1
|
Rievaj M, Culková E, Šandorová D, Durdiak J, Bellová R, Tomčík P. A Review of Analytical Techniques for the Determination and Separation of Silver Ions and Its Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1262. [PMID: 37049355 PMCID: PMC10097010 DOI: 10.3390/nano13071262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Many articles have already been published dealing with silver ions and its nanoparticles, but mostly from the environmental and toxicological point of view. This article is a review focused on the various analytical techniques and detection platforms used in the separation and determination of mentioned above species, especially on the trace concentration level. Commonly used are optical methods because of their high sensitivity and easy automation. The separation methods are mainly used for the separation and preconcentration of silver particles. Their combination with other analytical techniques, mainly inductively coupled plasma mass spectrometry (ICP-MS) leads to very low detection limits of analysis. The electrochemical methods are also powerful and perspective mainly because of the fabrication of new sensors designed for silver determination. All methods may be combined with each other to achieve a synergistic improvement of analytical parameters with an impact on sensitivity, selectivity and reliability. The paper comprises a review of all three types of analytical methods on the determination of trace quantities of silver ions and its nanoparticles.
Collapse
|
2
|
Xie H, Wei X, Zhao J, He L, Wang L, Wang M, Cui L, Yu YL, Li B, Li YF. Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155399. [PMID: 35472343 DOI: 10.1016/j.scitotenv.2022.155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Engineered nanomaterials (ENs) can enter the environment, and accumulate in food chains, thereby causing environmental and health problems. Size characterization of ENs is critical for further evaluating the interactions among ENs in biological and ecological systems. Although electron microscope is a powerful tool in obtaining the size information, it has limitations when studying nanomaterials in complex matrices. In this review, we summarized non-electron microscope-based techniques, including chromatography-based, mass spectrometry-based, synchrotron radiation- and neutron-based techniques for detecting the size of ENs in environmental and biological matrices. The advantages and disadvantages of these techniques were highlighted. The perspectives on size characterization of ENs in complex matrices were also presented.
Collapse
Affiliation(s)
- Hongxin Xie
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China.
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
4
|
Guimarães B, Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Impacts of Longer-Term Exposure to AuNPs on Two Soil Ecotoxicological Model Species. TOXICS 2022; 10:toxics10040153. [PMID: 35448414 PMCID: PMC9032579 DOI: 10.3390/toxics10040153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022]
Abstract
The production, use and disposal of nanoparticles (NPs) has been increasing continuously. Due to its unique properties, such as a high resistance to oxidation, gold NPs (AuNPs) are persistent in the environment, including the terrestrial, one of the major sinks of NPs. The present study aimed to assess the effects of AuNPs (from 10 to 1000 mg/kg) on two OECD standard ecotoxicological soil model species, Enchytraeus crypticus and Folsomia candida, based on the reproduction test (28 days) and on a longer-term exposure (56 days), and survival, reproduction, and size were assessed. AuNPs caused no significant hazard to F. candida, but for E. crypticus the lowest tested concentrations (10 and 100 mg AuNPs/kg) reduced reproduction. Further, AuNPs’ toxicity increased from the 28th to the 56th day mainly to F. candida, as observed in animals’ size reduction. Therefore, longer-term exposure tests are recommended as these often reveal increased hazards, not predicted when based on shorter exposures. Additionally, special attention should be given to the higher hazard of low concentrations of NPs, compared to higher concentrations.
Collapse
Affiliation(s)
- Bruno Guimarães
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; (B.G.); (S.I.L.G.)
| | - Susana I. L. Gomes
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; (B.G.); (S.I.L.G.)
| | - Janeck J. Scott-Fordsmand
- Department of Ecoscience, Aarhus University, Vejlsovej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark;
| | - Mónica J. B. Amorim
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; (B.G.); (S.I.L.G.)
- Correspondence:
| |
Collapse
|
5
|
Martins CSM, Araújo AN, de Gouveia LP, Prior JAV. Minimizing the Silver Free Ion Content in Starch Coated Silver Nanoparticle Suspensions with Exchange Cationic Resins. NANOMATERIALS 2022; 12:nano12040644. [PMID: 35214974 PMCID: PMC8877803 DOI: 10.3390/nano12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023]
Abstract
This work describes the optimization of a methodology for the reduction of silver ions from silver nanoparticle suspensions obtained from low-yield laboratory procedures. The laboratory synthesis of silver nanoparticles following a bottom-up approach starting from silver nitrate, originates silver ions that were not reduced to their fundamental state for nanoparticles creation at the end of the process. However, it is well known that silver ions can easily influence chemical assays due to their chemical reactivity properties and can limit biological assays since they interfere with several biological processes, namely intracellular ones, leading to the death of living cells or organisms. As such, the presence of silver ions is highly undesirable when conducting biological assays to evaluate the influence of silver nanoparticles. We report the development of an easy, low-cost, and rapid methodology that is based on cation exchange resins to minimize the silver ion content in a raw suspension of silver nanoparticles while preserving the integrity of the nanomaterials. This procedure preserves the physical-chemical properties of the nanoparticles, thus allowing the purified nanoparticulate systems to be biologically tested. Different types of cationic resins were tested, and the developed methodology was optimized by changing several parameters. A reduction from 92% to 10% of free silver/total silver ratio was achieved when using the Bio-Rad 50W-X8 100–200 mesh resin and a contact time of 15 min. Filtration by vacuum was used to separate the used resin from the nanoparticles suspension, allowing it to be further reused, as well as the purified AgNPs suspension.
Collapse
Affiliation(s)
- Catarina S. M. Martins
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N. Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Pleno de Gouveia
- Pharmacological and Regulatory Sciences Group (PharmaRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (L.P.d.G.); (J.A.V.P.)
| | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (L.P.d.G.); (J.A.V.P.)
| |
Collapse
|
6
|
Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021; 293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Employing new strategies to develop novel composite systems has become a popular area of interest among researchers. Raising people's awareness and their attention to the health and safety issues are key parameters to achieve this purpose. One of the recommended strategies is the utilization of nanoparticles within the matrix of composite materials to improve their physical, mechanical, structural and antimicrobial characteristics. Silver nanoparticles (Ag NPs) have attracted much attention for nanocomposite applications mainly due to their antimicrobial characteristics. Herein, the current review will focus on the different methods for preparing antimicrobial nanocomposites loaded with Ag NPs, the release of Ag NPs from these nanostructures in different media, analyzing techniques for the evaluation of Ag release from nanocomposites, potential applications, and safety issues of nanocomposites containing Ag NPs. The applications of Ag NPs-loaded nanocomposites have been extensively established in food, biomedical, textile, environmental and pharmacological areas mainly due to their antibacterial attributes. Several precautions should be addressed before implementation of Ag NPs in nanocomposites due to the health and safety issues.
Collapse
|
7
|
Evaluation of hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry for speciation of dissolved and nanoparticulate gold and silver. Anal Bioanal Chem 2021; 413:1689-1699. [PMID: 33528600 DOI: 10.1007/s00216-020-03132-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
In this study, hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry has been evaluated for the simultaneous determination of dissolved and nanoparticulate species of gold and silver. Optimization of mobile phase was carried out with special attention to the column recovery of the different species and the resolution between them. Addition of 0.05 mM penicillamine to the mobile phase allowed the quantitative recovery of ionic gold and gold nanoparticles up to 50 nm, whereas 1 mM penicillamine was necessary for quantitative recovery of ionic silver and silver nanoparticles up to 40 nm. The resolution achieved between ionic gold and 10-nm gold nanoparticles was 0.7, whereas it ranged between 0.31 and 0.93 for ionic silver and 10-nm silver nanoparticles, depending on the composition of mobile phase. Best-case mass concentration detection limits for gold and silver species were 0.05 and 0.75 μg L-1, respectively. The developed methods allowed the simultaneous detection of nanoparticulate and dissolved species of gold and silver in less than 10 min. Size determination and quantification of gold and silver species were carried out in different dietary supplements, showing good agreement with the results obtained by electron microscopy and total and ultrafiltrable contents, respectively. Due to the attainable resolution, the quality of the quantitative results is affected by the relative abundance of nanoparticulate and dissolved species of the element and the size of the nanoparticles if present.
Collapse
|
8
|
Cervantes-Avilés P, Keller AA. Incidence of metal-based nanoparticles in the conventional wastewater treatment process. WATER RESEARCH 2021; 189:116603. [PMID: 33189972 DOI: 10.1016/j.watres.2020.116603] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Metal-based nanoparticles (NPs) can be found in wastewater streams, which are significant pathways for the release of NPs to the environment. Determination of the NPs concentration in wastewater streams is important for performing appropriate ecotoxicological evaluations. The aim of this work was to determine the incidence of NPs from 13 different elements throughout the wastewater treatment process by using single particle inductively coupled plasma mass spectrometry (spICP-MS). The incidence was determined in samples of the influent, post-primary treatment and effluent of the activated sludge process, as well as in the reclaimed water of a full-scale wastewater treatment plant (WWTP). In addition, concentration of NPs was determined in the waste activated sludge and in the anaerobic digester. The concentration of metal-based NPs in the influent wastewater were between 1,600 and 10,700 ng/L for elements such as Ti, Fe, Ce, Mg, Zn and Cu, while that for Ni, Al, Ag, Au, Co and Cd was below 100 ng/L. Concentrations in reclaimed water ranged between 0.6 and 721 ng/L, ranked as Mg > Ti > Fe > Cu > Ni > Ce > Zn > Mn > Al > Co > Ag > Cd > Au. Results indicated that the activated sludge process and reclaimed water system removed 84-99% of natural and engineered metal-based NPs from influent to reclaimed water, except for Mg, Ni and Cd where the removal ranged from 70 to 78%. The highest concentrations of NPs were found in the waste activated sludge and anaerobic sludge, ranging from 0.5 to 39,900 ng/L. The size distribution of NPs differed in different wastewater streams within the WWTP, resulting in smaller particles in the effluent (20-180 nm) than in the influent (23-233 nm) for most elements. Conversely, NPs were notably larger in the waste activated sludge samples than in the anaerobic sludge or wastewater, since conditions in the secondary treatment lead to precipitation of several metal-based NPs. The incidence of metal-based NPs from 13 elements in wastewater decreased significatively after the conventional wastewater treatment train. However, anaerobic digesters store high NPs concentrations. Hence, the disposal of sludge needs to take this into account to evaluate the risk of the release of NPs to the environment.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Puebla, Pue, CP 72453, Mexico; University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, CA, 93106, USA
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California at Santa Barbara, CA, 93106, USA; University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Jreije I, Azimzada A, Hadioui M, Wilkinson KJ. Measurement of CeO 2 Nanoparticles in Natural Waters Using a High Sensitivity, Single Particle ICP-MS. Molecules 2020; 25:molecules25235516. [PMID: 33255591 PMCID: PMC7734582 DOI: 10.3390/molecules25235516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
As the production and use of cerium oxide nanoparticles (CeO2 NPs) increases, so does the concern of the scientific community over their release into the environment. Single particle inductively coupled plasma mass spectrometry is emerging as one of the best techniques for NP detection and quantification; however, it is often limited by high size detection limits (SDL). To that end, a high sensitivity sector field ICP-MS (SF-ICP-MS) with microsecond dwell times (50 µs) was used to lower the SDL of CeO2 NPs to below 4.0 nm. Ag and Au NPs were also analyzed for reference. SF-ICP-MS was then used to detect CeO2 NPs in a Montreal rainwater at a concentration of (2.2 ± 0.1) × 108 L−1 with a mean diameter of 10.8 ± 0.2 nm; and in a St. Lawrence River water at a concentration of ((1.6 ± 0.3) × 109 L−1) with a higher mean diameter (21.9 ± 0.8 nm). SF-ICP-MS and single particle time of flight ICP-MS on Ce and La indicated that 36% of the Ce-containing NPs detected in Montreal rainwater were engineered Ce NPs.
Collapse
Affiliation(s)
- Ibrahim Jreije
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; (I.J.); (A.A.); (M.H.)
| | - Agil Azimzada
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; (I.J.); (A.A.); (M.H.)
- Department of Chemical Engineering, McGill University, Montreal, QC H3C 3J7, Canada
| | - Madjid Hadioui
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; (I.J.); (A.A.); (M.H.)
| | - Kevin J. Wilkinson
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; (I.J.); (A.A.); (M.H.)
- Correspondence: ; Tel.: +1-514-343-6741
| |
Collapse
|
10
|
Auclair J, Turcotte P, Gagnon C, Peyrot C, Wilkinson KJ, Gagné F. The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108623. [PMID: 31505268 DOI: 10.1016/j.cbpc.2019.108623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
Silver nanoparticles (nAg) are often produced with different coatings that could influence bioavailability and toxicity in aquatic organisms. The purpose of this study was to examine the influence of 4 surface coatings of nAg of the same core size towards bioavailability and toxicity in juvenile rainbow trout (Oncorhynchus mykiss). Juveniles were exposed to 50 μg/L of 50 nm diameter nAg for 96 h at 15 °C with the following coatings: branched polyethylenimine (bPEI), citrate, polyvinylpyrrolidone (PVP) and silicate (Si). The data revealed that the coatings influenced hepatic Ag loadings in the following trend PVP > citrate > bPEI and Si with estimated bioavailability factors of 28, 18, 6 and 2 L/kg respectively. Hepatic Ag levels were significantly associated with DNA damage and inflammation as determined by arachidonate cyclooxygenase activity. The bPEI and citrate-coated nAg consistently produced the observed effects above in addition to increased mitochondrial electron transport activity and glutathione S-transferase activity. The absence of metallothionein and lipid peroxidation suggests that mechanisms other than the liberation of Ag+ were at play. In conclusion, surface coatings were shown to significantly influence bioavailability and toxic properties of nAg to rainbow trout juveniles.
Collapse
Affiliation(s)
- J Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - P Turcotte
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - C Gagnon
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - C Peyrot
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - K J Wilkinson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada.
| |
Collapse
|
11
|
Hadioui M, Knapp G, Azimzada A, Jreije I, Frechette-Viens L, Wilkinson KJ. Lowering the Size Detection Limits of Ag and TiO 2 Nanoparticles by Single Particle ICP-MS. Anal Chem 2019; 91:13275-13284. [PMID: 31542921 DOI: 10.1021/acs.analchem.9b04007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As the production and use of engineered nanomaterials increase, there is an urgent need to develop analytical techniques that are sufficiently sensitive to be able to measure the very small nanoparticles (NP) at very low concentrations. Although single particle ICP-MS (SP-ICP-MS) is emerging as one of the best techniques for detecting NP, it is limited by relatively high size detection limits for several NP, including many of the oxides. The use of a high sensitivity sector field ICP-MS (ICP-SF-MS), microsecond dwell times, and dry aerosol sample introduction systems were examined with the goal of lowering the size detection limits of the technique. For samples injected as a wet aerosol, size detection limits as low as 4.9 nm for Ag NP and 19.2 nm for TiO2 NP were determined. By using a dry aerosol, a significant gain in ion extraction from the plasma was obtained, which resulted in a noticeable decrease of the size detection limits to 3.5 nm for the Ag NP and 12.1 nm for the TiO2 NP. These substantial improvements were applied to the detection of TiO2 NP in sunscreen lotions, rainwaters, and swimming pool waters. Concentrations of Ti-containing NP between 27 and 193 μL-1 were found in rain samples. Similar NP concentrations were detected in public swimming pools, although much higher particle number concentrations (6046 ± 290 μL-1) were measured in a paddling pool, which was attributed to a high concentration of sunscreen lotions in a small recirculated water volume. High losses of TiO2 NP through adsorption or agglomeration resulted in recoveries ranging from 14-34%.
Collapse
Affiliation(s)
- Madjid Hadioui
- Biophysical Environmental Chemistry Group, Department of Chemistry , University of Montreal , P.O. 6128, Succ. Centre-Ville , Quebec City , Quebec H3C 3J7 , Canada
| | - Geneviève Knapp
- Biophysical Environmental Chemistry Group, Department of Chemistry , University of Montreal , P.O. 6128, Succ. Centre-Ville , Quebec City , Quebec H3C 3J7 , Canada
| | - Agil Azimzada
- Biophysical Environmental Chemistry Group, Department of Chemistry , University of Montreal , P.O. 6128, Succ. Centre-Ville , Quebec City , Quebec H3C 3J7 , Canada.,Department of Chemical Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Ibrahim Jreije
- Biophysical Environmental Chemistry Group, Department of Chemistry , University of Montreal , P.O. 6128, Succ. Centre-Ville , Quebec City , Quebec H3C 3J7 , Canada
| | - Laurie Frechette-Viens
- Biophysical Environmental Chemistry Group, Department of Chemistry , University of Montreal , P.O. 6128, Succ. Centre-Ville , Quebec City , Quebec H3C 3J7 , Canada
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry , University of Montreal , P.O. 6128, Succ. Centre-Ville , Quebec City , Quebec H3C 3J7 , Canada
| |
Collapse
|
12
|
Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta 2019; 200:156-162. [DOI: 10.1016/j.talanta.2019.03.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022]
|
13
|
López-Sanz S, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC, Ríos Á. Analytical metrology for nanomaterials: Present achievements and future challenges. Anal Chim Acta 2019; 1059:1-15. [DOI: 10.1016/j.aca.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 02/01/2023]
|
14
|
Gajdosechova Z, Mester Z. Recent trends in analysis of nanoparticles in biological matrices. Anal Bioanal Chem 2019; 411:4277-4292. [PMID: 30762098 DOI: 10.1007/s00216-019-01620-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
The need to assess the human and environmental risks of nanoparticles (NPs) has prompted an adaptation of existing techniques and the development of new ones. Nanoparticle analysis poses a great challenge as the analytical information has to consider both physical (e.g. size and shape) and chemical (e.g. elemental composition) state of the analyte. Furthermore, one has to contemplate the transformation of NPs during the sample preparation and provide sufficient information about the new species derived from such alteration. Traditional techniques commonly used for NP analysis such as microscopy and light scattering are still frequently used for NPs in simple matrices; however, they have limitations in the analysis of complex environmental and biological samples. On the other hand, recent improvements in data acquisition frequencies and reduction of settling time of ICP-MS brought inorganic mass spectrometry into the forefront of NPs analysis. However, with the increasing demand of analytical information related to NPs, emerging techniques such as enhanced darkfield hyperspectral imaging, nano-SIMS and mass cytometry are in their way to fill the gaps. This trend review presents and discusses the state-of-the-art analytical techniques and sample preparation methods for NP analysis in biological matrices. Graphical abstract ᅟ.
Collapse
Affiliation(s)
| | - Zoltan Mester
- NRC Metrology, 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| |
Collapse
|
15
|
Quantitative characterization of gold nanoparticles by size-exclusion and hydrodynamic chromatography, coupled to inductively coupled plasma mass spectrometry and quasi-elastic light scattering. J Chromatogr A 2017; 1511:59-67. [DOI: 10.1016/j.chroma.2017.06.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
|
16
|
Mozhayeva D, Strenge I, Engelhard C. Implementation of Online Preconcentration and Microsecond Time Resolution to Capillary Electrophoresis Single Particle Inductively Coupled Plasma Mass Spectrometry (CE-SP-ICP-MS) and Its Application in Silver Nanoparticle Analysis. Anal Chem 2017; 89:7152-7159. [DOI: 10.1021/acs.analchem.7b01185] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Darya Mozhayeva
- University of Siegen, Department of Chemistry
and Biology, Adolf-Reichwein-Straße,
2, D-57076 Siegen, Germany
| | - Ingo Strenge
- University of Siegen, Department of Chemistry
and Biology, Adolf-Reichwein-Straße,
2, D-57076 Siegen, Germany
| | - Carsten Engelhard
- University of Siegen, Department of Chemistry
and Biology, Adolf-Reichwein-Straße,
2, D-57076 Siegen, Germany
- Center
of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57076 Siegen, Germany
| |
Collapse
|
17
|
Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 2017; 11:699-709. [PMID: 28627335 DOI: 10.1080/17435390.2017.1344740] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
The widespread use of silver nanoparticles (AgNPs) raises concerns both about their accumulation in crops and human exposure via crop consumption. Plants take up AgNPs through their leaves and roots, but foliar uptake has been largely ignored. To better understand AgNPs-plant interactions, we compared the uptake, phytotoxicity and size distribution of AgNPs in soybean and rice following root versus foliar exposure. At similar AgNP application levels, foliar exposure led to 17-200 times more Ag bioaccumulation than root exposure. Root but not foliar exposure significantly reduced plant biomass, while root exposure increased the malondialdehyde and H2O2 contents of leaves to a larger extent than did foliar exposure. Following either root or foliar exposure, Ag-containing NPs larger (36.0-48.9 nm) than the originally dosed NPs (17-18 nm) were detected within leaves. These particles were detected using a newly developed macerozyme R-10 tissue extraction method followed by single-particle inductively coupled plasma mass spectrometry. In response to foliar exposure, these NPs were stored in the cell wall and plamalemma of leaves. NPs were also detected in planta following Ag ion exposure, indicating their in vivo formation. Leaf-to-leaf and root-to-leaf translocation of NPs in planta was observed but the former did not alter the size distribution of the NPs. Our observations point to the possibility that fruits, seeds and other edible parts may become contaminated by translocation processes in plants exposed to AgNPs. These results are an important contribution to improve the risk assessment of NPs under environmental exposure scenarios.
Collapse
Affiliation(s)
- Cheng-Cheng Li
- a Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , PR China
- b University of Chinese Academy of Sciences , Beijing , PR China
- c Department of Environmental Science and Engineering, College of Environment and Resources , Xiangtan University , Xiangtan , PR China
| | - Fei Dang
- a Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , PR China
| | - Min Li
- a Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , PR China
- b University of Chinese Academy of Sciences , Beijing , PR China
| | - Min Zhu
- d PerkinElmer Management (Shanghai) Co., Ltd , Shanghai , PR China
| | - Huan Zhong
- e State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing , PR China
| | | | - Dong-Mei Zhou
- a Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , PR China
| |
Collapse
|
18
|
Duncan TV, Singh G. Nanomaterials in Food Products: A New Analytical Challenge. NANOTECHNOLOGIES IN FOOD 2017. [DOI: 10.1039/9781782626879-00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter focuses on the problem of detecting, characterizing, and determining the concentration of nanomaterials in foods and other biological matrices. After providing an overview of the unique challenges associated with nanoparticle metrology in complex media, sample pretreatment methods (including extraction, digestion, and inline chromatographic separation), imaging analysis, and nanomaterial quantification methods are presented in detail. The chapter also addresses numerous methods under development, including atmospheric scanning electron microscopy, single-particle inductively coupled plasma mass spectrometry, immunological detection methods, and optical techniques such surface plasmon resonance. The chapter concludes with an overview of the research needs in this area.
Collapse
Affiliation(s)
- Timothy V. Duncan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition Bedford Park Illinois USA
| | - Gurmit Singh
- Food Research Division, Bureau of Chemical Safety, Health Canada Ottawa Canada
| |
Collapse
|
19
|
Bitragunta SP, Palani SG, Gopala A, Sarkar SK, Kandukuri VR. Detection of TiO 2 Nanoparticles in Municipal Sewage Treatment Plant and Their Characterization Using Single Particle ICP-MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:595-600. [PMID: 28160041 DOI: 10.1007/s00128-017-2031-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Establishment of analytical methods for detection and characterization of nanoparticles in the environment are gaining prominence across the globe. The present study was designed to quantify titanium (Ti) and to characterize titanium dioxide nanoparticles (TNP) from a municipal sewage treatment plant, by inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of Ti & TNP were 1085 & 13.6 mg/kg in the influent sewage and 298 & 3.3 mg/kg in the aeration tank contents, respectively. The size of TNP ranged between 71-145 nm in the sludge fraction. Determining environmentally realistic concentrations of TNP could serve as a tracer material for characterization of those nanomaterials with similar size and aggregation properties. Furthermore, inference of Ti and TNP in municipal sewage in the study will also help in environmental risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Siva Prasad Bitragunta
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Sankar Ganesh Palani
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India.
| | - Anil Gopala
- Verder Scientific Pvt. Ltd., Hyderabad, Telangana, 500076, India
| | - Santosh Kumar Sarkar
- Department of Marine Science, University of Calcutta, Calcutta, West Bengal, 700019, India
| | - Venugopal Reddy Kandukuri
- Central Facilities for Research and Development, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
20
|
Fréchette-Viens L, Hadioui M, Wilkinson KJ. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides. Talanta 2017; 163:121-126. [DOI: 10.1016/j.talanta.2016.10.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
|