially replacing SFAs with MUFAs in a chocolate-based snack as part of a short-term isocaloric diet in healthy individuals may limit SFAs detrimental effects on insulin sensitivity and decrease circulating harmful sphingolipids in young adults.
Collapse
Affiliation(s)
- Dario Tuccinardi
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Antonio Di Mauro
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Greta Lattanzi
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Giovanni Rossini
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Lavinia Monte
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Ivan Beato
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Chiara Spiezia
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Maria Bravo
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Mikiko Watanabe
- Department of Experimental MedicineSection of Medical PathophysiologyFood Science and EndocrinologySapienza University of RomeRomeItaly
| | - Andreea Soare
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Shadi Kyanvash
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Andrea Armirotti
- Analytical Chemistry LabFondazione Istituto Italiano di TecnologiaGenovaItaly
| | | | | | - Claudio Pedone
- Department of MedicineUnit of GeriatricsBiomedical Campus of RomeRomeItaly
| | - Yeganeh Manon Khazrai
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| | - Paolo Pozzilli
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
- Centre of ImmunobiologyBarts and London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Silvia Manfrini
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico of RomeRomeItaly
| |
Collapse
|
18
|
Kumar M, Prasad R, Singh A. High-Throughput Phospholipidomics of Candida Cells: From Sample Preparation to Data Analysis. Methods Mol Biol 2022; 2542:127-140. [PMID: 36008661 DOI: 10.1007/978-1-0716-2549-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laboratory identification of Candida species is often complicated by overlapping features. Species specificity is critical to the appropriate use of interventions.Accurate identification and quantification of lipid species in complex lipid mixtures are crucial for assigning biological functions to lipids of fungi. Recently, much has been achieved in the field of mass spectrometry, allowing high-throughput screening of simple and complex lipid structures. The next-generation, high-resolution mass spectrometers allow accurate analysis and a much broader spectrum for lipidomic studies; nonetheless, these are often expensive, and data analysis is complex, which presents a challenge in routine lipid studies. Alternatively, by coupling the ion trap with multiple reaction monitoring (MRM) in an HPLC-ESI-MS/MS (high-performance liquid chromatography-electrospray ionization tandem mass spectrometry) platform, we can achieve rapid, sensitive, and accurate quantification of lipids in Candida extracts. Moreover, the approach is simple and relatively cost-effective. Below, we discuss the key features of ion trap HPLC-ESI-MS/MS-based comparative lipidomics of Candida cells.
Collapse
Affiliation(s)
- Mohit Kumar
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, Haryana, India
- Amity Institute of Biotechnology, Amity University, Gurgaon, Haryana, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, Haryana, India.
- Amity Institute of Biotechnology, Amity University, Gurgaon, Haryana, India.
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
19
|
Lee GB, Kim YB, Lee JC, Moon MH. Optimisation of high-speed lipidome analysis by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry: Application to identify candidate biomarkers for four different cancers. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122739. [PMID: 33991954 DOI: 10.1016/j.jchromb.2021.122739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
Lipid analysis is a powerful tool that can elucidate the pathogenic roles of lipids in metabolic diseases, and facilitate the development of potential biomarkers. Lipid analysis by large-scale lipidomics requires a high-speed and high-throughput analytical platform. In the present study, a high-speed analytical method for lipid analysis using nanoflow ultrahigh-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry (nUHPLC-ESI-MS/MS) was optimised by investigating the effects of column flow rate, pump flow rate, dwell time, initial binary mobile phase composition, and gradient duration on the separation efficiency of standard lipid mixtures. The minimum gradient time for high-speed lipid separation was determined by examining the time-based separation efficiency and spectral overlap of isobaric lipid species during selected reaction monitoring-based quantification of sphingomyelin and a second isotope of phosphatidylcholine, which differ in molecular weight by only 1 Da. Finally, the optimised nUHPLC-ESI-MS/MS method was applied to analyse 200 plasma samples from patients with liver, gastric, lung, and colorectal cancer to evaluate its performance by measuring previously identified candidate lipid biomarkers. About 73% of the reported marker candidates (6 out of 7 in liver, 5/9 in gastric, 4/6 in lung, and 6/7 in colorectal cancer) could be assigned using the optimised method, supporting its use for high-throughput lipid analysis.
Collapse
Affiliation(s)
- Gwang Bin Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Young Beom Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea.
| |
Collapse
|
20
|
Lee TY, Lu WJ, Changou CA, Hsiung YC, Trang NTT, Lee CY, Chang TH, Jayakumar T, Hsieh CY, Yang CH, Chang CC, Chen RJ, Sheu JR, Lin KH. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism. Autophagy 2021; 17:4141-4158. [PMID: 33749503 DOI: 10.1080/15548627.2021.1904495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin reversed SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, suggesting that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.Abbreviations: 3-MA: 3-methyladenine; A.C.D.: citric acid/sod. citrate/glucose; ADP: adenosine diphosphate; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy-related; B4GALT/LacCS: beta-1,4-galactosyltransferase; Baf-A1: bafilomycin A1; BECN1: beclin 1; BHT: butylate hydrooxytoluene; BSA: bovine serum albumin; DAG: diacylglycerol; ECL: enhanced chemiluminescence; EDTA: ethylenediamine tetraacetic acid; ELISA: enzyme-linked immunosorbent assay; GALC/GCDase: galactosylceramidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/GluSDase: glucosylceramidase beta; GPI: glycosylphosphatidylinositol; H2O2: hydrogen peroxide; HMDB: human metabolome database; HRP: horseradish peroxidase; IF: immunofluorescence; IgG: immunoglobulin G; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAMP1: lysosomal associated membrane protein 1; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPV: mean platelet volume; MTOR: mechanistic target of rapamycin kinase; ox-LDL: oxidized low-density lipoprotein; pAb: polyclonal antibody; PC: phosphatidylcholine; PCR: polymerase chain reaction; PI3K: phosphoinositide 3-kinase; PLS-DA: partial least-squares discriminant analysis; PRP: platelet-rich plasma; Q-TOF: quadrupole-time of flight; RBC: red blood cell; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; SDS: sodium dodecyl sulfate; S.E.M.: standard error of the mean; SEM: scanning electron microscopy; SGMS: sphingomyelin synthase; SM: sphingomyelin; SMPD/SMase: sphingomyelin phosphodiesterase; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; UGT8/CGT: UDP glycosyltransferase 8; UGCG/GCS: UDP-glucose ceramide glucosyltransferase; ULK1: unc-51 like autophagy activating kinase 1; UPLC: ultra-performance liquid chromatography; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; WBC: white blood cell; WT: wild type.
Collapse
Affiliation(s)
- Tzu-Yin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun A Changou
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | | | - Nguyen T T Trang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Lee
- Research Information Session, Office of Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Chien Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
21
|
Liu X, Wang J, Hu B, Yan P, Jia S, Du Z, Jiang H. Qualitative distribution of endogenous sphingolipids in plasma of human and rodent species by UPLC-Q-Exactive-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122684. [PMID: 33857888 DOI: 10.1016/j.jchromb.2021.122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022]
Abstract
Sphingolipids (SLs) are endogenously bioactive molecules with diverse structures, and its metabolic disorders are involved in the progression of many diseases. In this study, an ultra-performance liquid chromatography quadrupole exactive mass spectrometry (UPLC-Q-Exactive-MS) method was established to comprehensively profile SLs in plasma. First, the fragment patterns of SL standards of each subclass were investigated. Then, the SL species in plasma were characterized based on the fragmentation rules. Finally, a total of 144 endogenous SL species consisting of 216 regioisomers were identified in plasma of human, golden hamster and C57BL/6 mice, which was the most comprehensive identification for SLs in plasma. In addition to the known species, 19 SL species that have never been reported were also identified. The profile of SLs in plasma of human and two rodent species was compared subsequently. It was worth noting that a total of 9 SL molecular species consisting of 11 regioisomers with low abundance were successfully identified in human plasma through comparison among species. Those findings contribute to a deeper understanding of SLs in human plasma and provide scientific basis for the selection of animal model. The established profile of SLs in plasma could be used for screening of lipid biomarkers of various diseases.
Collapse
Affiliation(s)
- Xuechen Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingchen Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingying Hu
- Zhejiang Academy of Medical Sciences (Hangzhou Medical College), 182 Tianmushan Road, Hangzhou, Zhejiang, China
| | - Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuailong Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
22
|
Cortini M, Armirotti A, Columbaro M, Longo DL, Di Pompo G, Cannas E, Maresca A, Errani C, Longhi A, Righi A, Carelli V, Baldini N, Avnet S. Exploring Metabolic Adaptations to the Acidic Microenvironment of Osteosarcoma Cells Unveils Sphingosine 1-Phosphate as a Valuable Therapeutic Target. Cancers (Basel) 2021; 13:cancers13020311. [PMID: 33467731 PMCID: PMC7830496 DOI: 10.3390/cancers13020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary By studying the role of tumor acidosis in osteosarcoma, we have identified a novel lipid signaling pathway that is selectively activated in acid-induced highly metastatic cell subpopulation. Furthermore, when combined to low-serine/glycine diet, the targeting of this acid-induced lipid pathway by the FDA-approved drug FTY720 significantly impaired tumor growth. This new knowledge will provide a giant leap in the understanding of the molecular mechanisms responsible for sarcoma relapses and metastasis. Finally, we paved the way to the recognition of a novel biomarker, as our data provided evidence of significantly high circulating levels in the serum of osteosarcoma patients of S1P, a lipid member of the identified acid-driven metabolic pathway. Abstract Acidity is a key player in cancer progression, modelling a microenvironment that prevents immune surveillance and enhances invasiveness, survival, and drug resistance. Here, we demonstrated in spheroids from osteosarcoma cell lines that the exposure to acidosis remarkably caused intracellular lipid droplets accumulation. Lipid accumulation was also detected in sarcoma tissues in close proximity to tumor area that express the acid-related biomarker LAMP2. Acid-induced lipid droplets-accumulation was not functional to a higher energetic request, but rather to cell survival. As a mechanism, we found increased levels of sphingomyelin and secretion of the sphingosine 1-phosphate, and the activation of the associated sphingolipid pathway and the non-canonical NF-ĸB pathway, respectively. Moreover, decreasing sphingosine 1-phosphate levels (S1P) by FTY720 (Fingolimod) impaired acid-induced tumor survival and migration. As a confirmation of the role of S1P in osteosarcoma, we found S1P high circulating levels (30.8 ± 2.5 nmol/mL, n = 17) in the serum of patients. Finally, when we treated osteosarcoma xenografts with FTY720 combined with low-serine/glycine diet, both lipid accumulation (as measured by magnetic resonance imaging) and tumor growth were greatly inhibited. For the first time, this study profiles the lipidomic rearrangement of sarcomas under acidic conditions, suggesting the use of anti-S1P strategies in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Margherita Cortini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
| | - Marta Columbaro
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, 10135 Torino, Italy;
| | - Gemma Di Pompo
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Elena Cannas
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| | - Alessandra Maresca
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Costantino Errani
- Oncologic Orthopaedic Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Longhi
- Chemotherapy Unit for Musculoskeletal Tumors, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alberto Righi
- Anatomy and Pathological Histology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Correspondence:
| | - Sofia Avnet
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| |
Collapse
|
23
|
Caputo S, Di Martino S, Cilibrasi V, Tardia P, Mazzonna M, Russo D, Penna I, Summa M, Bertozzi SM, Realini N, Margaroli N, Migliore M, Ottonello G, Liu M, Lansbury P, Armirotti A, Bertorelli R, Ray SS, Skerlj R, Scarpelli R. Design, Synthesis, and Biological Evaluation of a Series of Oxazolone Carboxamides as a Novel Class of Acid Ceramidase Inhibitors. J Med Chem 2020; 63:15821-15851. [PMID: 33290061 PMCID: PMC7770833 DOI: 10.1021/acs.jmedchem.0c01561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Acid
ceramidase (AC) is a cysteine hydrolase that plays a crucial
role in the metabolism of lysosomal ceramides, important members of
the sphingolipid family, a diversified class of bioactive molecules
that mediate many biological processes ranging from cell structural
integrity, signaling, and cell proliferation to cell death. In the
effort to expand the structural diversity of the existing collection
of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides
were designed and synthesized. Herein, we present the chemical optimization
of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent
AC inhibitor with optimal physicochemical and metabolic properties,
showing target engagement in human neuroblastoma SH-SY5Y cells and
a desirable pharmacokinetic profile in mice, following intravenous
and oral administration. 32b enriches the arsenal of
promising lead compounds that may therefore act as useful pharmacological
tools for investigating the potential therapeutic effects of AC inhibition
in relevant sphingolipid-mediated disorders.
Collapse
Affiliation(s)
- Samantha Caputo
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Simona Di Martino
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Vincenzo Cilibrasi
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Piero Tardia
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Marco Mazzonna
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Debora Russo
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,D3-Pharma Chemistry, Via Morego 30, I-16163 Genova, Italy
| | - Ilaria Penna
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,D3-Pharma Chemistry, Via Morego 30, I-16163 Genova, Italy
| | - Maria Summa
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Natalia Realini
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Natasha Margaroli
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Marco Migliore
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| | - Giuliana Ottonello
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Min Liu
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Andrea Armirotti
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Rosalia Bertorelli
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Analytical Chemistry and Translational Pharmacology, Via Morego 30, I-16163 Genova, Italy
| | - Soumya S Ray
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Renato Skerlj
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Rita Scarpelli
- Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.,Drug Discovery and Development (D3)-Validation, Via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
24
|
Liessi N, Pesce E, Braccia C, Bertozzi SM, Giraudo A, Bandiera T, Pedemonte N, Armirotti A. Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight 2020; 5:138722. [PMID: 32673287 PMCID: PMC7455125 DOI: 10.1172/jci.insight.138722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, a number of drugs have been approved for the treatment of cystic fibrosis (CF). Among them, newly released Trikafta, a combination of 3 drugs (VX-661/VX-445/VX-770), holds great promise to radically improve the quality of life for a large portion of patients with CF carrying 1 copy of F508del, the most frequent CF transmembrane conductance regulator (CFTR) mutation. Currently available disease-modifying CF drugs work by rescuing the function of the mutated CFTR anion channel. Recent research has shown that membrane lipids, and the cell lipidome in general, play a significant role in the mechanism of CFTR-defective trafficking and, on the other hand, its rescue. In this paper, by using untargeted lipidomics on CFBE41o- cells, we identified distinctive changes in the bronchial epithelial cell lipidome associated with treatment with Trikafta and other CF drugs. Particularly interesting was the reduction of levels of ceramide, a known molecular player in the induction of apoptosis, which appeared to be associated with a decrease in the susceptibility of cells to undergo apoptosis. This evidence could account for additional beneficial roles of the triple combination of drugs on CF phenotypes.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | - Emanuela Pesce
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Clarissa Braccia
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | - Nicoletta Pedemonte
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
25
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
26
|
Elevated plasma ceramide levels in post-menopausal women: a cross-sectional study. Aging (Albany NY) 2020; 11:73-88. [PMID: 30620722 PMCID: PMC6339790 DOI: 10.18632/aging.101719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Circulating ceramide levels are abnormally elevated in age-dependent pathologies such as cardiovascular diseases, obesity and Alzheimer's disease. Nevertheless, the potential impact of age on plasma ceramide levels has not yet been systematically examined. In the present study, we quantified a focused panel of plasma ceramides and dihydroceramides in a cohort of 164 subjects (84 women) 19 to 80 years of age. After adjusting for potential confounders, multivariable linear regression analysis revealed a positive association between age and ceramide (d18:1/24:0) (β (SE) = 5.67 (2.38); p = .0198) and ceramide (d18:1/24:1) (β (SE) = 2.88 (.61); p < .0001) in women, and between age and ceramide (d18:1/24:1) in men (β (SE) = 1.86 (.77); p = .0179). In women of all ages, but not men, plasma ceramide (d18:1/24:1) was negatively correlated with plasma estradiol (r = -0.294; p = .007). Finally, in vitro experiments in human cancer cells expressing estrogen receptors showed that incubation with estradiol (10 nM, 24 h) significantly decreased ceramide accumulation. Together, the results suggest that aging is associated with an increase in circulating ceramide levels, which in post-menopausal women is at least partially associated with lower estradiol levels.
Collapse
|
27
|
Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus. Int J Mol Sci 2019; 20:ijms20164008. [PMID: 31426457 PMCID: PMC6720287 DOI: 10.3390/ijms20164008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the sphingolipid-derived mediator sphingosine-1-phosphate (S1P) reduces food intake by activating G protein-coupled S1P receptor-1 (S1PR1) in the hypothalamus. Here, we examined whether feeding regulates hypothalamic mobilization of S1P and other sphingolipid-derived messengers. We prepared lipid extracts from the hypothalamus of C57Bl6/J male mice subjected to one of four conditions: free feeding, 12 h fasting, and 1 h or 6 h refeeding. Liquid chromatography/tandem mass spectrometry was used to quantify various sphingolipid species, including sphinganine (SA), sphingosine (SO), and their bioactive derivatives SA-1-phosphate (SA1P) and S1P. In parallel experiments, transcription of S1PR1 (encoded in mice by the S1pr1 gene) and of key genes of sphingolipid metabolism (Sptlc2, Lass1, Sphk1, Sphk2) was measured by RT-PCR. Feeding increased levels of S1P (in pmol-mg−1 of wet tissue) and SA1P. This response was accompanied by parallel changes in SA and dihydroceramide (d18:0/18:0), and was partially (SA1P) or completely (S1P) reversed by fasting. No such effects were observed with other sphingolipid species targeted by our analysis. Feeding also increased transcription of Sptlc2, Lass1, Sphk2, and S1pr1. Feeding stimulates mobilization of endogenous S1PR1 agonists S1P and SA1P in mouse hypothalamus, via a mechanism that involves transcriptional up-regulation of de novo sphingolipid biosynthesis. The results support a role for sphingolipid-mediated signaling in the central control of energy balance.
Collapse
|
28
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
29
|
Retention time bracketing for targeted sphingolipidomics by liquid chromatography-tandem mass spectrometry. Bioanalysis 2019; 11:185-201. [PMID: 30661375 DOI: 10.4155/bio-2018-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: In complex biological matrixes, many sphingolipids are present with multiple reaction monitoring traces or lack of standard for verification, potentially leading to inaccurate identification and quantitation. Results/methodology: Based on these retention times of available standards, we devised a retention time bracketing approach to identify and predict sphingolipids of the same homologous series. Excellent concordance of predicted and observed retention times (<0.1 min) of sphingolipids were demonstrated. We also showed that many odd- and/or short-chain sphingolipids, commonly used as internal standards, are present in biological matrices including human serum, peritoneal fluid and cells. Conclusion: A retention time table, and a list of appropriate standards are presented, which are expected to be useful resources in targeted sphingolipidomics.
Collapse
|
30
|
B Gowda SG, Ikeda K, Arita M. Facile determination of sphingolipids under alkali condition using metal-free column by LC-MS/MS. Anal Bioanal Chem 2018; 410:4793-4803. [PMID: 29740670 DOI: 10.1007/s00216-018-1116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
Abstract
Extraction and analysis of sphingolipids from biological samples is a critical step in lipidomics, especially for minor species such as sphingoid bases and sphingosine-1-phosphate. Although several liquid chromatography-mass spectrometry methods enabling the determination of sphingolipid molecular species have been reported, they were limited in analytical sensitivity and reproducibility by causing significant peak tailing, especially by the presence of phosphate groups, and most of the extraction techniques are laborious and do not cover a broad range of sphingolipid metabolites. In this study, we developed a rapid single-phase extraction and highly sensitive analytical method for the detection and quantification of sphingolipids (including phosphates) comprehensively using liquid chromatography-triple quadruple mass spectrometry. After validating the reliability of the method, we analyzed the intestinal tissue sphingolipids of germ-free (GF) and specific pathogen-free (SPF) mice and found significantly higher levels of free sphingoid bases and sphingosine-1-phosphate in the GF condition as compared to the SPF condition. This method enables a rapid extraction and highly sensitive determination of sphingolipids comprehensively at low femtomolar ranges. Graphical abstract Diagrammatic comparision of sphingolipid (phosphates) analysis between conventional and this method.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan. .,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. .,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-0011, Japan.
| |
Collapse
|
31
|
Di Pardo A, Basit A, Armirotti A, Amico E, Castaldo S, Pepe G, Marracino F, Buttari F, Digilio AF, Maglione V. De novo Synthesis of Sphingolipids Is Defective in Experimental Models of Huntington's Disease. Front Neurosci 2017; 11:698. [PMID: 29311779 PMCID: PMC5742211 DOI: 10.3389/fnins.2017.00698] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
Alterations of lipid metabolism have been frequently associated with Huntington's disease (HD) over the past years. HD is the most common neurodegenerative disorder, with a complex pathogenic profile, typically characterized by progressive striatal and cortical degeneration and associated motor, cognitive and behavioral disturbances. Previous findings from our group support the idea that disturbed sphingolipid metabolism could represent an additional hallmark of the disease. Although such a defect represents a common biological denominator among multiple disease models ranging from cells to humans through mouse models, more efforts are needed to clearly define its clinical significance and the role it may play in the progression of the disease. In this study, we provided the first evidence of a defective de novo biosynthetic pathway of sphingolipids in multiple HD pre-clinical models. qPCR analysis revealed perturbed gene expression of sphingolipid-metabolizing enzymes in both early and late stage of the disease. In particular, reduction in the levels of sptlc1 and cerS1 mRNA in the brain tissues from manifest HD mice resulted in a significant decrease in the content of dihydroSphingosine, dihydroSphingosine-1-phospahte and dihydroCeramide [C18:0] as assessed by mass spectrometry. Moreover, in vitro studies highlighted the relevant role that aberrant sphingolipid metabolism may have in the HD cellular homeostasis. With this study, we consolidate the evidence of disturbed sphingolipid metabolism in HD and demonstrate for the first time that the de novo biosynthesis pathway is also significantly affected in the disease. This finding further supports the hypothesis that perturbed sphingolipid metabolism may represent a crucial factor accounting for the high susceptibility to disease in HD.
Collapse
Affiliation(s)
| | - Abdul Basit
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | | - Anna F Digilio
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | | |
Collapse
|
32
|
Vozella V, Basit A, Misto A, Piomelli D. Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1502-1511. [DOI: 10.1016/j.bbalip.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
33
|
Peng B, Weintraub ST, Coman C, Ponnaiyan S, Sharma R, Tews B, Winter D, Ahrends R. A Comprehensive High-Resolution Targeted Workflow for the Deep Profiling of Sphingolipids. Anal Chem 2017; 89:12480-12487. [PMID: 29039908 DOI: 10.1021/acs.analchem.7b03576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingolipids make up a highly diverse group of biomolecules that not only are membrane components but also are involved in various cellular functions such as signaling and protein sorting. To obtain a quantitative view of the sphingolipidome, sensitive, accurate, and comprehensive methods are needed. Here, we present a targeted reversed-phase liquid chromatography-high-resolution mass spectrometry-based workflow that significantly increases the accuracy of measured sphingolipids by resolving nearly isobaric and isobaric species; this is accomplished by a use of (i) an optimized extraction procedure, (ii) a segmented gradient, and (iii) parallel reaction monitoring of a sphingolipid specific fragmentation pattern. The workflow was benchmarked against an accepted sphingolipid model system, the RAW 264.7 cell line, and 61 sphingolipids were quantified over a dynamic range of 7 orders of magnitude, with detection limits in the low femtomole per milligram of protein level, making this workflow an extremely versatile tool for high-throughput sphingolipidomics.
Collapse
Affiliation(s)
- Bing Peng
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund, Germany
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund, Germany
| | - Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, University of Bonn , 53113 Bonn, Germany
| | - Rakesh Sharma
- Schaller Research Group, University of Heidelberg and DKFZ , 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ , 69120 Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and DKFZ , 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ , 69120 Heidelberg, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn , 53113 Bonn, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund, Germany
| |
Collapse
|
34
|
Optimization of ultra-high pressure liquid chromatography – tandem mass spectrometry determination in plasma and red blood cells of four sphingolipids and their evaluation as biomarker candidates of Gaucher’s disease. J Chromatogr A 2017; 1525:116-125. [DOI: 10.1016/j.chroma.2017.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 11/23/2022]
|
35
|
Yang Y, Zhong Q, Mo C, Zhang H, Zhou T, Tan W. Determination of endogenous inflammation-related lipid mediators in ischemic stroke rats using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2017; 409:6537-6547. [DOI: 10.1007/s00216-017-0600-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
|
36
|
Sphingomyelin as a myelin biomarker in CSF of acquired demyelinating neuropathies. Sci Rep 2017; 7:7831. [PMID: 28798317 PMCID: PMC5552737 DOI: 10.1038/s41598-017-08314-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Fast, accurate and reliable methods to quantify the amount of myelin still lack, both in humans and experimental models. The overall objective of the present study was to demonstrate that sphingomyelin (SM) in the cerebrospinal fluid (CSF) of patients affected by demyelinating neuropathies is a myelin biomarker. We found that SM levels mirror both peripheral myelination during development and small myelin rearrangements in experimental models. As in acquired demyelinating peripheral neuropathies myelin breakdown occurs, SM amount in the CSF of these patients might detect the myelin loss. Indeed, quantification of SM in 262 neurological patients showed a significant increase in patients with peripheral demyelination (p = 3.81 * 10 − 8) compared to subjects affected by non-demyelinating disorders. Interestingly, SM alone was able to distinguish demyelinating from axonal neuropathies and differs from the principal CSF indexes, confirming the novelty of this potential CSF index. In conclusion, SM is a specific and sensitive biomarker to monitor myelin pathology in the CSF of peripheral neuropathies. Most importantly, SM assay is simple, fast, inexpensive, and promising to be used in clinical practice and drug development.
Collapse
|
37
|
Complete Acid Ceramidase ablation prevents cancer-initiating cell formation in melanoma cells. Sci Rep 2017; 7:7411. [PMID: 28785021 PMCID: PMC5547127 DOI: 10.1038/s41598-017-07606-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Acid ceramidase (AC) is a lysosomal cysteine hydrolase that catalyzes the conversion of ceramide into fatty acid and sphingosine. This reaction lowers intracellular ceramide levels and concomitantly generates sphingosine used for sphingosine-1-phosphate (S1P) production. Since increases in ceramide and consequent decreases of S1P reduce proliferation of various cancers, AC might offer a new target for anti-tumor therapy. Here we used CrispR-Cas9-mediated gene editing to delete the gene encoding for AC, ASAH1, in human A375 melanoma cells. ASAH1-null clones show significantly greater accumulation of long-chain saturated ceramides that are substrate for AC. As seen with administration of exogenous ceramide, AC ablation blocks cell cycle progression and accelerates senescence. Importantly, ASAH1-null cells also lose the ability to form cancer-initiating cells and to undergo self-renewal, which is suggestive of a key role for AC in maintaining malignancy and self-renewal of invasive melanoma cells. The results suggest that AC inhibitors might find therapeutic use as adjuvant therapy for advanced melanoma.
Collapse
|
38
|
Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease. Sci Rep 2017; 7:5280. [PMID: 28706199 PMCID: PMC5509685 DOI: 10.1038/s41598-017-05709-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Huntington’s disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition.
Collapse
|
39
|
Specific skeletal muscle sphingolipid compounds in energy expenditure regulation and weight gain in Native Americans of Southwestern heritage. Int J Obes (Lond) 2017; 41:1585-1593. [PMID: 28607453 PMCID: PMC5626585 DOI: 10.1038/ijo.2017.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVES In animal models, a role in the regulation of energy expenditure (EE) has been ascribed to sphingolipids, active components of cell membranes participating in cellular signaling. In humans, it is unknown whether sphingolipids have a role in the modulation of EE and, consequently, influence weight gain. The present study investigated the putative association of EE and weight gain with sphingolipid levels in the human skeletal muscle, a component of fat-free mass (the strongest determinant of EE), in adipose tissue and plasma. SUBJECTS/METHODS Twenty-four-hour EE, sleeping metabolic rate (SMR) and resting metabolic rate (RMR) were assessed in 35 healthy Native Americans of Southwestern heritage (24 male; 30.2±7.73 years). Sphingolipid (ceramide, C; sphingomyelin, SM) concentrations were measured in skeletal muscle tissue, subcutaneous adipose tissue and plasma samples. After 6.68 years (0.26-12.4 years), follow-up weights were determined in 16 participants (4 females). RESULTS Concentrations of C24:0, SM18:1/26:1 and SM18:0/24:1 in muscle were associated with 24-h EE (r=-0.47, P=0.01), SMR (r=-0.59, P=0.0008) and RMR (r=-0.44, P=0.01), respectively. Certain muscle sphingomyelins also predicted weight gain (for example, SM18:1/23:1, r=0.74, P=0.004). For specific muscle sphingomyelins that correlated with weight gain and EE (SM18:1/23:0, SM18:1/23:1 and SMR, r=-0.51, r=-0.41, respectively, all P<0.03; SM18:1/24:2 and RMR, r=-0.36, P=0.03), associations could be reproduced with SMR in adipose tissue (all r<-0.46, all P<0.04), though not in plasma. CONCLUSIONS This study provides preliminary, novel evidence, that specific muscle and adipose tissue sphingolipid compounds are associated with EE and weight gain in Native Americans of Southwestern heritage. Further studies are warranted to investigate whether sphingolipids of different body compartments act in concert to modulate energy balance in humans.
Collapse
|
40
|
Quantitative analysis of endogenous compounds. J Pharm Biomed Anal 2016; 128:426-437. [DOI: 10.1016/j.jpba.2016.06.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/19/2023]
|
41
|
Yang Z, Cai Q, Chen N, Zhou X, Hong J. Selective separation and identification of metabolite groups of Polygonum cuspidatum extract in rat plasma using dispersion solid-phase extraction by magnetic molecularly imprinted polymers coupled with LC/Q-TOF-MS. RSC Adv 2016. [DOI: 10.1039/c5ra26695e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this work, magnetic molecularly imprinted polymers (MMIPs) were successfully prepared for specific recognition and selective enrichment of metabolite groups of Polygonum cuspidatum extract in rat plasma.
Collapse
Affiliation(s)
- Zaiyue Yang
- School of Pharmacy
- Nanjing Medical University
- Nanjing 210029
- PR China
| | - Qizhi Cai
- School of Pharmacy
- Nanjing Medical University
- Nanjing 210029
- PR China
| | - Ning Chen
- School of Pharmacy
- Nanjing Medical University
- Nanjing 210029
- PR China
- Jiangsu Province Institute of Materia Media
| | - Xuemin Zhou
- School of Pharmacy
- Nanjing Medical University
- Nanjing 210029
- PR China
| | - Junli Hong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 210029
- PR China
| |
Collapse
|
42
|
Basit A, Pontis S, Piomelli D, Armirotti A. Ion mobility mass spectrometry enhances low-abundance species detection in untargeted lipidomics. Metabolomics 2016; 12:50. [PMID: 26900387 PMCID: PMC4744830 DOI: 10.1007/s11306-016-0971-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
We describe a simple method for the detection of low intensity lipid signals in complex tissue samples, based on a combination of liquid chromatography/mass spectrometry and ion mobility mass spectrometry. The method relies on visual and software-assisted analysis of overlapped mobilograms (diagrams of mass-to-charge ratio, m/z, vs drift time, DT) and was successfully applied in untargeted lipidomics analyses of mouse brain tissue to detect relatively small variations in a scarce class of phospholipids (N-acyl phosphatidylethanolamines) generated during neural tissue damage, against a background of hundreds of lipid species. Standard analytical tools, including Principal Component Analysis, failed to detect such changes.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Silvia Pontis
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA 92697 USA
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
43
|
Abstract
In response to the urgent need for analysis software that is capable of handling data from targeted high-throughput lipidomics experiments, we here present a systematic workflow for the straightforward method design and analysis of selected reaction monitoring data in lipidomics based on lipid building blocks. Skyline is a powerful software primarily designed for proteomics applications where it is widely used. We adapted this tool to a "Plug and Play" system for lipid research. This extension offers the unique capability to assemble targeted mass spectrometry methods for complex lipids easily by making use of building blocks. With simple yet tailored modifications, targeted methods to analyze main lipid classes such as glycerophospholipids, sphingolipids, glycerolipids, cholesteryl-esters, and cholesterol can be quickly introduced into Skyline for easy application by end users without distinct bioinformatics skills. To illustrate the benefits of our novel strategy, we used Skyline to quantify sphingolipids in mesenchymal stem cells. We demonstrate a simple method building procedure for sphingolipids screening, collision energy optimization, and absolute quantification of sphingolipids. In total, 72 sphingolipids were identified and absolutely quantified at the fatty acid scan species level by utilizing Skyline for data interpretation and visualization.
Collapse
Affiliation(s)
- Bing Peng
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str.6b, 44227 Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str.6b, 44227 Dortmund, Germany
| |
Collapse
|
44
|
Bach A, Pizzirani D, Realini N, Vozella V, Russo D, Penna I, Melzig L, Scarpelli R, Piomelli D. Benzoxazolone Carboxamides as Potent Acid Ceramidase Inhibitors: Synthesis and Structure-Activity Relationship (SAR) Studies. J Med Chem 2015; 58:9258-72. [PMID: 26560855 DOI: 10.1021/acs.jmedchem.5b01188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ceramides are lipid-derived intracellular messengers involved in the control of senescence, inflammation, and apoptosis. The cysteine amidase, acid ceramidase (AC), hydrolyzes these substances into sphingosine and fatty acid and, by doing so, regulates their signaling activity. AC inhibitors may be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic administration. The results expand our arsenal of AC inhibitors, thereby facilitating the use of these compounds as pharmacological tools and their potential development as drug leads.
Collapse
Affiliation(s)
- Anders Bach
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Daniela Pizzirani
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Natalia Realini
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Valentina Vozella
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Debora Russo
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Ilaria Penna
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Laurin Melzig
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Rita Scarpelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy.,Departments of Anatomy and Neurobiology, Biological Chemistry, and Pharmacology, University of California , Irvine, California 92697-4625, United States
| |
Collapse
|
45
|
Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. J Biol Chem 2015; 291:2422-34. [PMID: 26553872 DOI: 10.1074/jbc.m115.666909] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nM) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.
Collapse
Affiliation(s)
- Natalia Realini
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Palese
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Daniela Pizzirani
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Silvia Pontis
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Abdul Basit
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Anders Bach
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, the Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen 2100, Denmark, and
| | | | - Daniele Piomelli
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, Anatomy and Neurobiology, University of California, Irvine, California 92617
| |
Collapse
|
46
|
Wronowska W, Charzyńska A, Nienałtowski K, Gambin A. Computational modeling of sphingolipid metabolism. BMC SYSTEMS BIOLOGY 2015; 9:47. [PMID: 26275400 PMCID: PMC4537549 DOI: 10.1186/s12918-015-0176-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Abstract
Background As suggested by the origin of the word, sphingolipids are mysterious molecules with various roles in antagonistic cellular processes such as autophagy, apoptosis, proliferation and differentiation. Moreover, sphingolipids have recently been recognized as important messengers in cellular signaling pathways. Notably, sphingolipid metabolism disorders have been observed in various pathological conditions such as cancer and neurodegeneration. Results The existing formal models of sphingolipid metabolism focus mainly on de novo ceramide synthesis or are limited to biochemical transformations of particular subspecies. Here, we propose the first comprehensive computational model of sphingolipid metabolism in human tissue. Contrary to the previous approaches, we use a model that reflects cell compartmentalization thereby highlighting the differences among individual organelles. Conclusions The model that we present here was validated using recently proposed methods of model analysis, allowing to detect the most sensitive and experimentally non-identifiable parameters and determine the main sources of model variance. Moreover, we demonstrate the usefulness of our model in the study of molecular processes underlying Alzheimer’s disease, which are associated with sphingolipid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0176-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weronika Wronowska
- Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland.
| | - Agata Charzyńska
- Faculty of Biology University of Warsaw, Warsaw, Poland. .,Bioinformatics Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | - Karol Nienałtowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|