1
|
Dou Q, Canavan A, Fu Y, Xiang L, Wang Y, Wang X, Jiang X, Dirr C, Wang F, Elsner M. Nitrogen stable isotope analysis of sulfonamides by derivatization-gas chromatography-isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:4237-4247. [PMID: 38849528 PMCID: PMC11525405 DOI: 10.1007/s00216-024-05361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The continuous introduction of micropollutants into the environment through livestock farming, agricultural practices, and wastewater treatment is a major concern. Among these pollutants are synthetic sulfonamide antibiotics such as sulfamethoxazole, which are not always fully degraded and pose a risk of fostering antimicrobial resistance. It is challenging to assess the degradation of sulfonamides with conventional concentration measurements. This study introduces compound-specific isotope analysis of nitrogen isotope ratios at natural abundances by derivatization-gas chromatography hyphenated with isotope ratio mass spectrometry (derivatization-GC-IRMS) as a new and more precise method for tracing the origin and degradation of sulfonamides. Here, sulfamethoxazole was used as a model compound to develop and optimize the derivatization conditions using (trimethylsilyl)diazomethane as a derivatization reagent. With the optimized conditions, accurate and reproducible δ15N analysis of sulfamethoxazole by derivatization-GC-IRMS was achieved in two different laboratories with a limit for precise isotope analysis of 3 nmol N on column, corresponding to 0.253 µg non-derivatized SMX. Application of the method to four further sulfonamides, sulfadiazine, sulfadimethoxine, sulfadimidine, and sulfathiazole, shows the versatility of the developed method. Its benefit was demonstrated in a first application, highlighting the possibility of distinguishing sulfamethoxazole from different suppliers and pharmaceutical products.
Collapse
Affiliation(s)
- Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Aoife Canavan
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Christopher Dirr
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
2
|
Hoffman DW, Rasmussen C. Position-specific carbon stable isotope analysis of glyphosate: isotope fingerprinting of molecules within a mixture. Anal Bioanal Chem 2024; 416:3847-3856. [PMID: 38740591 DOI: 10.1007/s00216-024-05326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Glyphosate [N-(phosphonomethyl) glycine] is a widely used herbicide and a molecule of interest in the environmental sciences, due to its global use in agriculture and its potential impact on ecosystems. This study presents the first position-specific carbon isotope (13C/12C) analyses of glyphosates from multiple sources. In contrast to traditional isotope ratio mass spectrometry (IRMS), position-specific analysis provides 13C/12C ratios at individual carbon atom positions within a molecule, rather than an average carbon isotope ratio across a mixture or a specific compound. In this work, glyphosate in commercial herbicides was analyzed with only minimal purification, using a nuclear magnetic resonance (NMR) spectroscopy method that detects 1H nuclei with bonds to either 13C or 12C, and isolates the signals of interest from other signals in the mixture. Results demonstrate that glyphosate from different sources can have significantly different intramolecular 13C/12C distributions, which were found to be spread over a wide range, with δ13C Vienna Peedee Belemnite (VPDB) values of -28.7 to -57.9‰. In each glyphosate, the carbon with a bond to the phosphorus atom was found to be depleted in 13C compared to the carbon at the C2 position, by 4 to 10‰. Aminomethylphosphonic acid (AMPA) was analyzed for method validation; AMPA contains only a single carbon position, so the 13C/12C results provided by the NMR method could be directly compared with traditional isotope ratio mass spectrometry. The glyphosate mixtures were also analyzed by IRMS to obtain their average 13C/12C ratios, for comparison with our position-specific results. This comparison revealed that the IRMS results significantly disguise the intramolecular isotope distribution. Finally, we introduce a 31P NMR method that can provide a position-specific 13C/12C ratio for carbon positions with a C-P chemical bond, and the results obtained by 1H and 31P for C3 carbon agree with one another within their analytical uncertainty. These analytical tools for position-specific carbon isotope analysis permit the isotopic fingerprinting of target molecules within a mixture, with potential applications in a range of fields, including the environmental sciences and chemical forensics.
Collapse
Affiliation(s)
- David W Hoffman
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St., Austin, TX, 78712, USA.
| | - Cornelia Rasmussen
- Institute for Geophysics, The University of Texas at Austin, J. J. Pickle Research Campus, 10601 Exploration Way, Austin, TX, 78758, USA
| |
Collapse
|
3
|
Rosales CA, Shields SWJ, Aulenback CLJ, Elezi G, Wasslen KV, Pallister PJ, Faull KF, Manthorpe JM, Smith JC. Improved Chromatography and MS-Based Detection of Glyphosate and Aminomethylphosphonic Acid Using iTrEnDi. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:948-957. [PMID: 37132245 DOI: 10.1021/jasms.3c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glyphosate (GLY), a synthetic, nonselective systemic herbicide that is particularly effective against perennial weeds, is the most used weedkiller in the world. There are growing concerns over GLY accumulation in the environment and the attendant human health-associated risks, and despite increased attention in the media, GLY and its breakdown product aminomethylphosphonic acid (AMPA) remain elusive to many analytical strategies. Chemical derivatization coupled with high-performance liquid chromatography-mass spectrometry (HPLC-MS) addresses the challenge of quantifying low levels of GLY and AMPA in complex samples. Here we demonstrate the use of in situ trimethylation enhancement using diazomethane (iTrEnDi) to derivatize GLY and AMPA into permethylated products ([GLYTr]+ and [AMPATr]+, respectively) prior to analysis via HPLC-MS. iTrEnDi produced quantitative yields and resulted in a 12-340-fold increases in HPLC-MS-based sensitivity for [GLYTr]+ and [AMPATr]+, respectively, compared with underivatized counterparts. The limits of detection of derivatized compounds were found to be 0.99 ng/L for [GLYTr]+ and 1.30 ng/L for [AMPATr]+, demonstrating significant sensitivity improvements compared to previously established derivatization techniques. iTrEnDi is compatible with the direct derivatization of Roundup formulations. Finally, as proof of principle, a simple aqueous extraction followed by iTrEnDi enabled the detection of [GLYTr]+ and [AMPATr]+ on the exterior of field-grown soybeans that were sprayed with Roundup. Overall, iTrEnDi ameliorates issues relating to low proton affinity and chromatographic retention, boosting HPLC-MS-based sensitivity and enabling the elucidation of elusive analytes such as GLY and AMPA within agricultural systems.
Collapse
Affiliation(s)
- Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Samuel W J Shields
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chelsey L J Aulenback
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90024, United States of America
| | - Karl V Wasslen
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Peter J Pallister
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90024, United States of America
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Mechanistic investigation of phosphonate photolysis in aqueous solution by simultaneous LC-IRMS and HRMS analysis. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Yun HY, Won EJ, Choi J, Cho Y, Lim DJ, Kim IS, Shin KH. Stable Isotope Analysis of Residual Pesticides via High Performance Liquid Chromatography and Elemental Analyzer-Isotope Ratio Mass Spectrometry. Molecules 2022; 27:molecules27238587. [PMID: 36500680 PMCID: PMC9736523 DOI: 10.3390/molecules27238587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
To broaden the range of measurable pesticides for stable isotope analysis (SIA), we tested whether SIA of the anthranilic diamides cyantraniliprole (CYN) and chlorantraniliprole (CHL) can be achieved under elemental analyzer/isotope ratio mass spectrometry with compound purification in high-performance liquid chromatography (HPLC). Using this method, carbon isotope compositions were measured in pesticide residues extracted from plants (lettuce) grown indoors in potting soil that were treated with 500 mg/kg CHL and 250 mg/kg CYN and were followed up for 45 days. Our results show that the CYN and CHL standard materials did not have significant isotope differences before and after clean-up processing in HPLC. Further, when applied to the CYN product and CHL product in soil, stable isotope differences between the soil and plant were observed at <1.0‱ throughout the incubation period. There was a slight increase in the variability of pesticide isotope ratio detected with longer-term incubation (CHL, on average 1.5‱). Overall, we measured the carbon isotope ratio of target pesticides from HPLC fraction as the purification and pre-concentration step for environmental and biological samples. Such negligible isotopic differences in pesticide residues in soils and plants 45 days after application confirmed the potential of CSIA to quantify pesticide behavior in environments.
Collapse
Affiliation(s)
- Hee Young Yun
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Jisoo Choi
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Yusang Cho
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Da-Jung Lim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Seon Kim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyung-Hoon Shin
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
- Correspondence: ; Tel.: +82-31-400-5536
| |
Collapse
|
6
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Marks RGH, Jochmann MA, Brand WA, Schmidt TC. How to Couple LC-IRMS with HRMS─A Proof-of-Concept Study. Anal Chem 2022; 94:2981-2987. [PMID: 35107978 DOI: 10.1021/acs.analchem.1c05226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compound-specific stable isotope analysis (CSIA) is a unique analytical technique for determining small variations in isotope ratios of light isotopes in analytes from complex mixtures. A problem of CSIA using gas chromatography (GC) and liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is that any structural information of the analytes is lost due to the processes involved in determining the isotope ratio. To obtain the isotopic composition of, for example, carbon from organic compounds, all carbon in each analyte is quantitatively converted to CO2. For GC-IRMS, open split GC-IRMS-MS couplings have been described that allow additional acquisition of structural information of analytes and interferences. Structural analysis using LC-IRMS is more difficult and requires additional technical and instrumental efforts. In this study, LC was combined for the first time with simultaneous analysis by IRMS and high-resolution mass spectrometry (HRMS), enabling the direct identification of unknown or coeluting species. We have thoroughly investigated and optimized the coupling and showed how technical problems, arising from instrumental conditions, can be overcome. To this end, it was successfully demonstrated that a consistent split ratio between IRMS and HRMS could be obtained using a variable postcolumn flow splitter. This coupling provided reproducible results in terms of resulting peak areas, isotope values, and retention time differences for the two mass spectrometer systems. To demonstrate the applicability of the coupling, we chose to address an important question regarding the purity of international isotope standards. In this context, we were able to confirm that the USGS41 reference material indeed contains substantial amounts of pyroglutamic acid as suggested previously in the literature. Moreover, the replacement material, USGS41a, still has significant amounts of pyroglutamic acid as impurity, rendering some caution necessary when using this material for isotopic calibration.
Collapse
Affiliation(s)
- Robert G H Marks
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Willi A Brand
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, 07745 Jena, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.,Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| |
Collapse
|
8
|
Perini M, Bontempo L. Liquid Chromatography coupled to Isotope Ratio Mass Spectrometry (LC-IRMS): A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Won EJ, Yun HY, Lee DH, Shin KH. Application of Compound-Specific Isotope Analysis in Environmental Forensic and Strategic Management Avenue for Pesticide Residues. Molecules 2021; 26:4412. [PMID: 34361564 PMCID: PMC8348328 DOI: 10.3390/molecules26154412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Unintended pesticide pollution in soil, crops, and adjacent environments has caused several issues for both pesticide users and consumers. For users, pesticides utilized should provide higher yield and lower persistence while considering both the environment and agricultural products. Most people are concerned that agricultural products expose humans to pesticides accumulating in vegetation. Thus, many countries have guidelines for assessing and managing pesticide pollution, for farming in diverse environments, as all life forms in soil are untargeted to these pesticides. The stable isotope approach has been a useful technique to find the source of organic matter in studies relating to aquatic ecology and environmental sciences since the 1980s. In this study, we discuss commonly used analytical methods using liquid and gas chromatography coupled with isotopic ratio mass spectrometry, as well as the advanced compound-specific isotope analysis (CSIA). CSIA applications are discussed for tracing organic pollutants and understanding chemical reactions (mechanisms) in natural environments. It shows great applicability for the issues on unintended pesticide pollution in several environments with the progress history of isotope application in agricultural and environmental studies. We also suggest future study directions based on the forensic applications of stable isotope analysis to trace pesticides in the environment and crops.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Hee-Young Yun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Dong-Hun Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
10
|
Cui G, Lartey-Young G, Chen C, Ma L. Photodegradation of pesticides using compound-specific isotope analysis (CSIA): a review. RSC Adv 2021; 11:25122-25140. [PMID: 35478915 PMCID: PMC9037106 DOI: 10.1039/d1ra01658j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Pesticides are commonly applied in agriculture to protect crops from pests, weeds, and harmful pathogens. However, chronic, low-level exposure to pesticides can be toxic to humans. Photochemical degradation of pesticides in water, soil, and other environmental media can alter their environmental fate and toxicity. Compound-specific isotope analysis (CSIA) is an advanced diagnostic tool to quantify the degradation of organic pollutants and provide insight into reaction mechanisms without the need to identify transformation products. CSIA allows for the direct quantification of organic degradation, including pesticides. This review summarizes the recent developments observed in photodegradation studies on different categories of pesticides using CSIA technology. Only seven pesticides have been studied using photodegradation, and these studies have mostly occurred in the last five years. Knowledge gaps in the current literature, as well as potential approaches for CSIA technology for pesticide monitoring, are discussed in this review. Furthermore, the CSIA analytical method is challenged by chemical element types, the accuracy of instrument analysis, reaction conditions, and the stability of degradation products. Finally, future research applications and the operability of this method are also discussed.
Collapse
Affiliation(s)
- Guolu Cui
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - George Lartey-Young
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Chong Chen
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| |
Collapse
|
11
|
Limon AW, Moingt M, Widory D. The carbon stable isotope compositions of glyphosate and aminomethylphosphonic acid (AMPA): Improved analytical sensitivity and first application to environmental water matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9017. [PMID: 33270272 DOI: 10.1002/rcm.9017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE The presence of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in the environment has adverse effects on environmental quality, raising the need to better constrain their fates, in particular the processes that control their production and degradation. Our aim was to improve the sensitivity of their δ13 C analysis and demonstrate the feasibility of measuring them in natural surface water. METHODS The δ13 C values of dissolved glyphosate and AMPA were determined using isotope ratio mass spectrometry (IRMS) (Delta V Plus instrument) coupled to a high-performance liquid chromatography (HPLC) unit, where glyphosate and AMPA were separated on a Hypercarb column. RESULTS We demonstrated an improved sensitivity of the δ13 C analysis for glyphosate and AMPA by LC/IRMS compared with previous studies. For waters from the carbonate and silicate hydrofacies, while no pretreatment was required for the isotope analysis of glyphosate, removal by H3 PO4 acidification of dissolved inorganic carbon, that co-elutes with AMPA, was required prior to its analysis. We successfully tested a freeze-drying pre-concentration method showing no associated isotope fractionation up to concentration factors of 500 and 50 for glyphosate and AMPA, respectively. CONCLUSIONS We demonstrated, for the first time, the feasibility of measuring the δ13 C values of glyphosate and AMPA in natural surface waters with contrasted hydrofacies (calcium carbonate and silicate types). This opens new fields in pesticide research, especially on the characterization of processes that control their degradation and the production of their secondary byproducts.
Collapse
Affiliation(s)
- A Williams Limon
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - Matthieu Moingt
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - David Widory
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
12
|
Höhener P, Imfeld G. Quantification of Lambda (Λ) in multi-elemental compound-specific isotope analysis. CHEMOSPHERE 2021; 267:129232. [PMID: 33338724 DOI: 10.1016/j.chemosphere.2020.129232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
In multi-elemental compound-specific isotope analysis the lambda (Λ) value expresses the isotope shift of one element versus the isotope shift of a second element. In dual-isotope plots, the slope of the regression lines typical reveals the footprint of the underlying isotope effects allowing to distinguish degradation pathways of an organic contaminant molecule in the environment. While different conventions and fitting procedures are used in the literature to determine Λ, it remains unclear how they affect the magnitude of Λ. Here we generate synthetic data for benzene δ2H and δ13C with two enrichment factors εH and εC using the Rayleigh equation to examine how different conventions and linear fitting procedures yield distinct Λ. Fitting an error-free data set in a graph plotting the δ2H versus δ13C overestimates Λ by 0.225%⋅εH/εC, meaning that if εH/εCis larger than 22, Λ is overestimated by more than 5%. The correct fitting of Λ requires a natural logarithmic transformation of δ2H versus δ13C data. Using this transformation, the ordinary linear regression (OLR), the reduced major-axis (RMA) and the York methods find the correct Λ, even for large εH/εC. Fitting a dataset with synthetic data with typical random errors let to the same conclusion and positioned the suitability of each regression method. We conclude that fitting of non-transformed δ values should be discontinued. The validity of most previous Λ values is not compromised, although previously obtained Λ values for large εH/εC could be corrected using our error estimation to improve comparison.
Collapse
Affiliation(s)
- Patrick Höhener
- Aix Marseille University - CNRS, UMR 7376, Laboratory of Environmental Chemistry, Marseille, France.
| | - Gwenaël Imfeld
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France
| |
Collapse
|
13
|
Knossow N, Siebner H, Bernstein A. Isotope analysis method for the herbicide bromoxynil and its application to study photo-degradation processes. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122036. [PMID: 31951995 DOI: 10.1016/j.jhazmat.2020.122036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Bromoxynil is an increasingly applied nitrile herbicide used for post-emergent control of annual broadleaved weeds. Compound-specific isotope analysis (CSIA) of the compound is of interest for studying its environmental fate, yet is challenging following its polar nature. We present a CSIA method for bromoxynil that includes offline thin-layer chromatography purification followed by an elemental analyzer isotope ratio mass spectrometer (EA-IRMS). This method was shown to be accurate and precise for δ13C and δ15N analysis of the compound (standard deviation of replicate standards <0.5‰). The method was applied to photodegraded samples, either radiated under laboratory condition with a UV lamp, or exposed to sunlight under environmental conditions. Dominating degradation products were similar in both cases. Nevertheless, isotope effects differed, presenting a strong inverse carbon isotope effect (εC = 4.74 ± 0.82‰) and a weak inverse nitrogen isotope effect (εN = 0.76 ± 0.12‰) for the laboratory experiment, and an insignificant carbon isotope effect (εC = 0.34 ± 0.44‰) and a normal nitrogen isotope effect (εN = -3.70 ± 0.30‰) for the natural conditions experiment. The differences in δ13C vs. δ15N enrichment trends suggest different mechanism for the two processes. Finally, the obtained dual isotope trend for natural conditions provide the basis for studying the dominance of photodegradation as a degradation route in the environment.
Collapse
Affiliation(s)
- Nadav Knossow
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Hagar Siebner
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
14
|
Knossow N, Siebner H, Bernstein A. Isotope Fractionation (δ 13C, δ 15N) in the Microbial Degradation of Bromoxynil by Aerobic and Anaerobic Soil Enrichment Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1546-1554. [PMID: 31986047 DOI: 10.1021/acs.jafc.9b07653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bromoxynil is an increasingly applied nitrile herbicide. Under aerobic conditions, hydration, nitrilation, or hydroxylation of the nitrile group commonly occurs, whereas under anaerobic conditions reductive dehalogenation is common. This work studied the isotope effects associated with these processes by soil cultures. The aerobic soil enrichment culture presented a significant increase in Stenotrophomonas, Pseudomonas, Chryseobacterium, Achromobacter, Azospirillum, and Arcticibacter, and degradation products indicated that nitrile hydratase was the dominant degradation route. The anaerobic culture was dominated by Proteobacteria and Firmicutes phyla with a significant increase in Dethiosulfatibacter, and degradation products indicated reductive debromination as a major degradation route. Distinct dual-isotope trends (δ13C, δ15N) were determined for the two routes: a strong inverse nitrogen isotope effect (εN = 10.56 ± 0.36‰) and an insignificant carbon isotope effect (εC = 0.37 ± 0.36‰) for the aerobic process versus a negligible effect for both elements in the anaerobic process. These trends differ from formerly reported trends for the photodegradation of bromoxynil and enable one to distinguish between the processes in the field.
Collapse
Affiliation(s)
- Nadav Knossow
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology , Ben-Gurion University of the Negev , Sede Boqer Campus , Sede Boqer 8499000 , Israel
| | - Hagar Siebner
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology , Ben-Gurion University of the Negev , Sede Boqer Campus , Sede Boqer 8499000 , Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology , Ben-Gurion University of the Negev , Sede Boqer Campus , Sede Boqer 8499000 , Israel
| |
Collapse
|
15
|
Kuder T, Bernstein A, Gelman F. Derivatization-free method for compound-specific isotope analysis of nonexchangeable hydrogen of 4-bromophenol. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:667-677. [PMID: 30512206 DOI: 10.1002/rcm.8361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Compound-specific isotope analysis (CSIA) is a valuable tool in environmental chemistry and in other fields of science. Currently, hydrogen CSIA of polar compounds containing exchangeable hydrogen is uncommon. To extend the scope of CSIA applications, we present an alternative method of analysis, bypassing the typical step of derivatization. The method is demonstrated for two environmental contaminants, 4-bromophenol (4BP) and 2,4,6-tribromophenol (TBP). METHODS Net isotope ratios obtained by CSIA combine the isotope composition of nonexchangeable, carbon-bound hydrogen and the exchangeable hydroxyl hydrogen. To constrain the isotope composition of the latter, an ethyl acetate solution of 4BP or TBP injected into the IRMS instrument was amended with excess water of known isotope composition. The results were calibrated using bracketing control samples analyzed in sequence with the unknown samples and the known isotope ratios of water present in ethyl acetate solution. RESULTS The analytical precision was comparable to the precision for halogenated compounds without exchangeable hydrogen, analyzed using similar instrumentation. The isotope ratios of the bromophenols correlated with the isotope composition of the water in the sample matrix, suggesting that the hydroxyl group of the target compound remained close to the equilibrium with the sample water during the passage through the instrument. Based on this relationship, the signatures of the nonexchangeable hydrogen were obtained using the isotope composition of sample water as the proxy for the isotope composition of the target compound hydroxyl group. CONCLUSIONS The developed method could be adopted to analysis of other low molecular weight compounds amenable to gas chromatography without the absolute need for derivatization. Currently, the method can be used for samples from laboratory experiments, with high concentrations of the target compound to provide mechanistic insight into the degradation mechanisms. Further work would be required to optimize the method to low concentration environmental samples.
Collapse
Affiliation(s)
- Tomasz Kuder
- School of Geology and Geophysics, University of Oklahoma, 100 E. Boyd Street, SEC 710, Norman, OK, 73019, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Faina Gelman
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel
| |
Collapse
|
16
|
Torrentó C, Bakkour R, Glauser G, Melsbach A, Ponsin V, Hofstetter TB, Elsner M, Hunkeler D. Solid-phase extraction method for stable isotope analysis of pesticides from large volume environmental water samples. Analyst 2019; 144:2898-2908. [PMID: 30896686 DOI: 10.1039/c9an00160c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a valuable tool for assessing the fate of organic pollutants in the environment. However, the requirement of sufficient analyte mass for precise isotope ratio mass spectrometry combined with prevailing low environmental concentrations currently limits comprehensive applications to many micropollutants. Here, we evaluate the upscaling of solid-phase extraction (SPE) approaches for routine CSIA of herbicides. To cover a wide range of polarity, a SPE method with two sorbents (a hydrophobic hypercrosslinked sorbent and a hydrophilic sorbent) was developed. Extraction conditions, including the nature and volume of the elution solvent, the amount of sorbent and the solution pH, were optimized. Extractions of up to 10 L of agricultural drainage water (corresponding to up to 200 000-fold pre-concentration) were successfully performed for precise and sensitive carbon and nitrogen CSIA of the target herbicides atrazine, acetochlor, metolachlor and chloridazon, and metabolites desethylatrazine, desphenylchloridazon and 2,6-dichlorobenzamide in the sub-μg L-1-range. 13C/12C and 15N/14N ratios were measured by gas chromatography-isotope ratio mass spectrometry (GC/IRMS), except for desphenylchloridazon, for which liquid chromatography (LC/IRMS) and derivatization-GC/IRMS were used, respectively. The method validated in this study is an important step towards analyzing isotope ratios of pesticide mixtures in aquatic systems and holds great potential for multi-element CSIA applications to trace pesticide degradation in complex environments.
Collapse
Affiliation(s)
- Clara Torrentó
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Rani Bakkour
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Aileen Melsbach
- Helmholtz Zentrum München, Institute of Groundwater Ecology, 85764 Neuherberg, Germany
| | - Violaine Ponsin
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Martin Elsner
- Helmholtz Zentrum München, Institute of Groundwater Ecology, 85764 Neuherberg, Germany and Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, 81377 Munich, Germany
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
17
|
Melsbach A, Ponsin V, Torrentó C, Lihl C, Hofstetter TB, Hunkeler D, Elsner M. 13C- and 15N-Isotope Analysis of Desphenylchloridazon by Liquid Chromatography-Isotope-Ratio Mass Spectrometry and Derivatization Gas Chromatography-Isotope-Ratio Mass Spectrometry. Anal Chem 2019; 91:3412-3420. [PMID: 30672693 DOI: 10.1021/acs.analchem.8b04906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread application of herbicides impacts surface water and groundwater. Metabolites (e.g., desphenylchloridazon from chloridazon) may be persistent and even more polar than the parent herbicide, which increases the risk of groundwater contamination. When parent herbicides are still applied, metabolites are constantly formed and may also be degraded. Evaluating their degradation on the basis of concentration measurements is, therefore, difficult. This study presents compound-specific stable-isotope analysis (CSIA) of nitrogen- and carbon-isotope ratios at natural abundances as an alternative analytical approach to track the origin, formation, and degradation of desphenylchloridazon (DPC), the major degradation product of the herbicide chloridazon. Methods were developed and validated for carbon- and nitrogen-isotope analysis (δ13C and δ15N) of DPC by liquid chromatography-isotope-ratio mass spectrometry (LC-IRMS) and derivatization gas chromatography-IRMS (GC-IRMS), respectively. Injecting standards directly onto an Atlantis LC-column resulted in reproducible δ13C-isotope analysis (standard deviation <0.5‰) by LC-IRMS with a limit of precise analysis of 996 ng of DPC on-column. Accurate and reproducible δ15N analysis with a standard deviation of <0.4‰ was achieved by GC-IRMS after derivatization of >100 ng of DPC with 160-fold excess of (trimethylsilyl)diazomethane. Application of the method to environmental-seepage water indicated that newly formed DPC could be distinguished from "old" DPC by the different isotopic signatures of the two DPC sources.
Collapse
Affiliation(s)
- Aileen Melsbach
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany
| | - Violaine Ponsin
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Clara Torrentó
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Christina Lihl
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany
| | - Thomas B Hofstetter
- Swiss Federal Institute of Aquatic Science and Technology (Eawag) , 8600 Dübendorf , Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Martin Elsner
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany.,Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , 81377 Munich , Germany
| |
Collapse
|
18
|
Federherr E, Willach S, Roos N, Lange L, Molt K, Schmidt TC. A novel high-temperature combustion interface for compound-specific stable isotope analysis of carbon and nitrogen via high-performance liquid chromatography/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:944-952. [PMID: 26969937 DOI: 10.1002/rcm.7524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/17/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE In aqueous samples compound-specific stable isotope analysis (CSIA) plays an important role. No direct method (without sample preparation) for stable nitrogen isotope analysis (δ(15) N SIA) of non-volatile compounds is known yet. The development of a novel HPLC/IRMS interface based on high-temperature combustion (HTC) for both δ(13) C and δ(15) N CSIA and its proof of principle are described in this study. METHODS To hyphenate high-performance liquid chromatography (HPLC) with isotope ratio mass spectrometry (IRMS) a modified high-temperature combustion total organic carbon analyzer (HTC TOC) was used. A system to handle a continuously large amount of water (three-step drying system), favorable carrier and reaction gas mix and flow, an efficient high-temperature-based oxidation and subsequent reduction system and a collimated beam transfer system were the main requirements to achieve the necessary performance. RESULTS The proof of principle with caffeine solutions of the system succeeded. In this initial testing, both δ(13) C and δ(15) N values of tested compounds were determined with precision and trueness of ≤0.5 ‰. Further tests resulted in lower working limit values of 3.5 μgC for δ(13) C SIA and 20 μgN for δ(15) N SIA, considering an accuracy of ±0.5 ‰ as acceptable. CONCLUSIONS The development of a novel HPLC/IRMS interface resulted in the first system reported to be suitable for both δ(13) C and δ(15) N direct CSIA of non-volatile compounds. This highly efficient system will probably open up new possibilities in SIA-based research fields. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- E Federherr
- Research and Innovation, Elementar Analysensysteme GmbH, Donaustr. 7, 63452, Hanau, Germany
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - S Willach
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - N Roos
- Application Development Support, Agilent Technologies Sales & Services GmbH und Co.KG, Lyoner Straße 20, 60528, Frankfurt am Main, Germany
| | - L Lange
- Research and Innovation, Elementar Analysensysteme GmbH, Donaustr. 7, 63452, Hanau, Germany
| | - K Molt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - T C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|