1
|
Ma DD, Shi WJ, Lu ZJ, Zhang JG, Hu LX, Huang Z, Li SY, Long XB, Liu X, Huang CS, Ying GG. Antitussive drug dextromethorphan induces developmental impairment in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137042. [PMID: 39742866 DOI: 10.1016/j.jhazmat.2024.137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Dextromethorphan (DXM) is a common ingredient in cough and cold remedies. Despite its widespread presence in aquatic environments, the impact of DXM on fish remains largely unknown. This study evaluated the developmental impairment of zebrafish embryos exposed to DXM from 2 hours post-fertilization (hpf) to 14 days post-fertilization (dpf) at five different exposure concentrations: 0.06, 0.61, 8.12, 76.3, and 827 μg/L. Results indicated a concentration-dependent increase in bioconcentration of DXM at 7 dpf and 14 dpf. The LC50 at 14 dpf was 93.3 μg/L, demonstrating DXM has a high toxicity to zebrafish larvae. Additionally, DXM reduced body length and heart rate, and elevated malformation in a dose-dependent manner in larvae at 72 hpf, 7 dpf and 14 dpf. Biochemical analysis (DNA conformations and 8-hydroxy-2deoxyguanosine level) and transcriptomic analysis (DNA damage and cell cycle) indicated that DXM triggered DNA damage in larvae. Concurrently, DXM triggered DNA damage response (e.g., cell cycle arrest, DNA repair failure, and cell apoptosis) in larvae at 7 dpf and 14 dpf. These results help explain DXM caused severe developmental impairment via DNA damage-related pathways in zebrafish larvae, highlighting the importance of focusing on ecological and public health risks of DXM in natural environment.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
2
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
3
|
Mass Spectrometric Methods for Non-Targeted Screening of Metabolites: A Future Perspective for the Identification of Unknown Compounds in Plant Extracts. SEPARATIONS 2022. [DOI: 10.3390/separations9120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phyto products are widely used in natural products, such as medicines, cosmetics or as so-called “superfoods”. However, the exact metabolite composition of these products is still unknown, due to the time-consuming process of metabolite identification. Non-target screening by LC-HRMS/MS could be a technique to overcome these problems with its capacity to identify compounds based on their retention time, accurate mass and fragmentation pattern. In particular, the use of computational tools, such as deconvolution algorithms, retention time prediction, in silico fragmentation and sophisticated search algorithms, for comparison of spectra similarity with mass spectral databases facilitate researchers to conduct a more exhaustive profiling of metabolic contents. This review aims to provide an overview of various techniques and tools for non-target screening of phyto samples using LC-HRMS/MS.
Collapse
|
4
|
Driver EM, Bowes DA, Halden RU, Conroy-Ben O. Implementing wastewater monitoring on American Indian reservations to assess community health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153882. [PMID: 35304015 DOI: 10.1016/j.scitotenv.2022.153882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Healthcare access and health-related information for American Indian/Alaska Native (AIAN) communities is often limited. A potential solution to acquire additional population level health data is through wastewater-derived measurements, a method termed wastewater-based epidemiology (WBE), however, due to often remote locations with rudimentary wastewater infrastructure, the feasibility of implementing WBE on an AIAN reservation is unclear. In this study, we i) performed a preliminary assessment of percent connectivity of the top 10 most populous tribal reservations using available wastewater treatment facility information from the Environmental Protection Agency Enforcement and Compliance History Online database and satellite imagery, and ii) performed a sampling campaign on a select tribal reservation to measure common WBE indicators of health and behavior. Results indicate that, on average, approximately 81 ± 23% of tribal residents are connected to some form of aggregated wastewater collection system. On the sampled reservation, 6 communities comprising 7500 people were sampled across 160 km of reservation land using active samplers successfully deployed within the sewer network upstream of terminal lagoon systems. Results showed detectable levels of 7 opioids, 1 opioid maintenance medication, 5 stimulants, 1 hallucinogen, and chemical indicators of alcohol, nicotine, caffeine, and an over-the-counter cough suppressant. These results illustrated the feasibility in implementing WBE in rural and remote communities where information on community health may be lacking.
Collapse
Affiliation(s)
- Erin M Driver
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States of America
| | - Devin A Bowes
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States of America; School for the Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287, United States of America
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States of America; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S Campus Dr, Tempe, AZ 85281, United States of America; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, United States of America; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, United States of America
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S Campus Dr, Tempe, AZ 85281, United States of America.
| |
Collapse
|
5
|
Sá AS, Feitosa RP, Honório L, Peña-Garcia R, Almeida LC, Dias JS, Brazuna LP, Tabuti TG, Triboni ER, Osajima JA, da Silva-Filho EC. A Brief Photocatalytic Study of ZnO Containing Cerium towards Ibuprofen Degradation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5891. [PMID: 34640286 PMCID: PMC8510120 DOI: 10.3390/ma14195891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/02/2022]
Abstract
Ibuprofen (IBU) is one of the most-sold anti-inflammatory drugs in the world, and its residues can reach aquatic systems, causing serious health and environmental problems. Strategies are used to improve the photocatalytic activity of zinc oxide (ZnO), and thosethat involvethe inclusion of metalhave received special attention. The aim of this work was to investigate the influence of the parameters and toxicity of a photoproduct using zinc oxide that contains cerium (ZnO-Ce) for the photodegradation of ibuprofen. The parameters include the influence of the photocatalyst concentration (0.5, 0.5, and 1.5 g L-1) as well as the effects of pH (3, 7, and 10), the effect of H2O2, and radical scavengers. The photocatalyst was characterized by Scanning Electron Microscopy-Energy Dispersive Spectroscopy, Transmission electron microscopy, Raman, X-Ray Diffraction, surface area, and diffuse reflectance. The photocatalytic activity of ibuprofen was evaluated in an aqueous solution under UV light for 120 min. The structural characterization by XRD and SEM elucidated the fact that the nanoparticle ZnO contained cerium. The band gap value was 3.31 eV. The best experimental conditions for the photodegradation of IBU were 60% obtained in an acidic condition using 0.50 g L-1 of ZnO-Ce in a solution of 20 ppm of IBU. The presence of hydrogen peroxide favored the photocatalysis process. ZnO-Ce exhibited good IBU degradation activity even after three photocatalytic cycles under UV light. The hole plays akey role in the degradation process of ibuprofen. The toxicity of photolyzed products was monitored against Artemia salina (bioindicator) and did not generate toxic metabolites. Therefore, this work provides a strategic design to improve ZnO-Ce photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Alexandro S. Sá
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Ministro Petronio Portela, Federal University of Píaui, Teresina 64049-550, Piaui, Brazil; (A.S.S.); (R.P.F.); (L.H.); (R.P.-G.)
| | - Rodrigo P. Feitosa
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Ministro Petronio Portela, Federal University of Píaui, Teresina 64049-550, Piaui, Brazil; (A.S.S.); (R.P.F.); (L.H.); (R.P.-G.)
| | - Luzia Honório
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Ministro Petronio Portela, Federal University of Píaui, Teresina 64049-550, Piaui, Brazil; (A.S.S.); (R.P.F.); (L.H.); (R.P.-G.)
| | - Ramón Peña-Garcia
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Ministro Petronio Portela, Federal University of Píaui, Teresina 64049-550, Piaui, Brazil; (A.S.S.); (R.P.F.); (L.H.); (R.P.-G.)
- Academic Unit of Santo Agostinho, Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil
| | - Luciano C. Almeida
- Chemical Engineering Department, Federal University of Pernambuco, Recife 52171-900, Pernambuco, Brazil;
| | - Juliana S. Dias
- Laboratory of Nanotechnology and Process Engineering, Chemistry Engineering Department, University of São Paulo, Lorena 12602-810, São Paulo, Brazil; (J.S.D.); (L.P.B.); (T.G.T.); (E.R.T.)
| | - Lorena P. Brazuna
- Laboratory of Nanotechnology and Process Engineering, Chemistry Engineering Department, University of São Paulo, Lorena 12602-810, São Paulo, Brazil; (J.S.D.); (L.P.B.); (T.G.T.); (E.R.T.)
| | - Thiago G. Tabuti
- Laboratory of Nanotechnology and Process Engineering, Chemistry Engineering Department, University of São Paulo, Lorena 12602-810, São Paulo, Brazil; (J.S.D.); (L.P.B.); (T.G.T.); (E.R.T.)
| | - Eduardo R. Triboni
- Laboratory of Nanotechnology and Process Engineering, Chemistry Engineering Department, University of São Paulo, Lorena 12602-810, São Paulo, Brazil; (J.S.D.); (L.P.B.); (T.G.T.); (E.R.T.)
| | - Josy A. Osajima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Ministro Petronio Portela, Federal University of Píaui, Teresina 64049-550, Piaui, Brazil; (A.S.S.); (R.P.F.); (L.H.); (R.P.-G.)
| | - Edson C. da Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Ministro Petronio Portela, Federal University of Píaui, Teresina 64049-550, Piaui, Brazil; (A.S.S.); (R.P.F.); (L.H.); (R.P.-G.)
| |
Collapse
|
6
|
Bai R, Sun D, Shan Y, Guo Z, Chu D, Fawcett JP, Gu J. Disposition and fate of polyoxyethylene glycerol ricinoleate as determined by LC-Q-TOF MS coupled with MSALL, SWATH and HR MS/MS techniques. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Langa I, Gonçalves R, Tiritan ME, Ribeiro C. Wastewater analysis of psychoactive drugs: Non-enantioselective vs enantioselective methods for estimation of consumption. Forensic Sci Int 2021; 325:110873. [PMID: 34153554 DOI: 10.1016/j.forsciint.2021.110873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The consumption of licit and illicit psychoactive drugs (PAD) is ubiquitous in all communities and a serious public health problem. Measuring drug consumption is difficult but essential for health-care professionals, risk assessment and policymakers. Different sources of information have been used for a comprehensive analysis of drug consumption. Among them, Wastewater based epidemiology (WBE) emerged as an essential and complementary methodology for estimating licit and illicit drugs consumption. This methodology can be used for quantification of unchanged drugs or their human-specific metabolites in wastewater for estimation of consumption or screening of new PAD. Although some limitations are still being pointed out (e.g., estimation of the population size, use of suitable biomarkers or pharmacokinetics studies), the non-invasive and potential for monitoring real-time data on geographical and temporal trends in drug use have been showing its capacity as a routine and complementary tool. Chromatographic methods, both non-enantioselective and enantioselective are the analytical tools used for quantification of PAD in wastewaters and further estimation of consumption. Therefore, this manuscript aims to summarize and critically discuss the works used for wastewater analysis of PAD based on WBE using non-enantioselective and enantioselective methods for estimation of consumption. Non-enantioselective methods are among the most reported including for chiral PAD. Nevertheless, a trend has been seen towards the development of enantioselective methods as most PAD are chiral and determination of the enantiomeric fraction can provide additional information (e.g., distinction between consumption or direct disposal, or manufacture processes) and fulfill some WBE gaps.
Collapse
Affiliation(s)
- Ivan Langa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Ricardo Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Cláudia Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
8
|
Bade R, White JM, Chen J, Baz-Lomba JA, Been F, Bijlsma L, Burgard DA, Castiglioni S, Salgueiro-Gonzalez N, Celma A, Chappell A, Emke E, Steenbeek R, Wang D, Zuccato E, Gerber C. International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period. WATER RESEARCH 2021; 193:116891. [PMID: 33582495 DOI: 10.1016/j.watres.2021.116891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
Collapse
Affiliation(s)
- Richard Bade
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jason M White
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jingjing Chen
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | | | - Frederic Been
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Daniel A Burgard
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erik Emke
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Ruud Steenbeek
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, P. R. China, 116026
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
9
|
de la Fuente D, Tejedor E, Cuesta MJ, Tejedor JM, Correa A, Benedi J. Stability of seized amphetamine during 32 months of storage. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2020. [DOI: 10.1016/j.fsir.2020.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020; 25:E5204. [PMID: 33182304 PMCID: PMC7664861 DOI: 10.3390/molecules25215204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) are abundantly used by people, and some of them are excreted unaltered or as metabolites through urine, with the sewage being the most important source to their release to the environment. These compounds are in almost all types of water (wastewater, surface water, groundwater, etc.) at concentrations ranging from ng/L to µg/L. The isolation and concentration of the PPCPs from water achieves the appropriate sensitivity. This step is mostly based on solid-phase extraction (SPE) but also includes other approaches (dispersive liquid-liquid microextraction (DLLME), buckypaper, SPE using multicartridges, etc.). In this review article, we aim to discuss the procedures employed to extract PPCPs from any type of water sample prior to their determination via an instrumental analytical technique. Furthermore, we put forward not only the merits of the different methods available but also a number of inconsistencies, divergences, weaknesses and disadvantages of the procedures found in literature, as well as the systems proposed to overcome them and to improve the methodology. Environmental applications of the developed techniques are also discussed. The pressing need for new analytical innovations, emerging trends and future prospects was also considered.
Collapse
Affiliation(s)
- Daniele Sadutto
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| |
Collapse
|
11
|
Bijlsma L, Bade R, Been F, Celma A, Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal Chim Acta 2020; 1145:132-147. [PMID: 33453874 DOI: 10.1016/j.aca.2020.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, are constantly emerging in the drug market and being commercialized in different ways and forms. Their use continues to cause public health problems and is therefore of major concern in many countries. Monitoring NPS use, however, is arduous and different sources of information are required to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled urine and wastewater has shown great potential, adding a different and complementary light on this issue. However, it also presents analytical challenges and limitations that must be taken into account such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS on the drug market creating a scenario with constantly moving analytical targets. Analytical investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This work aims to discuss the advantages and disadvantages of the different data acquisition workflows and data exploration approaches in mass spectrometry, but also pays attention to new developments such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and describes the experience gathered within different collaborations and projects supported by key research articles and illustrative practical examples.
Collapse
Affiliation(s)
- L Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain.
| | - R Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, South Australia, 5000, Australia.
| | - F Been
- KWR Water Research Institute, Chemical Water Quality and Health, 3430 BB, Nieuwegein, the Netherlands
| | - A Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, 20156, Milan, Italy
| |
Collapse
|
12
|
Pandopulos AJ, Bade R, O'Brien JW, Tscharke BJ, Mueller JF, Thomas K, White JM, Gerber C. Towards an efficient method for the extraction and analysis of cannabinoids in wastewater. Talanta 2020; 217:121034. [DOI: 10.1016/j.talanta.2020.121034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
|
13
|
Sancho Santos ME, Grabicová K, Steinbach C, Schmidt-Posthaus H, Šálková E, Kolářová J, Vojs Staňová A, Grabic R, Randák T. Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario). CHEMOSPHERE 2020; 254:126882. [PMID: 32957289 DOI: 10.1016/j.chemosphere.2020.126882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine, mainly consumed as an illicit drug, is a potent addictive psychostimulant that has been detected in surface water at concentrations ranging from nanograms to micrograms per litre, especially in Middle and East Europe. The aim of this study was to expose brown trout (Salmo trutta fario) to environmental (1 μg L-1) and higher (50 μg L-1) concentrations of methamphetamine for 35 days with a four-day depuration phase to assess the possible negative effects on fish health. Degenerative liver and heart alterations, similar to those described in mammals, were observed at both concentrations, although at different intensities. Apoptotic changes in hepatocytes, revealed by activated caspase-3, were found in exposed fish. The parent compound and a metabolite (amphetamine) were detected in fish tissues in both concentration groups, in the order of kidney > liver > brain > muscle > plasma. Bioconcentration factors ranged from 0.13 to 80. A therapeutic plasma concentration was reached for both compounds in the high-concentration treatment. This study indicates that chronic environmental concentrations of methamphetamine can lead to health issues in aquatic organisms.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Heike Schmidt-Posthaus
- University of Bern, Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Laenggassstrasse 122, 3001, Bern, Switzerland
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
14
|
Bade R, White JM, Nguyen L, Tscharke BJ, Mueller JF, O'Brien JW, Thomas KV, Gerber C. Determining changes in new psychoactive substance use in Australia by wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139209. [PMID: 32417485 DOI: 10.1016/j.scitotenv.2020.139209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Measuring community consumption of new psychoactive substances (NPS) is notoriously difficult to assess by traditional means such as surveys and seizure data. Previously, we used the approach to demonstrate the prevalence of NPS on a national scale. In the current study we explored the temporal resolution for the analysis of NPS in wastewater from Australia. Samples covering all States and Territories in Australia and both metropolitan and regional areas and were collected bimonthly from October 2017-June 2018 and October 2019-February 2020. A qualitative screening method was applied, screening for 201 NPS. In total, 15 substances were found from a variety of classes of NPS. The most prevalent class was synthetic cathinones, with pentylone, N-ethylpentylone and ethylone found in all periods in at least one site in the earlier sampling period, as well as the amphetamine-like paramethoxyamphetamine (PMA). In the latter period, synthetic cathinones were also the most prevalent, including eutylone, marking the first time that this compound has been detected in wastewater. This study shows the application of wastewater analysis to detect outbreaks of NPS use and temporal differences among sites.
Collapse
Affiliation(s)
- Richard Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia
| | - Jason M White
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia
| | - Lynn Nguyen
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, 4102, Queensland, Australia
| | - Cobus Gerber
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
15
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
16
|
Soo JY, Wiese MD, Dyson RM, Gray CL, Clarkson AN, Morrison JL, Berry MJ. Methamphetamine administration increases hepatic CYP1A2 but not CYP3A activity in female guinea pigs. PLoS One 2020; 15:e0233010. [PMID: 32396581 PMCID: PMC7217439 DOI: 10.1371/journal.pone.0233010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Methamphetamine use has increased over the past decade and the first use of methamphetamine is most often when women are of reproductive age. Methamphetamine accumulates in the liver; however, little is known about the effect of methamphetamine use on hepatic drug metabolism. Methamphetamine was administered on 3 occassions to female Dunkin Hartley guinea pigs of reproductive age, mimicking recreational drug use. Low doses of test drugs caffeine and midazolam were administered after the third dose of methamphetamine to assess the functional activity of cytochrome P450 1A2 and 3A, respectively. Real-time quantitative polymerase chain reaction was used to quantify the mRNA expression of factors involved in glucocorticoid signalling, inflammation, oxidative stress and drug transporters. This study showed that methamphetamine administration decreased hepatic CYP1A2 mRNA expression, but increased CYP1A2 enzyme activity. Methamphetamine had no effect on CYP3A enzyme activity. In addition, we found that methamphetamine may also result in changes in glucocorticoid bioavailability, as we found a decrease in 11β-hydroxysteroid dehydrogenase 1 mRNA expression, which converts inactive cortisone into active cortisol. This study has shown that methamphetamine administration has the potential to alter drug metabolism via the CYP1A2 metabolic pathway in female guinea pigs. This may have clinical implications for drug dosing in female methamphetamine users of reproductive age.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, Australia
- Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Michael D. Wiese
- Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
| | - Rebecca M. Dyson
- Department of Paediatrics and Child Health, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Clint L. Gray
- Department of Paediatrics and Child Health, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, Australia
- Health and Biomedical Innovation, University of South Australia, Adelaide, Australia
- * E-mail: (JLM); (MJB)
| | - Mary J. Berry
- Department of Paediatrics and Child Health, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- * E-mail: (JLM); (MJB)
| |
Collapse
|
17
|
Pandopulos AJ, Gerber C, Tscharke BJ, O'Brien J, White JM, Bade R. A sensitive analytical method for the measurement of neurotransmitter metabolites as potential population biomarkers in wastewater. J Chromatogr A 2020; 1612:460623. [DOI: 10.1016/j.chroma.2019.460623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
|
18
|
Monitoring consumption of methadone and heroin in major Chinese cities by wastewater-based epidemiology. Drug Alcohol Depend 2019; 205:107532. [PMID: 31683242 DOI: 10.1016/j.drugalcdep.2019.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methadone maintenance treatment (MMT) services have been used in China for treatment of heroin dependence. But no study has been conducted to assess the appropriateness of MMT distribution and the potential abuse of methadone in China. This study aims to do that through a nationwide estimation of methadone consumption in China via wastewater-based epidemiology and subsequently compare it with MMT data and level of heroin abuse. METHODS Wastewater samples were collected from 53 wastewater treatment plants in 27 major cities that cover all geographic regions of China. Methadone and pure heroin consumptions were estimated based on influent concentrations of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), morphine and codeine. RESULTS Drug residues were detected in most samples. The ratio of EDDP/methadone was around 2 in influents and methadone and EDDP loads were strongly correlated, indicating that they originated from human consumption. Both influent methadone and EDDP loads in Southwest and Northwest China were significantly higher than those in other regions. The highest estimated consumptions of methadone and heroin in China were 22.0 ± 2.1 mg/1000 in./d and 263.9 ± 115.9 mg/1000 in./d, respectively. There was a significant positive correlation between methadone and heroin consumptions. CONCLUSIONS Consumption of methadone in China was primarily from MMT services. The use of methadone and heroin displayed a clear geographical pattern: it is higher in the western inland regions than in the eastern regions. This study has shown that the distribution of MMT services is reflective of the level of heroin abuse in different regions of China.
Collapse
|
19
|
Yadav MK, Kumar A, Short MD, Nidumolu B, Saint CP. Aquatic Phytotoxicity to Lemna minor of Three Commonly Used Drugs of Addiction in Australia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:710-716. [PMID: 31482305 DOI: 10.1007/s00128-019-02708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The manufacturing and consumption of drugs of addiction has increased globally and their widespread occurrence in the environment is an emerging concern. This study evaluated the phytotoxicity of three compounds: methamphetamine, codeine and morphine; commonly reported in Australian urban water, to the aquatic plant Lemna minor under controlled conditions. L. minor was sensitive to lower drug concentrations when administered in multi-compound mixtures (100-500 µg L-1) than when applied individually (range 600-2500 µg L-1), while no adverse effects were observed at environmentally-relevant concentrations (1-5 µg L-1) detected in wastewater effluent. In conclusion, the results show that the concentrations of these compounds discharged into the environment are unlikely to pose adverse phytotoxic effects. These three compounds are known to be the most stable of their group under such conditions indicating that with this respect it is safe to use recycled water for existing regulated reclaimed purposes including agricultural or parklands irrigation or replenishing surface and groundwater. However, more research on the analysis of methamphetamines and opiates in municipal effluents is needed to reassure the likely environmental hazard of these neuroactive drug classes to aquatic organisms. Given the ever-growing production and aquatic disposal of discharge wastewater globally, this study provides timely and valuable insights into the likely drug-related impacts of effluent disposal on aquatic plants in receiving environments.
Collapse
Affiliation(s)
- Meena K Yadav
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Anu Kumar
- CSIRO, Land and Water, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Michael D Short
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Bhanu Nidumolu
- CSIRO, Land and Water, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Christopher P Saint
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- Division of Information Technology, Engineering and the Environment, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
20
|
|
21
|
Lane D, Liaghati Mobarhan Y, Soong R, Ning P, Bermel W, Tabatabaei Anaraki M, Wu B, Heumann H, Gundy M, Boenisch H, Jeong TY, Kovacevic V, Simpson MJ, Simpson AJ. Understanding the Fate of Environmental Chemicals Inside Living Organisms: NMR-Based 13C Isotopic Suppression Selects Only the Molecule of Interest within 13C-Enriched Organisms. Anal Chem 2019; 91:15000-15008. [DOI: 10.1021/acs.analchem.9b03596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Lane
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Yalda Liaghati Mobarhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Paris Ning
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Maryam Tabatabaei Anaraki
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Bing Wu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | - Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Vera Kovacevic
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Myrna J. Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - André J. Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
22
|
Yadav MK, Short MD, Gerber C, Awad J, van den Akker B, Saint CP. Removal of emerging drugs of addiction by wastewater treatment and water recycling processes and impacts on effluent-associated environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:13-22. [PMID: 31100664 DOI: 10.1016/j.scitotenv.2019.05.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Drugs of addiction, have been recognized as potential contaminants of concern to the environment. Effluent wastewater discharge is a major source of contamination to aquatic receiving environments. A year-long monitoring program was undertaken in Australia to characterise the fate of four emerging drugs of addiction: methamphetamine; MDMA; pharmaceutical opioids: codeine and morphine and a metabolite: benzoylecgonine in four wastewater treatment plants operating with different secondary treatment technologies: conventional activated sludge (CAS), membrane bioreactors (MBR), integrated fixed-film AS (IFAS) and sequencing batch reactor (SBR). The effect of subsequent tertiary treatment (coagulation/flocculation) on the removal efficiency was also assessed. Drugs were detected in influent and effluent samples (mean concentration ranged from 43-4777 and 17-1721 ng/L, respectively). Treated effluents had noticeably lower levels compared to raw influents. Removal efficiency of compounds depended on the secondary treatment employed, with IFAS and MBR performing the best with significant removal of compounds (≈90%) followed by CAS (54-96%) and lastly SBR (42-83%). Despite the low levels of drugs measured after the secondary treatment, near complete removal after tertiary treatment (≈99%) was recorded, which demonstrated the effectiveness of using the coagulation/flocculation process as an effective step for enhancing the removal efficiency. The levels of drugs were at a low level in the effluents released into the environment and used for recycling and all posed a low environmental risk in urban water courses based on the risk assessment. The information given here provides new and useful information to the water industry and regulators on the efficiency of drug removal in a range of wastewater treatment configurations.
Collapse
Affiliation(s)
- Meena K Yadav
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Michael D Short
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Cobus Gerber
- School of Pharmacy and Medical Science, City East Campus, Adelaide, SA 5000, Australia
| | - John Awad
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ben van den Akker
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Christopher P Saint
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Division of Information Technology, Engineering and the Environment, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
23
|
Sequential window acquisition of all theoretical fragments versus information dependent acquisition for suspected-screening of pharmaceuticals in sediments and mussels by ultra-high pressure liquid chromatography-quadrupole time-of-flight-mass spectrometry. J Chromatogr A 2019; 1595:81-90. [DOI: 10.1016/j.chroma.2019.02.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/28/2023]
|
24
|
Removal of the drug procaine from acidic aqueous solutions using a flow reactor with a boron-doped diamond anode. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Centazzo N, Frederick BM, Jacox A, Cheng SY, Concheiro-Guisan M. Wastewater analysis for nicotine, cocaine, amphetamines, opioids and cannabis in New York City. Forensic Sci Res 2019; 4:152-167. [PMID: 31304444 PMCID: PMC6609350 DOI: 10.1080/20961790.2019.1609388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/26/2023] Open
Abstract
According to current surveys and overdoses data, there is a drug crisis in the USA. Wastewater-based epidemiology (WBE) is an evolving discipline that analyses wastewater samples to detect drugs and metabolites to estimate drug consumption in a certain community. This study demonstrates how drug relative presence could be tracked by testing wastewater, providing real-time results, in different boroughs in New York City throughout 1 year. We developed and fully validated two analytical methods, one for 21 drugs and metabolites, including nicotine, cocaine, amphetamines, opioids and cannabis markers; and another for the normalization factor creatinine. Both methods were performed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using positive electrospray ionization, achieving a limit of quantification of 5–10 ng/L for drugs and metabolites, and 0.01 mg/L for creatinine. These methods were applied to 48 one-time grab wastewater samples collected from six wastewater treatment plants in New York City (Manhattan, The Bronx, Queens and Brooklyn), eight different times throughout 2016, before and after major holidays, including Memorial Day, 4th of July, Labour Day and New Year’s. In this study, the drug group normalized concentrations present in the wastewater samples, in decreasing order, were cocaine, nicotine, opioids, cannabis and amphetamines. When looking at individual compounds, the one with the highest normalized concentration was benzoylecgonine (BE), followed by cotinine, morphine and 11-nor-9-carboxy-tetrahydrocannabinol (THCCOOH). To estimate community use, these concentrations were multiplied by the corresponding correction factor, and the most present were THCCOOH, followed by BE, cotinine and morphine. When comparing the treatment plants by drug group (nicotine, cocaine, amphetamines, opioids and cannabis), samples collected from The Bronx had the highest normalized concentrations for nicotine, cocaine and opioids; The Bronx and Manhattan for cannabis; and Manhattan and Queens for amphetamines. In most of the cases, no effect due to holiday was observed. This study provides the first snapshot of drug use in New York City and how that changes between key calendar dates employing wastewater analysis.
Collapse
Affiliation(s)
- Nicole Centazzo
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Bonnie-Marie Frederick
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Alethea Jacox
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Marta Concheiro-Guisan
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| |
Collapse
|
26
|
Trawiński J, Skibiński R. Rapid degradation of clozapine by heterogeneous photocatalysis. Comparison with direct photolysis, kinetics, identification of transformation products and scavenger study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:557-567. [PMID: 30776627 DOI: 10.1016/j.scitotenv.2019.02.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
In this study TiO2-mediated photocatalytic degradation of the persistent drug clozapine under the simulated solar radiation was studied for the first time. The experiments were conducted both in the ultrapure and river water, which enabled the assessment of the organic matrix impact. The direct and indirect photolysis experiments were conducted for a comparison. Influence of the catalyst loading on the efficiency of the process was also assessed, and the highest catalyst loading (300 mg L-1) was found to be the most effective. The TiO2 photocatalysis was extremely effective for clozapine degradation - the decomposition was almost 300 times faster in comparison to the direct photolysis (t1/2 = 1.7 min, neither clozapine, nor the intermediates were detected after 20 min of irradiation), and presence of the organic matrix did not negatively affect the process. Nevertheless the photocatalytic process turned out to be highly sensitive to act of the ROS scavengers. Thirteen transformation products (TPs) were found and their structures were elucidated by the means of high resolution mass spectrometry. Properties - toxicity, biodegradability, BCF and BAF - of TPs and the parent molecule were estimated with the use of computational methods. Identified TPs were found as generally less toxic and more biodegradable than clozapine.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
27
|
Mercan S, Kuloglu M, Tekin T, Turkmen Z, Dogru AO, Safran AN, Acikkol M, Asicioglu F. Wastewater-based monitoring of illicit drug consumption in Istanbul: Preliminary results from two districts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:231-238. [PMID: 30504023 DOI: 10.1016/j.scitotenv.2018.11.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology is a well-established and complementary approach for monitoring illicit drug use in the general population. In this study, amphetamine (AMP), methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), cocaine (COC) (from benzoylecgonine), and cannabis (from THC-COOH) consumption levels were investigated for the first time in Turkey (Istanbul). A solid-phase extraction method was applied to influent wastewater samples collected from two districts, Beyoglu and Catalca. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was conducted with electrospray ionization in positive mode. Calibration curves were acquired in linear form with >0.999 correlation coefficients. Limit of detection levels were measured as 0.91-151 ng/L, and limit of quantitation levels were in the range of 3 to 500 ng/L. Solid-phase extraction recovery and repeatability experiments were achieved by spiking the mix solution to different concentrations (50, 250, 750 ng/L) in 50 mL tap water and wastewater (500, 1000 ng/L) samples in six replicates. The method was optimized, and recoveries were found to be over 80% for all six substances with up to 11.9% relative standard deviation. According to the real sample results, cannabis was found to be the most abused illicit substance among the analytes. The mean consumptions of the two districts, including seven consecutive days for AMP, METH, MDMA, COC, and cannabis, were found to be 27.2, 322, 331, 385, and 1224 mg/day/1000 inhabitants, respectively. In this presented study, all targeted compounds were analyzed simultaneously with the same analytical conditions. To the best of our knowledge, this report is the first to present illicit drug consumption data from Istanbul.
Collapse
Affiliation(s)
- Selda Mercan
- Istanbul University-Cerrahpasa, Institute of Forensic Sciences, Department of Science, 34098 Cerrahpasa, Istanbul, Turkey.
| | - Merve Kuloglu
- Istanbul University-Cerrahpasa, Institute of Forensic Sciences, Department of Science, 34098 Cerrahpasa, Istanbul, Turkey
| | - Tugba Tekin
- Istanbul University-Cerrahpasa, Institute of Forensic Sciences, Department of Science, 34098 Cerrahpasa, Istanbul, Turkey
| | - Zeynep Turkmen
- Istanbul University-Cerrahpasa, Institute of Forensic Sciences, Department of Science, 34098 Cerrahpasa, Istanbul, Turkey
| | - Ahmet Ozgur Dogru
- Istanbul Technical University, Faculty of Civil Engineering, Department of Geomatics, 34469 Istanbul, Turkey
| | - Ayse N Safran
- Istanbul Technical University, Faculty of Civil Engineering, Department of Geomatics, 34469 Istanbul, Turkey; Istanbul Water and Sewerage Administration, 34060 Istanbul, Turkey
| | - Munevver Acikkol
- Istanbul University-Cerrahpasa, Institute of Forensic Sciences, Department of Science, 34098 Cerrahpasa, Istanbul, Turkey
| | - Faruk Asicioglu
- Istanbul University-Cerrahpasa, Institute of Forensic Sciences, Department of Medicine, 34098 Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
28
|
Bade R, Tscharke BJ, White JM, Grant S, Mueller JF, O'Brien J, Thomas KV, Gerber C. LC-HRMS suspect screening to show spatial patterns of New Psychoactive Substances use in Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2181-2187. [PMID: 30290358 DOI: 10.1016/j.scitotenv.2018.09.348] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
New Psychoactive Substances (NPS) are an ever-changing class of compounds designed to imitate the effects of current recreational drugs. Such a diverse market is difficult to assess by traditional means, while collected information can become obsolete before it is available. Wastewater-based epidemiology is one technique which can capture information on where and when NPS appear at the community level. The aim of this study was to identify NPS in wastewater samples using a suspect screening approach. Weekend samples were collected from 50 wastewater treatment plants from Australian capital cities and regional areas across all eight States and Territories and screened against a database containing almost 200 NPS. A total of 22 different NPS were found across all regional and metropolitan wastewater treatment plants. Results showed that the most detected compounds were of the cathinone class, with both Alpha-PVP and methcathinone found in every region. In addition, five different synthetic cannabinoids were detected, at least once in half of the regions analysed. Herein, we report the first comprehensive nationwide analysis of NPS and show the utility of liquid chromatography-high resolution mass spectrometry screening for delivering spatial information of the NPS being consumed in communities.
Collapse
Affiliation(s)
- Richard Bade
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia
| | - Benjamin J Tscharke
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia; Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Jason M White
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia
| | - Sharon Grant
- Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street Woolloongabba, Queensland 4102, Australia
| | - Cobus Gerber
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia.
| |
Collapse
|
29
|
Krizman-Matasic I, Senta I, Kostanjevecki P, Ahel M, Terzic S. Long-term monitoring of drug consumption patterns in a large-sized European city using wastewater-based epidemiology: Comparison of two sampling schemes for the assessment of multiannual trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:474-485. [PMID: 30086499 DOI: 10.1016/j.scitotenv.2018.07.441] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 05/27/2023]
Abstract
A comprehensive study aimed at monitoring of temporal variability of illicit drugs (heroin, cocaine, amphetamine, MDMA, methamphetamine and cannabis) and therapeutic opiate methadone in a large-sized European city using wastewater-based epidemiology (WBE) was conducted in the city of Zagreb, Croatia, during an 8-year period (2009-2016). The study addressed the impact of different sampling schemes on the assessment of temporal drug consumption patterns, in particular multiannual consumption trends and documented the possible errors associated with the one-week sampling scheme. The highest drug consumption prevalence was determined for cannabis (from 59 ± 18 to 156 ± 37 doses/day/1000 inhabitants 15-64 years), followed by heroin (from 11 ± 10 to 71 ± 19 doses/day/1000 inhabitants 15-64 years), cocaine (from 8.3 ± 0.9 to 23 ± 4.0 doses/day/1000 inhabitants 15-64 years) and amphetamine (from 1.3 ± 0.9 to 21 ± 6.1 doses/day/1000 inhabitants 15-64 years) whereas the consumption of MDMA was comparatively lower (from 0.18 ± 0.08 to 2.7 doses ±0.7 doses/day/1000 inhabitants 15-64 years). The drug consumption patterns were characterized by clearly enhanced weekend and Christmas season consumption of stimulating drugs (cocaine, MDMA and amphetamine) and somewhat lower summer consumption of almost all drugs. Pronounced multiannual consumption trends were determined for most of the illicit drugs. The investigated 8-year period was characterized by a marked increase of the consumption of pure cocaine (1.6-fold), THC (2.7-fold), amphetamine (16-fold) and MDMA (15-fold) and a concomitant decrease (2.3-fold) of the consumption of pure heroin. The heroin consumption decrease was associated with an increase of methadone consumption (1.4-fold), which can be linked to its use in the heroin substitution therapy. The estimated number of average methadone doses consumed in the city of Zagreb was in a good agreement with the prescription data on treated opioid addicts in Croatia.
Collapse
Affiliation(s)
- Ivona Krizman-Matasic
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Ivan Senta
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Petra Kostanjevecki
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
30
|
Selectivity enhancement using sequential mass isolation window acquisition with hybrid quadrupole time-of-flight mass spectrometry for pesticide residues. J Chromatogr A 2019; 1591:99-109. [PMID: 30658912 DOI: 10.1016/j.chroma.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022]
Abstract
The introduction of sequential mass isolation window acquisition mode in high-resolution quadrupole time-of-flight analysers undoubtedly represents an important improvement in the MS/MS spectra obtained when working in non-target analysis. However, the advantages and limitations of this approach have not been sufficiently defined and evaluated. The present work seeks to fill this gap by considering its application in non-target multiresidue pesticide analysis. This work focuses on the called SWATH® method, which combines both MS and MS/MS acquisition, dividing the entire mass range into smaller segments for the MS/MS mode. The effect of the number of mass isolation windows, the total cycle-time lapsed, the sensitivity obtained, the MS/MS spectra quality, the ion ratio stability as well as the identification and quantification capabilities has been evaluated. The use of ten mass isolation windows for data acquisition was selected as a compromise between the required points per chromatographic peak and the reduction in interferences achieved. An identification study was carried out on 141 pesticides in 20 vegetable matrices to check the false positives and false identifications found automatically, in accordance with the criteria set out in Document No. SANTE/11945/2015. Furthermore, special attention was given to certain issues that can make correct identification difficult, such as low fragment abundance due using of a generic collision energy, the matrix influence on the collision cell, the effect of the concentration level as well as deconvolution failure and mass window width. Finally, to verify the efficiency of the optimum parameters proposed, two proficiency samples were analysed, obtaining good results. This proved the benefits in terms of identification and quantification purposes.
Collapse
|
31
|
Bade R, Stockham P, Painter B, Celma A, Bijlsma L, Hernandez F, White JM, Gerber C. Investigating the appearance of new psychoactive substances in South Australia using wastewater and forensic data. Drug Test Anal 2018; 11:250-256. [DOI: 10.1002/dta.2484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Richard Bade
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide 5001 Australia
| | - Peter Stockham
- Forensic Science SA; GPO Box 2790 Adelaide 5001 Australia
- College of Science and Engineering, Flinders University; Flinders University; Bedford Park South Australia
| | - Ben Painter
- Forensic Science SA; GPO Box 2790 Adelaide 5001 Australia
| | - Alberto Celma
- Research Institute for Pesticides and Water; University Jaume I; Avda. Sos Baynat s/n E-12071 Castellon Spain
| | - Lubertus Bijlsma
- Research Institute for Pesticides and Water; University Jaume I; Avda. Sos Baynat s/n E-12071 Castellon Spain
| | - Felix Hernandez
- Research Institute for Pesticides and Water; University Jaume I; Avda. Sos Baynat s/n E-12071 Castellon Spain
| | - Jason M. White
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide 5001 Australia
| | - Cobus Gerber
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide 5001 Australia
| |
Collapse
|