1
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Souza ATVDE, Souza KMSDE, Amorim APDE, Bezerra RP, Porto ALF. Methods to protein and peptide extraction from microalgae: a systematic review. AN ACAD BRAS CIENC 2024; 96:e20240113. [PMID: 39442102 DOI: 10.1590/0001-3765202420240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/19/2024] [Indexed: 10/25/2024] Open
Abstract
Currently, there is a demand for protein sources that do not use soil management or animal breeding. Among these sources we highlight the microorganisms, such cyanobacteria and microalgae, which have a simple growth using light, CO2, water and some mineral salts to generate high protein production. The extraction of these proteins depends on the method used. The most used methods for extracting bio-functional proteins are mechanical, chemical and enzymatic. The aim of this work is to analyze the protein extraction methods in microalgae using Scielo, ScienceDirect and NCBI (PubMed) electronic databases that made it possible to select original studies published in the last five years (2018-2023). A total of 2707 articles, 25 of which were selected for further analysis and subjected to risk of bias assessment. The genera Chlorella, Scenedesmus and Nannochloropsis were the most studied due to their high protein content. Mechanical methods and chemical hydrolysis are the most used methods, achieving an extraction yield of 46.0 % and 64.0 %, respectively. The best extraction results are obtained with a combination of methods, reaching up to 80.0 % yield. However, some aspects need to be observed to choose an ideal protein extraction method.
Collapse
Affiliation(s)
- Ariadne Tennyle V DE Souza
- Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, 1235, 50670-901 Recife, PE, Brazil
| | | | - Andreza P DE Amorim
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Raquel P Bezerra
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Ana Lucia F Porto
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| |
Collapse
|
3
|
Mohan Prakash RL, Ravi DA, Hwang DH, Kang C, Kim E. Identification of New Angiotensin-Converting Enzyme Inhibitory Peptides Isolated from the Hydrolysate of the Venom of Nemopilema nomurai Jellyfish. Toxins (Basel) 2024; 16:410. [PMID: 39330868 PMCID: PMC11435582 DOI: 10.3390/toxins16090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of Nemopilema nomurai jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes-specifically, papain and protamex-were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0-1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI-TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of -51.4 ± 2.5 and -62.3 ± 3.3 using the HADDOCK scoring function.
Collapse
Affiliation(s)
| | - Deva Asirvatham Ravi
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Zhou Y, Zhang R, Wang J, Tong Y, Zhang J, Li Z, Zhang H, Abbas Z, Si D, Wei X. Isolation, Characterization, and Functional Properties of Antioxidant Peptides from Mulberry Leaf Enzymatic Hydrolysates. Antioxidants (Basel) 2024; 13:854. [PMID: 39061922 PMCID: PMC11273431 DOI: 10.3390/antiox13070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the mulberry leaf protein hydrolysates (MLPHs) have stronger antioxidant activity compared to MLPs. We separate the core antioxidant components in MLPHs by ion-exchange columns and molecular sieves and identify 798 antioxidant peptides by LC-MS/MS. Through bioinformatics analysis and biochemical assays, we screen two previously unreported peptides, P6 and P7, with excellent antioxidant activities. P6 and P7 not only significantly reduce ROS in cells but also improve the activities of the antioxidant enzymes SOD and CAT. In addition, both peptides are found to exert protective effects against H2O2-induced chromatin damage and cell apoptosis. Collectively, these results provide support for the application of mulberry leaf peptides as antioxidants in the medical, food and livestock industries.
Collapse
Affiliation(s)
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.)
| | | | | | | | | | | | | | | | - Xubiao Wei
- Correspondence: (R.Z.); (X.W.); Tel.: +86-10-62731208 (X.W.)
| |
Collapse
|
6
|
Gao R, Zhu L, Zhang W, Jin W, Bai F, Xu P, Wang J, Sun Q, Guo Z, Yuan L. Novel Peptides from Sturgeon Ovarian Protein Hydrolysates Prevent Oxidative Stress-Induced Dysfunction in Osteoblast Cells: Purification, Identification, and Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10076-10088. [PMID: 38629202 DOI: 10.1021/acs.jafc.3c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Lingling Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Fan Bai
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, Zhe Jiang 324000, China
| | - Peng Xu
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, Zhe Jiang 324000, China
| | - Jinlin Wang
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, Zhe Jiang 324000, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
7
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
8
|
Plouviez M, Dubreucq E. Key Proteomics Tools for Fundamental and Applied Microalgal Research. Proteomes 2024; 12:13. [PMID: 38651372 PMCID: PMC11036299 DOI: 10.3390/proteomes12020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Microscopic, photosynthetic prokaryotes and eukaryotes, collectively referred to as microalgae, are widely studied to improve our understanding of key metabolic pathways (e.g., photosynthesis) and for the development of biotechnological applications. Omics technologies, which are now common tools in biological research, have been shown to be critical in microalgal research. In the past decade, significant technological advancements have allowed omics technologies to become more affordable and efficient, with huge datasets being generated. In particular, where studies focused on a single or few proteins decades ago, it is now possible to study the whole proteome of a microalgae. The development of mass spectrometry-based methods has provided this leap forward with the high-throughput identification and quantification of proteins. This review specifically provides an overview of the use of proteomics in fundamental (e.g., photosynthesis) and applied (e.g., lipid production for biofuel) microalgal research, and presents future research directions in this field.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- The Cawthron Institute, Nelson 7010, New Zealand
| | - Eric Dubreucq
- Agropolymer Engineering and Emerging Technologies, L’Institut Agro Montpellier, 34060 Montpellier, France;
| |
Collapse
|
9
|
Aita SE, Montone CM, Taglioni E, Capriotti AL. Hempseed protein-derived short- and medium-chain peptides and their multifunctional properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:275-325. [PMID: 38906589 DOI: 10.1016/bs.afnr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.
Collapse
Affiliation(s)
- Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
10
|
Zhao Q, Zheng W, Yuan Z, Wang X, Huang A. Anti-inflammatory effect of two novel peptides derived from Binglangjiang buffalo whey protein in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Chem 2023; 429:136804. [PMID: 37490818 DOI: 10.1016/j.foodchem.2023.136804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/27/2023]
Abstract
Whey protein hydrolysate from Binglangjiang buffalo, a unique genetic resource, has anti-inflammatory activity, but its anti-inflammatory composition and effects are unknown. The aim of this study was to investigate the anti-inflammatory peptides from Binglangjiang buffalo whey protein hydrolysate. A total of 1483 peptides were identified using LC-MS/MS, and 12 peptides were chosen for chemical synthesis using peptidomics, and then two novel anti-inflammatory peptides (DQPFFHYN (DN8) and YSPFSSFPR (YR9)) were screened out using LPS-stimulated RAW264.7 cells. The molecular weights of DN8 and YR9 with β-turn conformations were 1067.458 Da and 1087.52 Da, respectively, and showed a high in-vitro safety profile and thermal stability, but were intolerant to pepsin. Furthermore, ELISA and Western blot analysis indicated that peptides DN8 and YR9 significantly suppressed the secretion of pro-inflammatory cytokines NO, TNF-α, and IL-6 and the expression of mediators iNOS, TNF-α, and IL-6 in LPS-stimulated RAW264.7 cells. The study provides insights into the development of novel food-based anti-inflammatory nutritional supplements.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wentao Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ziyou Yuan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
11
|
García-Beltrán JM, Arizcun M, Chaves-Pozo E. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Mar Drugs 2023; 21:md21050290. [PMID: 37233484 DOI: 10.3390/md21050290] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Aquaculture production is at a record level and is estimated to increase in the coming years. However, this production can be negatively affected by infectious diseases produced by viruses, bacteria, and parasites, causing fish mortality and economic losses. Antimicrobial peptides (AMPs) are small peptides that may be promising candidates to replace antibiotics because they are the first line of defense in animals against a wide variety of pathogens and have no negative effects; they also show additional activities such as antioxidant or immunoregulatory functions, which makes them powerful alternatives for use in aquaculture. Moreover, AMPs are highly available in natural sources and have already been used in the livestock farming and food industries. Photosynthetic marine organisms can survive under all kinds of environmental conditions and under extremely competitive environments thanks to their flexible metabolism. For this reason, these organisms represent a powerful source of bioactive molecules as nutraceuticals and pharmaceuticals, including AMPs. Therefore, in this study we reviewed the present knowledge about AMPs from photosynthetic marine organism sources and analyzed whether they could be suitable for use in aquaculture.
Collapse
Affiliation(s)
- José María García-Beltrán
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Marta Arizcun
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| |
Collapse
|
12
|
Ejike CECC, Ezeorba TPC, Ajah O, Udenigwe CC. Big Things, Small Packages: An Update on Microalgae as Sustainable Sources of Nutraceutical Peptides for Promoting Cardiovascular Health. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200162. [PMID: 37205928 PMCID: PMC10190598 DOI: 10.1002/gch2.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Indexed: 05/21/2023]
Abstract
In 2017, a review of microalgae protein-derived bioactive peptides relevant in cardiovascular disease (CVD) management was published. Given the rapid evolution of the field, an update is needed to illumininate recent developments and proffer future suggestions. In this review, the scientific literature (2018-2022) is mined for that purpose and the relevant properties of the identified peptides related to CVD are discussed. The challenges and prospects for microalgae peptides are similarly discussed. Since 2018, several publications have independently confirmed the potential to produce microalgae protein-derived nutraceutical peptides. Peptides that reduce hypertension (by inhibiting angiotensin converting enzyme and endothelial nitric oxide synthase), modulate dyslipidemia and have antioxidant and anti-inflammatory properties have been reported, and characterized. Taken together, future research and development investments in nutraceutical peptides from microalgae proteins need to focus on the challenges of large-scale biomass production, improvement in techniques for protein extraction, peptide release and processing, and the need for clinical trials to validate the claimed health benefits as well as formulation of various consumer products with the novel bioactive ingredients.
Collapse
Affiliation(s)
- Chukwunonso E. C. C. Ejike
- Department of Medical BiochemistryFaculty of Basic Medical SciencesAlex Ekwueme Federal UniversityNdufu‐AlikeEbonyi State482131Nigeria
| | - Timothy P. C. Ezeorba
- Department of BiochemistryFaculty of Biological SciencesUniversity of NigeriaNsukkaEnugu State410001Nigeria
| | - Obinna Ajah
- Department of BiochemistryCollege of Natural SciencesMichael Okpara University of AgricultureUmudikeAbia State440101Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition SciencesFaculty of Health SciencesUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Department of Chemistry and Biomolecular SciencesFaculty of ScienceUniversity of OttawaOttawaOntarioK1N 6N5Canada
| |
Collapse
|
13
|
Eptifibatide, an Older Therapeutic Peptide with New Indications: From Clinical Pharmacology to Everyday Clinical Practice. Int J Mol Sci 2023; 24:ijms24065446. [PMID: 36982519 PMCID: PMC10049647 DOI: 10.3390/ijms24065446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Therapeutic peptides are oligomers or short polymers of amino acids used for various medical purposes. Peptide-based treatments have evolved considerably due to new technologies, stimulating new research interests. They have been shown to be beneficial in a variety of therapeutic applications, notably in the treatment of cardiovascular disorders such as acute coronary syndrome (ACS). ACS is characterized by coronary artery wall damage and consequent formation of an intraluminal thrombus obstructing one or more coronary arteries, leading to unstable angina, non-ST elevated myocardial infarction, and ST-elevated myocardial infarction. One of the promising peptide drugs in the treatment of these pathologies is eptifibatide, a synthetic heptapeptide derived from rattlesnake venom. Eptifibatide is a glycoprotein IIb/IIIa inhibitor that blocks different pathways in platelet activation and aggregation. In this narrative review, we summarized the current evidence on the mechanism of action, clinical pharmacology, and applications of eptifibatide in cardiology. Additionally, we illustrated its possible broader usage with new indications, including ischemic stroke, carotid stenting, intracranial aneurysm stenting, and septic shock. Further research is, however, required to fully evaluate the role of eptifibatide in these pathologies, independently and in comparison to other medications.
Collapse
|
14
|
Aratboni HA, Rafiei N, Allaf MM, Abedini S, Rasheed RN, Seif A, Wang S, Ramirez JRM. Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Li M, Fan W, Xu Y. Comprehensive Identification of Short and Medium-Sized Peptides from Pixian Broad Bean Paste Protein Hydrolysates Using UPLC-Q-TOF-MS and UHPLC-Q Exactive HF-X. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8288-8299. [PMID: 35785966 DOI: 10.1021/acs.jafc.2c02487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pixian broad bean paste (PBBP) is an indispensable food widely used in many East Asian countries, yet the knowledge about bioactive peptides released from parent proteins by enzymatic hydrolysis is limited. A total of 5867 low-molecular weight peptides were identified in the highly bioactive subfractions of the PBBP alcalase hydrolysates using traditional and peptidomics approaches. 19 short peptides (3-5 amino acids) were identified by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, including 5 tripeptides, 8 tetrapeptides, and 6 pentapeptides. 5848 medium-sized peptides (6-10 amino acids) were characterized using the peptidomics approach, including 1484 hexapeptides, 1217 heptapeptides, 1634 octapeptides, 927 nonapeptides, and 586 decapeptides. The comprehensive method can be used for the investigation of bioactive peptides in complex food matrices.
Collapse
Affiliation(s)
- Mingyang Li
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wenlai Fan
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
16
|
Czelej M, Garbacz K, Czernecki T, Wawrzykowski J, Waśko A. Protein Hydrolysates Derived from Animals and Plants—A Review of Production Methods and Antioxidant Activity. Foods 2022; 11:foods11131953. [PMID: 35804767 PMCID: PMC9266099 DOI: 10.3390/foods11131953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
There is currently considerable interest on the use of animal, plant, and fungal sources in the production of bioactive peptides, as evidenced by the substantial body of research on the topic. Such sources provide cheap and environmentally friendly material as it often includes waste and by-products. Enzymatic hydrolysis is considered an efficient method of obtaining peptides capable of antioxidant activity. Those properties have been proven in terms of radical-scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)), hydroxyl and superoxide radical methods. Additionally, the reducing power, ferrous ion-chelating (FIC), ferric reducing antioxidant power (FRAP), and the ability of the protein hydrolysates to inhibit lipid peroxidation have also been explored. The results collected in this review clearly indicate that the substrate properties, as well as the conditions under which the hydrolysis reaction is carried out, affect the final antioxidant potential of the obtained peptides. This is mainly due to the structural properties of the obtained compounds such as size or amino acid sequences.
Collapse
Affiliation(s)
- Michał Czelej
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
- Correspondence:
| | - Katarzyna Garbacz
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka Street, 20-400 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| |
Collapse
|
17
|
Kose A, Oncel SS. Design of melanogenesis regulatory peptides derived from phycocyanin of the microalgae Spirulina platensis. Peptides 2022; 152:170783. [PMID: 35278583 DOI: 10.1016/j.peptides.2022.170783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Pigmentation issues are common conditions associated with excessive or insufficient production of melanin. Recently peptides are investigated to discover novel melanogenesis regulators as low molecular weight compounds to regulate skin pigmentation. In this study, an internal library of peptides obtained through in silico enzymatic digestion of phycocyanin from microalgae S. platensis was tested to apprehend their anti-melanogenic effects. Seven peptides were investigated for their inhibitory potential against mushroom and B16-F10 murine tyrosinase enzymes. According to the results, P5 (SPSWY) and P7 (AADQRGKDKCARDIGY) were effective in lowering the activity of mushroom and B16-F10 tyrosinases. P5 was the most potent (IC50 value, 12.1 µM) in mushroom which was followed by P2 (MAACLR, 86.9 µM). Although the peptides were particularly powerful in inhibiting monophenolase activity, only moderate inhibition was observed for diphenolase activity in mushroom tyrosinase assay. Apart from tyrosinase inhibition, P2 and P3 (RCLNGRL) were efficient DPPH radical scavengers at low concentrations (IC50 < 200 µM). In the mammalian assay system, P5 and P7 were noticeably effective to decrease tyrosinase enzyme activity with IC50 values of 48.9 and 34.2 µM, respectively. However, although P4 (RYVTYAVF) was a potent mushroom tyrosinase inhibitor, it increased melanin synthesis up to 3-fold in B16-F10 cells. The results indicate that C-terminal tyrosine residue is important for tyrosinase inhibition. This study shows, for the first time, that microalgae proteins can be regarded as sources for melanogenesis regulation.
Collapse
Affiliation(s)
- Ayse Kose
- Ege University Faculty of Engineering Department of Bioengineering, 35100 Bornova, Izmir, Turkey
| | - Suphi S Oncel
- Ege University Faculty of Engineering Department of Bioengineering, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
18
|
Hosseinkhani N, McCauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microalgae are a known source of proteins, prebiotics, lipids, small molecules, anti-oxidants and bioactives with health benefits that can be harnessed for the development of functional foods, feeds, cosmeceuticals and pharmaceuticals. This review collates information on the supply, processing costs, target markets and value of microalgae, as well as microalgal proteins, lipids, vitamins and minerals. It discusses the potential impact that microalgae could have on global food and feed supply and highlights gaps that exist with regards to the use of microalgal proteins and ingredients as foods and supplements.
Collapse
|
20
|
Microbial Peptidase in Food Processing: Current State of the Art and Future Trends. Catal Letters 2022. [DOI: 10.1007/s10562-022-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Bongiorno T, Foglio L, Proietti L, Vasconi M, Moretti V, Lopez A, Carminati D, Galafat A, Vizcaíno A, Fernández FA, Alarcón F, Parati K. Hydrolyzed microalgae from biorefinery as a potential functional ingredient in Siberian sturgeon (A. baerii Brandt) aquafeed. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 527] [Impact Index Per Article: 263.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
23
|
Carrasco-Reinado R, Bermudez-Sauco M, Escobar-Niño A, Cantoral JM, Fernández-Acero FJ. Development of the "Applied Proteomics" Concept for Biotechnology Applications in Microalgae: Example of the Proteome Data in Nannochloropsis gaditana. Mar Drugs 2021; 20:38. [PMID: 35049892 PMCID: PMC8780095 DOI: 10.3390/md20010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Most of the marine ecosystems on our planet are still unknown. Among these ecosystems, microalgae act as a baseline due to their role as primary producers. The estimated millions of species of these microorganisms represent an almost infinite source of potentially active biocomponents offering unlimited biotechnology applications. This review considers current research in microalgae using the "omics" approach, which today is probably the most important biotechnology tool. These techniques enable us to obtain a large volume of data from a single experiment. The specific focus of this review is proteomics as a technique capable of generating a large volume of interesting information in a single proteomics assay, and particularly the concept of applied proteomics. As an example, this concept has been applied to the study of Nannochloropsis gaditana, in which proteomics data generated are transformed into information of high commercial value by identifying proteins with direct applications in the biomedical and agri-food fields, such as the protein designated UCA01 which presents antitumor activity, obtained from N. gaditana.
Collapse
Affiliation(s)
- Rafael Carrasco-Reinado
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - María Bermudez-Sauco
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - Almudena Escobar-Niño
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - Jesús M. Cantoral
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - Francisco Javier Fernández-Acero
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| |
Collapse
|
24
|
Zhu Z, Chen Y, Jia N, Zhang W, Hou H, Xue C, Wang Y. Identification of three novel antioxidative peptides from Auxenochlorella pyrenoidosa protein hydrolysates based on a peptidomics strategy. Food Chem 2021; 375:131849. [PMID: 34942500 DOI: 10.1016/j.foodchem.2021.131849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Auxenochlorella pyrenoidosa is recognized as a potential sustainable protein material in food industry, however, its application remains still very limited. Herein, this study aimed to investigate the antioxidative properties of Auxenochlorella pyrenoidosa protein hydrolysates and identify novel antioxidative peptides from protein hydrolysates through a workflow mainly including enzymatic hydrolysis, peptidome quantification, quantitative structure-activity relationship (QSAR) modeling, in silico screening, and validation. Three novel antioxidative peptides including AGWACLVG, IDLAY and YPLDL were identified from protein hydrolysates by papain with the hydrolysis time of 4 h, in which, AGWACLVG showed strong 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity with the IC50 value of 68.88 µM and Trolox equivalent antioxidative capacity of 6.20 ± 0.23 mmol TE/g. This study suggested that Auxenochlorella pyrenoidosa protein hydrolysates could be used as potential antioxidative ingredients in food industry, and the identification of novel antioxidative peptides would contribute to the construction of more robust QSAR models in the future.
Collapse
Affiliation(s)
- Zihao Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuyang Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Nan Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenhan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
25
|
Velayutham M, Guru A, Arasu MV, Al-Dhabi NA, Choi KC, Elumalai P, Harikrishnan R, Arshad A, Arockiaraj J. GR15 peptide of S-adenosylmethionine synthase (SAMe) from Arthrospira platensis demonstrated antioxidant mechanism against H 2O 2 induced oxidative stress in in-vitro MDCK cells and in-vivo zebrafish larvae model. J Biotechnol 2021; 342:79-91. [PMID: 34751134 DOI: 10.1016/j.jbiotec.2021.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023]
Abstract
GR15 is a short molecule or peptide composed of aliphatic amino acids and possesses to have antioxidant properties. The GR15, 1GGGAFSGKDPTKVDR15 was identified from the protein S-adenosylmethionine synthase (SAMe) expressed during the sulfur departed state of Arthrospira platensis (spirulina or cyanobacteria). The in-silico assessment and the structural features of GR15 showed its antioxidant potency. Real-time PCR analysis found the up-regulation of ApSAMe expression on day 15 against oxidative stress due to 10 mM H2O2 treatment in A. platensis (Ap). The antioxidant activity of GR15 was accessed by the cell-free antioxidant assays such as ABTS, SARS, HRAS and NO; the results showed dose-dependent antioxidant activity. The toxicity assay was performed in both in vitro and in vivo models, in which peptide does not exhibit any toxicity in MDCK cell and zebrafish embryos. The intercellular ROS reduction potential of GR15 peptide was also investigated in both in vitro and in vivo models including LDH assay, antioxidant enzymes (SOD and CAT), and fluorescent staining assay (DCFDA, Hochest and Acridine orange sting) was performed; the results showed that the GR15 peptide was effectively reduced the ROS level. Further, RT-PCR demonstrated that GR15 enhanced the antioxidant property and also up-regulated the antioxidant gene, thus reduced the ROS level in both in vitro and in vivo models. Based on the results obtained from this study, we propose that GR15 has the potential antioxidant ability; hence further research can be directed towards the therapeutic product or drug development against disease caused by oxidative stress.
Collapse
Affiliation(s)
- Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Preetham Elumalai
- Department of Fish Processing Technology (Biochemistry), School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682 506, Kerala, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India.
| |
Collapse
|
26
|
Su Y, Chen S, Cai S, Liu S, Pan N, Su J, Qiao K, Xu M, Chen B, Yang S, Liu Z. A Novel Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptide from Takifugu flavidus. Mar Drugs 2021; 19:651. [PMID: 34940650 PMCID: PMC8705986 DOI: 10.3390/md19120651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Alcalase, neutral protease, and pepsin were used to hydrolyze the skin of Takifugu flavidus. The T. flavidus hydrolysates (TFHs) with the maximum degree of hydrolysis (DH) and angiotensin-I-converting enzyme (ACE)-inhibitory activity were selected and then ultra-filtered to obtain fractions with components of different molecular weights (MWs) (<1, 1-3, 3-10, 10-50, and >50 kDa). The components with MWs < 1 kDa showed the strongest ACE-inhibitory activity with a half-maximal inhibitory concentration (IC50) of 0.58 mg/mL. Purification and identification using semi-preparative liquid chromatography, Sephadex G-15 gel chromatography, RP-HPLC, and LC-MS/MS yielded one new potential ACE-inhibitory peptide, PPLLFAAL (non-competitive suppression mode; IC50 of 28 μmmol·L-1). Molecular docking and molecular dynamics simulations indicated that the peptides should bind well to ACE and interact with amino acid residues and the zinc ion at the ACE active site. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that PPLLFAAL could significantly decrease the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHRs after intravenous administration. These results suggested that PPLLFAAL may have potential applications in functional foods or pharmaceuticals as an antihypertensive agent.
Collapse
Affiliation(s)
- Yongchang Su
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Y.S.); (S.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Shicheng Chen
- Department of Clinical and Diagnostic Sciences, School of Health Sciences, Oakland University, 433 Meadowbrook Road, Rochester, MI 48309, USA;
| | - Shuilin Cai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Y.S.); (S.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Suping Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Y.S.); (S.C.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| |
Collapse
|
27
|
MubarakAli D, Akshaya T, Sathya R, Irfan N. Study on the Interaction of Algal Peptides on Virulence Factors of Helicobacter pylori: In Silico Approach. Appl Biochem Biotechnol 2021; 194:37-53. [PMID: 34762267 PMCID: PMC8581125 DOI: 10.1007/s12010-021-03716-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
In the Asian region, Helicobacter pylori infects about 80% populations, which is most leading cause of peptic ulcers, and it is an asymptomatic infection. Studies reported that the particular bacteria carry specific virulence factors that leads to severe complications. These virulence factors can be used as a drug targets to inhibit their growth and pathogenicity. Chronic infection with H. pylori virulence factors are CagA, VacA and HtrA positive strains the risk factor of gastric cancer. In this study, we aimed to study the antagonistic interaction pattern between the potential eight algal peptides against the virulence factors of H. pylori through in silico analysis intended to treat peptic ulcer and prevent the further complications such as cancer. The proteins of virulent factors are docked using C-Docker algorithm and calculated the bind energy of the complexes. The results showed that the peptide derived from a green alga, Tetradesmus sp. are active against the three virulent factors such as cag-A, vac-A, and Htr-A with multiple hydrogen, vdW, electrostatic interactions, and mild π-hydrophobic bindings with the libdock energy score for CagA, VacA and HtrA are 175.625, 158.603 and 89.397 kcal/mol. These primes and the peptide lead to develop a better and potential inhibitors against H. pylori infection.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Thirusangu Akshaya
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghunathan Sathya
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Navabshan Irfan
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
28
|
Montone CM, Aita SE, Catani M, Cavaliere C, Cerrato A, Piovesana S, Laganà A, Capriotti AL. Profiling and quantitative analysis of underivatized fatty acids in Chlorella vulgaris microalgae by liquid chromatography-high resolution mass spectrometry. J Sep Sci 2021; 44:3041-3051. [PMID: 34101991 PMCID: PMC8453725 DOI: 10.1002/jssc.202100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022]
Abstract
Chlorella vulgaris is a popular microalga used for biofuel production; nevertheless, it possesses a strong cell wall that hinders the extraction of molecules, especially lipids within the cell wall. For tackling this issue, we developed an efficient and cost‐effective method for optimal lipid extraction. Microlaga cell disruption by acid hydrolysis was investigated comparing different temperatures and reaction times; after hydrolysis, lipids were extracted with n‐hexane. The best recoveries were obtained at 140°C for 90 min. The microalgae were then analyzed by an untargeted approach based on liquid chromatography with high‐resolution mass spectrometry, providing the tentative identification of 28 fatty acids. First, a relative quantification on the untargeted data was performed using peak area as a surrogate of analyte abundance. Then, a targeted quantitative method was validated for the tentatively identified fatty acids, in terms of recovery (78‐100%), intra‐ and interday relative standard deviations (<10 and <9%, respectively) and linearity (R2 > 0.98). The most abundant fatty acids were palmitic, palmitoleic, oleic, linoleic, linolenic, and stearic acids.
Collapse
Affiliation(s)
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,CNR NANOTEC, Campus Ecotekne, University of Salento, Lecce, Italy
| | | |
Collapse
|
29
|
Cavaliere C, Montone AMI, Aita SE, Capparelli R, Cerrato A, Cuomo P, Laganà A, Montone CM, Piovesana S, Capriotti AL. Production and Characterization of Medium-Sized and Short Antioxidant Peptides from Soy Flour-Simulated Gastrointestinal Hydrolysate. Antioxidants (Basel) 2021; 10:antiox10050734. [PMID: 34066600 PMCID: PMC8148578 DOI: 10.3390/antiox10050734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Soybeans (Glycine max) are an excellent source of dietary proteins and peptides with potential biological activities, such as antihypertensive, anti-cholesterol, and antioxidant activity; moreover, they could prevent cancer. Also, soy contains all the essential amino acids for nutrition; therefore, it represents an alternative to animal proteins. The goal of this paper was the comprehensive characterization of medium-sized and short peptides (two to four amino acids) obtained from simulated gastrointestinal digestion. Two different analytical approaches were employed for peptide characterization, namely a common peptidomic analysis for medium-sized peptides and a suspect screening analysis for short peptides, employing an inclusion list of exact m/z values of all possible amino acid combinations. Moreover, fractionation by preparative reversed-phase liquid chromatography was employed to simplify the starting protein hydrolysate. Six fractions were collected and tested for antioxidative activity by an innovative antioxidant assay on human gastric adenocarcinoma AGS cell lines. The two most active fractions (2 and 3) were then characterized by a peptidomic approach and database search, as well as by a suspect screening approach, in order to identify potential antioxidant amino acid sequences. Some of the peptides identified in these two fractions have been already reported in the literature for their antioxidant activity.
Collapse
Affiliation(s)
- Chiara Cavaliere
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
| | - Angela Michela Immacolata Montone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy;
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
| | - Rosanna Capparelli
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy; (R.C.); (P.C.)
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
| | - Paola Cuomo
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy; (R.C.); (P.C.)
| | - Aldo Laganà
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
- Correspondence:
| | - Susy Piovesana
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.C.); (S.E.A.); (A.C.); (A.L.); (S.P.); (A.L.C.)
| |
Collapse
|
30
|
Jiang Q, Chen Q, Zhang T, Liu M, Duan S, Sun X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int J Mol Sci 2021; 22:ijms22084068. [PMID: 33920763 PMCID: PMC8071128 DOI: 10.3390/ijms22084068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hypertension causes many deaths worldwide and has shown an increasing trend as a severe non-communicable disease. Conventional antihypertensive drugs inevitably cause side effects, and great efforts have been made to exploit healthier and more-available substitutes. Microalgae have shown great potential in this regard and have been applied in the food and pharmaceutical industries. Some compounds in microalgae have been proven to have antihypertensive effects. Among these natural compounds, peptides from microalgae are promising angiotensin-converting enzyme (ACE) inhibitors because an increasing number of peptides show hypertensive effects and ACE inhibitory-like activity. In addition to acting as ACE inhibitors for the treatment of hypertension, these peptides have other probiotic properties, such as antioxidant and anti-inflammatory properties, that are important for the prevention and treatment of hypertension. Numerous studies have revealed the important bioactivities of ACE inhibitors and their mechanisms. This review discusses the antihypertensive effects, structure-activity relationships, molecular docking studies, interaction mechanisms, and other probiotic properties of microalgal ACE inhibitory peptides according to the current research related to microalgae as potential antihypertensive drugs. Possible research directions are proposed. This review contributes to a more comprehensive understanding of microalgal antihypertensive peptides.
Collapse
Affiliation(s)
- Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; (Q.J.); (T.Z.)
| | - Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China; (Q.C.); (S.D.)
- Guangdong Center for Marine Development Research, Guangzhou 510220, China
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; (Q.J.); (T.Z.)
| | - Meng Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China; (Q.C.); (S.D.)
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: ; Tel.: +86-(75)-67626350
| |
Collapse
|
31
|
A Systemic Review on Microalgal Peptides: Bioprocess and Sustainable Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su13063262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nowadays, microalgal research is predominantly centered on an industrial scale. In general, multipotent bioactive peptides are the advantages over focal points over utilitarian nourishment as well as nutraceuticals. Microalgal peptides are now profoundly connected with biological properties rather than nutritive. Numerous techniques are employed to purify active peptides from algal protein using enzymatic hydrolysis; it is broadly used for numerous favorable circumstances. There is a chance to utilize microalgal peptides for human well-being as nutritive enhancements. This exhaustive survey details the utilization of microalgal peptides as antioxidant, anti-cancerous, anti-hypersensitive, anti-atherosclerotic, and nutritional functional foods. It is also exploring the novel technologies for the production of active peptides, for instance, the use of algal peptides as food for human health discovered restrictions, where peptides are sensitive to hydrolysis protease degradation. This review emphasizes the issue of active peptides in gastrointestinal transit, which has to be solved in the future, and prompt impacts.
Collapse
|
32
|
Ferdous UT, Yusof ZNB. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front Pharmacol 2021; 12:593116. [PMID: 33746748 PMCID: PMC7973026 DOI: 10.3389/fphar.2021.593116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
33
|
Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
35
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
36
|
Capriotti AL, Aita SE, Cavaliere C, Cerrato A, Montone CM, Piovesana S, Laganà A. A rapid and innovative extraction and enrichment method for the metaproteomic characterization of dissolved organic matter in groundwater samples. J Sep Sci 2020; 44:1612-1620. [PMID: 33236487 DOI: 10.1002/jssc.202001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022]
Abstract
Metaproteomic analysis of aquifer systems provides valuable information on the microbial populations, their influence on drinking water quality, and the effect on human health. In the present paper, an extraction and enrichment method by C18 extra-wide pore cartridge was developed, optimized, and applied for the first time to the metaproteomic characterization of dissolved organic matter in groundwater samples. In particular, three elution procedures were tested and compared on water spiked with a yeast protein extract to maximize the recovery of proteins from a complex matrix. The maximum protein recovery was obtained by the use of two sequential elution buffers, one employing a denaturing agent and the other one containing an acidified organic solvent. A comprehensive metaproteomic analysis of the dissolved organic matter of groundwater was then performed by nano-high performance liquid chromatography coupled to high-resolution mass spectrometry. A total of 239 proteins was identified; in agreement with the current knowledge on proteins in aquifer systems, most identified sequences derived from bacteria, protobacteria, and ciliates. The paper is the first metaproteomic study applied to groundwater samples with particular emphasis on the need for sample pretreatment to obtain comprehensive information on the proteome in dissolved organic matter.
Collapse
Affiliation(s)
| | - Sara Elsa Aita
- Department of Chemistry, Università di Roma "La Sapienza,", Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma "La Sapienza,", Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma "La Sapienza,", Rome, Italy
| | | | - Susy Piovesana
- Department of Chemistry, Università di Roma "La Sapienza,", Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Università di Roma "La Sapienza,", Rome, Italy.,CNR NANOTEC, Campus Ecotekne, University of Salento, Lecce, Italy
| |
Collapse
|
37
|
Abstract
By-products of laying hens represent a promising raw material source with a high collagen content, which is currently not adequately used. The aim of the paper is to prepare gelatins from laying hen paws. The purified collagen raw material was processed by a biotechnological process using the food endoprotease Protamex®. After cleavage of the cross-links in the collagen structure, the gelatin was extracted by a batch process with a stirrer in two extraction steps. The influence of the extraction process on the yield of gelatins and on selected qualitative parameters of gelatins was monitored by two-level factor experiments with three selected process factors. The studied factors were: enzyme dosage (0.2–0.8%), enzyme processing time (24–72 h) and gelatin extraction time (30–120 min). After the first extraction step at 75 °C, gelatin was extracted with a yield of 8.2–21.4% and a gel strength of 275–380 Bloom. In the second extraction step at 80–100 °C, it is possible to obtain another portion (3.3–7.7%) of gelatin with a gel strength of 185–273 Bloom. Total extraction efficiency of gelatins prepared from laying hen collagen is almost 30%. The prepared gelatins are of high quality and, under proper extraction conditions, gelatins with a gel strength above 300 Bloom can be prepared, thus equaling commercial beef and pork gelatins of the highest quality. Biotechnological processing of laying hen collagen into gelatins is environmentally friendly.
Collapse
|
38
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
39
|
Comprehensive identification of native medium-sized and short bioactive peptides in sea bass muscle. Food Chem 2020; 343:128443. [PMID: 33129615 DOI: 10.1016/j.foodchem.2020.128443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Native peptides from sea bass muscle were analyzed by two different approaches: medium-sized peptides by peptidomics analysis, whereas short peptides by suspect screening analysis employing an inclusion list of exact m/z values of all possible amino acid combinations (from 2 up to 4). The method was also extended to common post-translational modifications potentially interesting in food analysis, as well as non-proteolytic aminoacyl derivatives, which are well-known taste-active building blocks in pseudo-peptides. The medium-sized peptides were identified by de novo and combination of de novo and spectra matching to a protein sequence database, with up to 4077 peptides (2725 modified) identified by database search and 2665 peptides (223 modified) identified by de novo only; 102 short peptide sequences were identified (with 12 modified ones), and most of them had multiple reported bioactivities. The method can be extended to any peptide mixture, either endogenous or by protein hydrolysis, from other food matrices.
Collapse
|
40
|
Peptidomics Analysis Reveals Peptide PDCryab1 Inhibits Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7182428. [PMID: 33110475 PMCID: PMC7582065 DOI: 10.1155/2020/7182428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is limited due to dose-dependent cardiotoxicity. Peptidomics is an emerging field of proteomics that has attracted much attention because it can be used to study the composition and content of endogenous peptides in various organisms. Endogenous peptides participate in various biological processes and are important sources of candidates for drug development. To explore peptide changes related to DOX-induced cardiotoxicity and to find peptides with cardioprotective function, we compared the expression profiles of peptides in the hearts of DOX-treated and control mice by mass spectrometry. The results showed that 236 differential peptides were identified upon DOX treatment, of which 22 were upregulated and 214 were downregulated. Next, we predicted that 31 peptides may have cardioprotective function by conducting bioinformatics analysis on the domains of each precursor protein, the predicted score of peptide biological activity, and the correlation of each peptide with cardiac events. Finally, we verified that a peptide (SPFYLRPPSF) from Cryab can inhibit cardiomyocyte apoptosis, reduce the production of reactive oxygen species, improve cardiac function, and ameliorate myocardial fibrosis in vitro and vivo. In conclusion, our results showed that the expression profiles of peptides in cardiac tissue change significantly upon DOX treatment and that these differentially expressed peptides have potential cardioprotective functions. Our study suggests a new direction for the treatment of DOX-induced cardiotoxicity.
Collapse
|
41
|
Tadesse SA, Emire SA. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020; 6:e04765. [PMID: 32913907 PMCID: PMC7472861 DOI: 10.1016/j.heliyon.2020.e04765] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023] Open
Abstract
Recently, the demand for functional foods in the global market has increased rapidly due to the increasing occurrences of non-communicable diseases and technological advancement. Antioxidant peptides have been suggested as ingredients used to produce health-promoting foods. These peptides are encrypted from various food derived protein sources by chemical and enzymatic hydrolysis, and microbial fermentation. However, the industrial-scale production of antioxidant peptides is hampered by different problems such as high production cost, and low yield and bioactivity. Accordingly, novel processing technologies, such as high pressure, microwave and pulsed electric field, have been recently emerged to overcome the problems associated with the conventional hydrolysis methods. This particular review, therefore, discussed the current processing technologies used to produce antioxidant peptides. The review also suggested further perspectives that should be addressed in the future.
Collapse
Affiliation(s)
- Solomon Abebaw Tadesse
- Department of Food Science and Applied Nutrition, College of Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Shimelis Admassu Emire
- Department of Food Engineering, School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia
| |
Collapse
|
42
|
Cerrato A, Capriotti AL, Capuano F, Cavaliere C, Montone AMI, Montone CM, Piovesana S, Zenezini Chiozzi R, Laganà A. Identification and Antimicrobial Activity of Medium-Sized and Short Peptides from Yellowfin Tuna ( Thunnus albacares) Simulated Gastrointestinal Digestion. Foods 2020; 9:foods9091185. [PMID: 32867059 PMCID: PMC7555217 DOI: 10.3390/foods9091185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the rapidly increasing resistance to conventional antibiotics, antimicrobial peptides are emerging as promising novel drug candidates. In this study, peptide fragments were obtained from yellowfin tuna muscle by simulated gastrointestinal digestion, and their antimicrobial activity towards Gram-positive and Gram-negative bacteria was investigated. In particular, the antimicrobial activity of both medium- and short-sized peptides was investigated by using two dedicated approaches. Medium-sized peptides were purified by solid phase extraction on C18, while short peptides were purified thanks to a graphitized carbon black sorbent. For medium-sized peptide characterization, a peptidomic strategy based on shotgun proteomics analysis was employed, and identification was achieved by matching protein sequence database by homology, as yellowfin tuna is a non-model organism, leading to the identification of 403 peptides. As for short peptide sequences, an untargeted suspect screening approach was carried out by means of an inclusion list presenting the exact mass to charge ratios (m/z) values for all di-, tri- and tetrapeptides. In total, 572 short sequences were identified thanks to a customized workflow dedicated to short peptide analysis implemented on Compound Discoverer software.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (F.C.); (A.M.I.M.)
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Angela Michela Immacolata Montone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (F.C.); (A.M.I.M.)
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
- Correspondence: ; Tel.: +39-06-4991-3062
| | - Susy Piovesana
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Aldo Laganà
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
43
|
Nguyen TT, Heimann K, Zhang W. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Mar Drugs 2020; 18:E391. [PMID: 32727001 PMCID: PMC7460389 DOI: 10.3390/md18080391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
The global demand for dietary proteins and protein-derived products are projected to dramatically increase which cannot be met using traditional protein sources. Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives. Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources. Moreover, these biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries. Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy. This comprehensive review analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development. Nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed.
Collapse
Affiliation(s)
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|
44
|
Amorim ML, Soares J, Vieira BB, Batista-Silva W, Martins MA. Extraction of proteins from the microalga Scenedesmus obliquus BR003 followed by lipid extraction of the wet deproteinized biomass using hexane and ethyl acetate. BIORESOURCE TECHNOLOGY 2020; 307:123190. [PMID: 32213445 DOI: 10.1016/j.biortech.2020.123190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A current problem of the lipid extraction from wet biomass is the formation of emulsions during the mixing of the microalgal biomass and organic solvents. It has been suggested that microalgal proteins play an important role in the formation and stability of such emulsions. Herein, the extraction of proteins of the freshwater microalga Scenedesmus obliquus BR003 was optimized for further extraction of lipids from the wet deproteinized biomass. The optimal (pH 12 at 60 °C for 3 h) and moderate (pH 10.5 at 50 °C for 2 h) conditions of protein extraction resulted in protein yields of 20.6% and 15.4%, respectively. Wet lipid extraction of deproteinized biomass resulted in a less stable emulsion that released twice the solvent than the control biomass. However, the faster separation of phases that occurred during the wet lipid extraction of the deproteinized biomass resulted in a lipid yield twice lower than the control biomass.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Bruno Bezerra Vieira
- Department of Chemical Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Willian Batista-Silva
- Department of Plant Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
45
|
Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 2020; 61:1976-2002. [PMID: 32462889 DOI: 10.1080/10408398.2020.1768046] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many countries have been experienced an increase in protein consumption due to the population growth and adoption of protein-rich dietaries. Unfortunately, conventional-based protein agroindustry is associated with environmental impacts that might aggravate as the humankind increase. Thus, it is important to screen for novel protein sources that are environmentally friendly. Microalgae farming is a promising alternative to couple the anthropic emissions with the production of food and feed. Some microalgae show protein contents two times higher than conventional protein sources. The use of whole microalgae biomass as a protein source in food and feed is simple and well-established. Conversely, the production of microalgae protein supplements and isolates requires the development of feasible and robust processes able to fractionate the microalgae biomass in different value-added products. Since most of the proteins are inside the microalgae cells, several techniques of disruption have been proposed to increase the efficiency to extract them. After the disruption of the microalgae cells, the proteins can be extracted, concentrated, isolated or purified allowing the development of different products. This critical review addresses the current state of the production of microalgae proteins for multifarious applications, and possibilities to concatenate the production of proteins and advanced biofuels.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
46
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
47
|
Citrus × Clementina Hort. Juice Enriched with Its By-Products (Peels and Leaves): Chemical Composition, In Vitro Bioactivity, and Impact of Processing. Antioxidants (Basel) 2020; 9:antiox9040298. [PMID: 32260119 PMCID: PMC7222210 DOI: 10.3390/antiox9040298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
This work investigated a model for the reuse of Citrus × clementina Hort. by-products for the development of a functional drink able to exert antioxidant, hypoglycaemic, and hypolipidemic effects. Juice obtained from fruits collected in three different areas of Calabria (Italy) was analysed. C. × clementina juice from Corigliano Calabro (JF), characterized by the highest content of bioactive compounds and bioactivity, was chosen as a matrix to be enrichment with hydroalcoholic ultrasound-assisted maceration of C. × clementina leaf from Corigliano Calabro (CO2) and ethanol ultrasound-assisted maceration of C. × clementina peel from Cetraro (BC3) extracts at different concentrations. The highest phytochemical content and bioactivities were found in juice enriched with leaf and leaf + peel extracts, with particular reference to antioxidant activity. In order to estimate the effects of pasteurization, 20% (mg/100 mL) enriched juice was subjected to this process. Based on obtained data of bioactivity and sensorial analysis, C. × clementina by-products could be proposed as a promising source of bioactive compounds useful for the formulation of a functional drink for preventing diseases associated with oxidative stress such as type 2 diabetes and obesity.
Collapse
|
48
|
Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109126] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Peng J, Zhang H, Niu H, Wu R. Peptidomic analyses: The progress in enrichment and identification of endogenous peptides. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Zheng Y, Wang X, Zhuang Y, Li Y, Shi P, Tian H, Li X, Chen X. Isolation of novel ACE-inhibitory peptide from naked oat globulin hydrolysates in silico approach: Molecular docking, in vivo antihypertension and effects on renin and intracellular endothelin-1. J Food Sci 2020; 85:1328-1337. [PMID: 32220144 DOI: 10.1111/1750-3841.15115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/03/2020] [Accepted: 02/23/2020] [Indexed: 01/25/2023]
Abstract
Naked oat globulin was hydrolyzed by alcalase, flavourzyme, pepsin, and trypsin in sequence. The hydrolysates (NOGH) were purified using gel chromatography, reversed-phase high performance liquid chromatography (RP-HPLC). Finally, fraction D7d with the highest ACE-inhibitory was subjected to liquid chromatography-mass spectrometry analysis and 14 peptides were identified. Of which, peptide SSYYPFK (890.4 Da) was chose to synthesize based on in silico analysis. The SSYYPFK demonstrated high ACE-inhibitory activity (IC50 : 91.82 µM) with competitive inhibition mode, and could effectively (P < 0.05) lower the systolic blood pressure and diastolic pressure of spontaneously hypertensive rats at the concentration of 100 to 150 mg/kg body weight. Molecular docking simulation demonstrated that SSYYPFK could bind with the active site S1 of ACE via short hydrogen bonds. It could remain the ACE-inhibitory activity after simulated gastrointestinal hydrolysis. Moreover, SSYYPFK showed acceptable renin and endothelin-1 suppressing capacity (47.59% and 27.88% at 1.5 mg/mL, respectively). These results indicated that SSYYPFK may have similar antihypertensive mechanism with captopril, and could be develop to natural antihypertensive products. PRACTICAL APPLICATION: One novel ACE-inhibitory peptide SSYYPFK (890.4 Da) was identified from naked oat globulin hydrolysates. It exhibited relatively high renin and intracellular endothelin-1 suppressing capacity, and could effectively (P < 0.05) lower the systolic blood pressure and diastolic pressure of spontaneously hypertensive rats. This peptide could be used as natural and safe nutraceuticals and/or functional ingredients.
Collapse
Affiliation(s)
- Yajun Zheng
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| | - Xian Wang
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yan Li
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| | - Panqi Shi
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| | - Hailong Tian
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| | - Xiaotian Li
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| | - Xing Chen
- College of Food Science of Shanxi Normal University, Linfen, 041004, China
| |
Collapse
|