1
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
2
|
Peter KT, Gilbreath A, Gonzalez M, Tian Z, Wong A, Yee D, Miller EL, Avellaneda PM, Chen D, Patterson A, Fitzgerald N, Higgins CP, Kolodziej EP, Sutton R. Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1760-1779. [PMID: 39291694 DOI: 10.1039/d4em00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | | | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Adam Wong
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Don Yee
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | | | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | | | - Nicole Fitzgerald
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| |
Collapse
|
3
|
McMinn MH, Hu X, Poisson K, Berger P, Pimentel P, Zhang X, Ashara P, Greenfield EL, Eig J, Tian Z. Emerging investigator series: in-depth chemical profiling of tire and artificial turf crumb rubber: aging, transformation products, and transport pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1703-1715. [PMID: 39176437 DOI: 10.1039/d4em00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Crumb rubber generated from end-of-life tires (ELTs) poses a threat to environmental and human health based on its widespread use. Of particular concern is the use of ELT crumb rubber as infill for artificial turf fields, as people are unknowingly exposed to complex mixtures of chemicals when playing on these fields. Additionally, there is concern regarding transport of rubber-related chemicals from artificial turf into the environment. However, existing knowledge does not fully elucidate the chemical profile, transformation products, and transport pathways of artificial turf crumb rubber across different ages. To address these knowledge gaps, we utilized a multi-faceted approach that consisted of targeted quantitation, chemical profiling, and suspect screening via ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). We collected and processed 3 tire and 11 artificial turf crumb rubber samples via solvent extraction, leaching, and a bioaccessibility-based extraction. Nineteen rubber-derived chemicals were quantified using parallel reaction monitoring and isotope dilution techniques. In solvent extracts, the most abundant analytes were 1,3-diphenylguanidine (0.18-1200 μg g-1), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD, 0.16-720 μg g-1), 2-mercaptobenzothiazole (0.47-140 μg g-1), and benzothiazole (0.84-150 μg g-1). Chemical profiling assessed changes in sample diversity, abundance, polarity, and molecular mass. Suspect screening identified 81 compounds with different confidence levels (16 at level 1, 53 with level 2, 7 at level 3, and 5 at level 4). The formation rate of transformation products and clustering analysis results identified time-based trends in artificial turf field samples. We found that the first two years of aging may be critical for the potential environmental impact of artificial turf fields. Our analysis provides insight into the chemical complexity of artificial turf crumb rubber samples ranging from 0-14 years in age.
Collapse
Affiliation(s)
- Madison H McMinn
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Katherine Poisson
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Phillip Berger
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Paola Pimentel
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Xinwen Zhang
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Pranali Ashara
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Ella L Greenfield
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Jessica Eig
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Thodhal Yoganandham S, Daeho K, Heewon J, Shen K, Jeon J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136155. [PMID: 39423645 DOI: 10.1016/j.jhazmat.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
Collapse
Affiliation(s)
- Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Kang Daeho
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Jang Heewon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
5
|
Zheng L, Deng Y. Advancing rainwater treatment technologies for irrigation of urban agriculture: A pathway toward innovation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170087. [PMID: 38232849 DOI: 10.1016/j.scitotenv.2024.170087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Urban agriculture (UA) has emerged for local food security since the 1960s. However, the access to sufficient and safe irrigation water remains a significant constraint. Municipal water supply, though commonly used in UA practices, proves unsustainable due to high costs, intensive energy consumption, and limited availability in many vacant urban spaces. In contrast, rainwater harvesting (RWH) exhibits a potential as a non-traditional water supply for urban farming. This article aims to provide insights into the advantages and challenges associated with RWH for UA irrigation, analyze existing low-cost RWH treatment technologies, and identify a visionary way toward innovative, new-generation RWH treatment processes in UA practices. Despite a promising water source, harvested rainwater is challenged for crop irrigation owing to the presence of various contaminants (e.g., waterborne pathogens, potentially toxic metals and metalloids, and synthetic organic chemicals). While established RWH treatment processes (e.g., first flush diversion, sedimentation, solar disinfection, chlorination, UV irradiation, granular filtration, and bio-sand filtration) can remove certain pollutants, they cannot offer viable treatment solutions for UA irrigation due to different technical, economic, and social restrictions. Particularly, their capacity to reliably remove contaminants of emerging concern in runoff remains limited or uncertain. Consequently, it is essential to develop next-generation RWH treatment technologies tailored specifically for UA irrigation. To this end, three fundamental principles are recommended. First, the focus should be on technically viable, low-cost, simple-operation, and easy-maintenance treatment technologies capable of simultaneously addressing traditional and emerging runoff contaminants, while minimizing the production of undesirable treatment byproducts. Second, advancing the understanding of the water, soil, and crop interactions enables the development of "right" RWH treatment processes for irrigation of "right" crops at a "right" place. Last, crop nutrients, if possible, are retained in rainwater to reduce the nutrient demand for crop production. The insights and perspectives have far-reaching implications for water conservation, stormwater management, and the integration of water, food, and energy systems within the urban environment.
Collapse
Affiliation(s)
- Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province 310023, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
6
|
Mitchell CJ, Jayakaran AD. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pavements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168236. [PMID: 37939940 DOI: 10.1016/j.scitotenv.2023.168236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
6PPD-quinone (6PPDQ) is a recently discovered chemical that is acutely toxic to coho salmon (Oncorhynchus kisutch) and can form via environmental exposure of 6PPD, a compound found extensively in tire wear particles (TWPs). TWPs deposited on roads are transported to aquatic ecosystems via stormwater, contributing to microplastic pollution and organic contaminant loads. However, little is known about the fate of TWPs and their leachable contaminants in these systems. We conducted three experiments at a high school in Tacoma, Washington, to quantify the treatment performance of permeable pavement (PP) formulations, a type of green stormwater infrastructure (GSI), for TWPs and ten tire-associated contaminants, including 6PPDQ. The PPs comprised concrete and asphalt, with and without cured carbon fibers, to improve the mechanical properties of PPs. Pavements were artificially dosed and had underdrains to capture effluent. Three experiments were conducted to evaluate PP mitigation of tire-associated pollution using cryomilled tire particles (cTPs). The 1st and 3rd experiments established a baseline for TWPs and contaminants and assessed the potential for continued pollutant release. During experiment 2, cTPs were applied to each pavement. Our results showed that the PPs attenuated >96 % of the deposited cTPs mass. An estimated 52-100 % of potentially leachable 6PPDQ was removed by the PP systems between the influent and effluent sampling stations. Background 6PPDQ concentrations in effluents ranged from 0 to 0.0029 μg/L. Effluent 6PPDQ concentrations were not explained by effluent TWP concentrations in experiments 1 or 2 but were significantly correlated in experiment 3, suggesting that leaching of 6PPDQ from TWPs retained in the pavement was minimal during a subsequent storm. Our results suggest that PPs may be an effective form of GSI for mitigating tire-associated stormwater pollution. The improved strength offered by cured carbon fiber-amended pavements extends PP deployment on high-traffic roadways where tire-associated pollution poses the greatest environmental risk.
Collapse
Affiliation(s)
- Chelsea J Mitchell
- School of the Environment, Puyallup Research and Extension Center, Washington State University, 2606 W Pioneer Ave, Puyallup, WA 98371, USA
| | - Anand D Jayakaran
- Extension and Washington Stormwater Center, Puyallup Research and Extension Center, Washington State University, 2606 W Pioneer Ave, Puyallup, WA 98371, USA.
| |
Collapse
|
7
|
Duchet C, Hou F, Sinclair CA, Tian Z, Kraft A, Kolar V, Kolodziej EP, McIntyre JK, Stark JD. Neonicotinoid mixture alters trophic interactions in a freshwater aquatic invertebrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165419. [PMID: 37429477 DOI: 10.1016/j.scitotenv.2023.165419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.
Collapse
Affiliation(s)
- Claire Duchet
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| | - Fan Hou
- Center for Urban Waters, Tacoma, WA 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Cailin A Sinclair
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, WA 98421, USA; Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Alyssa Kraft
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Vojtech Kolar
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA; Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Jenifer K McIntyre
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - John D Stark
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| |
Collapse
|
8
|
Li ZM, Pal VK, Kannan P, Li W, Kannan K. 1,3-Diphenylguanidine, benzothiazole, benzotriazole, and their derivatives in soils collected from northeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164110. [PMID: 37178851 PMCID: PMC10330497 DOI: 10.1016/j.scitotenv.2023.164110] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
1,3-Diphenylguanidine (DPG), benzothiazole (BTH), benzotriazole (BTR), and their derivatives are high-production-volume chemicals widely used in tires, corrosion inhibitors and plastic products. Vehicular traffic is an important source of these chemicals in the environment. Despite this, little is known about the occurrence of these chemicals in roadside soils. In this study, we determined the concentrations, profiles, and distribution patterns of 3 DPGs, 5 BTHs, and 7 BTRs in 110 soil samples collected from northeastern United States. We found widespread occurrence of 12 out of the 15 analytes measured in roadside soils, at detection frequencies ≥71 % and median concentrations in the range of 0.38-380 ng/g (dry weight). DPGs were the predominant chemicals accounting for 63 % of the sum concentrations of three chemical classes determined, followed by BTHs (28 %) and BTRs (9 %). The concentrations of all analytes (except for 1-, 4-, and 5-OH-BTRs) exhibited significant positive correlations (r: 0.1-0.9, p < 0.01), suggestive of their common sources and/or similar environmental fates. Higher concentrations of DPGs, BTHs and BTRs were found in soils from highways, rubberized playgrounds, and indoor parking lots than those from gardens, parks, and residential areas. Our findings suggest the release of DPGs, BTHs and BTRs from rubber products, especially automobile tires. Further studies are needed to investigate the environmental fate and toxicities of these chemicals to humans and wildlife.
Collapse
Affiliation(s)
- Zhong-Min Li
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States; Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Vineet Kumar Pal
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Pranav Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Wenlong Li
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States; Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States; Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States.
| |
Collapse
|
9
|
Hu X, Zhao HN, Tian Z, Peter KT, Dodd MC, Kolodziej EP. Chemical characteristics, leaching, and stability of the ubiquitous tire rubber-derived toxicant 6PPD-quinone. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:901-911. [PMID: 37042393 DOI: 10.1039/d3em00047h] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We here report chemical characteristics relevant to the fate and transport of the recently discovered environmental toxicant 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or "6PPDQ"). 6PPDQ is a transformation product of the tire rubber antioxidant 6PPD that is ubiquitous in roadway environments, including atmospheric particulate matter, soils, runoff, and receiving waters, after dispersal from tire rubber use and wear on roadways. The aqueous solubility and octanol-water partitioning coefficient (i.e. log KOW) for 6PPDQ were measured to be 38 ± 10 μg L-1 and 4.30 ± 0.02, respectively. Within the context of analytical measurement and laboratory processing, sorption to various laboratory materials was evaluated, indicating that glass was largely inert but loss of 6PPDQ to other materials was common. Aqueous leaching simulations from tire tread wear particles (TWPs) indicated short term release of ∼5.2 μg 6PPDQ per gram TWP over 6 h under flow-through conditions. Aqueous stability tests observed a slight-to-moderate loss of 6PPDQ over 47 days (26 ± 3% loss) for pH 5, 7 and 9. These measured physicochemical properties suggest that 6PPDQ is generally poorly soluble but fairly stable over short time periods in simple aqueous systems. 6PPDQ can also leach readily from TWPs for subsequent environmental transport, posing high potential for adverse effects in local aquatic environments.
Collapse
Affiliation(s)
- Ximin Hu
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Haoqi Nina Zhao
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA, 98421, USA.
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, 98421, USA
| |
Collapse
|
10
|
Liu M, Xu H, Feng R, Gu Y, Bai Y, Zhang N, Wang Q, Hang Ho SS, Qu L, Shen Z, Cao J. Chemical composition and potential health risks of tire and road wear microplastics from light-duty vehicles in an urban tunnel in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121835. [PMID: 37201573 DOI: 10.1016/j.envpol.2023.121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/30/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Tire and road wear microplastics (TRWMPs) are one of the main non-exhaust pollutants of motor vehicles, which cause serious environmental and health issues. Here, TRWMPs in PM2.5 samples were collected in a tunnel in urban Xi'an, northwest China, during four periods [I: 7:30-10:30, II: 11:00-14:00, III: 16:30-19:30, IV: 20:00-23:00 local standard time (LST)] in summer of 2019. The chemical components of rubbers, benzothiazoles, phthalates, and amines in TRWMPs were quantified, with a total concentration of 6522 ± 1455 ng m-3 (mean ± standard deviation). Phthalates were predominant in TRWMPs, accounting for 64.8% on average, followed by rubbers (33.2%) and benzothiazoles (1.19%). The diurnal variations of TRWMPs showed the highest concentration in Period III (evening rush hour) and the lowest concentration in Period I (morning rush hour), which were not exactly consistent with the variation of the number of light-duty vehicles passed through the tunnel. The result implied that the number of vehicles might not be the most important contributor to TRWMPs concentration, whereas meteorological variables (i.e., precipitation, and relative humidity), vehicle speed, vehicle class, and road cleaning also affected their abundances. The non-carcinogenic risk of TRWMPs in this study was within the international safety threshold, but their carcinogenic risk exceeded the threshold by 2.7-4.6 times, mostly dominated by bis(2-ethylhexyl)phthalate (DEHP). This study provides a new basis for the source apportionment of urban PM2.5 in China. The high concentrations and high potential cancer risks of TRWMPs represent the requirement for more efficient measures to control light-duty vehicle emissions.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Rong Feng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunxuan Gu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunlong Bai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ningning Zhang
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiyuan Wang
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, United States; Hong Kong Premium Research and Services Laboratory, Kowloon, Hong Kong SAR, China
| | - Linli Qu
- Hong Kong Premium Research and Services Laboratory, Kowloon, Hong Kong SAR, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Junji Cao
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
11
|
Li ZM, Kannan K. Occurrence of 1,3-Diphenylguanidine, 1,3-Di- o-tolylguanidine, and 1,2,3-Triphenylguanidine in Indoor Dust from 11 Countries: Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6129-6138. [PMID: 37010350 PMCID: PMC10116588 DOI: 10.1021/acs.est.3c00836] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
1,3-Diphenylguanidine (DPG), 1,3-di-o-tolylguanidine (DTG), and 1,2,3-triphenylguanidine (TPG) are synthetic chemicals widely used in rubber and other polymers. Nevertheless, limited information is available on their occurrence in indoor dust. We measured these chemicals in 332 dust samples collected from 11 countries. DPG, DTG, and TPG were found in 100%, 62%, and 76% of the house dust samples, at median concentrations of 140, 2.3, and 0.9 ng/g, respectively. The sum concentrations of DPG and its analogues varied among the countries in the following decreasing order: Japan (median: 1300 ng/g) > Greece (940) > South Korea (560) > Saudi Arabia (440) > the United States (250) > Kuwait (160) > Romania (140) > Vietnam (120) > Colombia (100) > Pakistan (33) > India (26). DPG accounted for ≥87% of the sum concentrations of the three compounds in all countries. DPG, DTG, and TPG exhibited significant correlations (r: 0.35-0.73; p < 0.001). Elevated concentrations of DPG were found in dust from certain microenvironments (e.g., offices and cars). Human exposure to DPG through dust ingestion were in the ranges 0.07-4.40, 0.09-5.20, 0.03-1.70, 0.02-1.04, and 0.01-0.87 ng/kg body weight (BW)/day for infants, toddlers, children, teenagers, and adults, respectively.
Collapse
Affiliation(s)
- Zhong-Min Li
- Department
of Pediatrics, New York University Grossman
School of Medicine, New York, New York 10016, United States
- Department
of Environmental Medicine, New York University
Grossman School of Medicine, New York, New York 10016, United States
| | - Kurunthachalam Kannan
- Department
of Pediatrics, New York University Grossman
School of Medicine, New York, New York 10016, United States
- Department
of Environmental Medicine, New York University
Grossman School of Medicine, New York, New York 10016, United States
| |
Collapse
|
12
|
Zhao HN, Hu X, Tian Z, Gonzalez M, Rideout CA, Peter KT, Dodd MC, Kolodziej EP. Transformation Products of Tire Rubber Antioxidant 6PPD in Heterogeneous Gas-Phase Ozonation: Identification and Environmental Occurrence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5621-5632. [PMID: 36996351 DOI: 10.1021/acs.est.2c08690] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24-168 h and ozonation TPs were characterized using high-resolution mass spectrometry. The probable structures were proposed for 23 TPs with 5 subsequently standard-verified. Consistent with prior findings, 6PPDQ (C18H22N2O2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI (N-(1,3-dimethylbutyl)-N'-phenyl-p-quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs. Other major 6PPD TPs included multiple C18H22N2O and C18H22N2O2 isomers, with presumptive N-oxide, N,N'-dioxide, and orthoquinone structures. Standard-verified TPs were quantified in roadway-impacted environmental samples, with total concentrations of 130 ± 3.2 μg/g in methanol extracts of tire tread wear particles (TWPs), 34 ± 4 μg/g-TWP in aqueous TWP leachates, 2700 ± 1500 ng/L in roadway runoff, and 1900 ± 1200 ng/L in roadway-impacted creeks. These data demonstrate that 6PPD TPs are likely an important and ubiquitous class of contaminants in roadway-impacted environments.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Craig A Rideout
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| |
Collapse
|
13
|
Zhao HN, Hu X, Gonzalez M, Rideout CA, Hobby GC, Fisher MF, McCormick CJ, Dodd MC, Kim KE, Tian Z, Kolodziej EP. Screening p-Phenylenediamine Antioxidants, Their Transformation Products, and Industrial Chemical Additives in Crumb Rubber and Elastomeric Consumer Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2779-2791. [PMID: 36758188 DOI: 10.1021/acs.est.2c07014] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
| | | | | | - Grant C Hobby
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Matthew F Fisher
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Carter J McCormick
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Kelly E Kim
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| |
Collapse
|
14
|
Masoner JR, Kolpin DW, Cozzarelli IM, Bradley PM, Arnall BB, Forshay KJ, Gray JL, Groves JF, Hladik ML, Hubbard LE, Iwanowicz LR, Jaeschke JB, Lane RF, McCleskey RB, Polite BF, Roth DA, Pettijohn MB, Wilson MC. Contaminant Exposure and Transport from Three Potential Reuse Waters within a Single Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1353-1365. [PMID: 36626647 PMCID: PMC9878729 DOI: 10.1021/acs.est.2c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.
Collapse
Affiliation(s)
- Jason R. Masoner
- U.S.
Geological Survey, Oklahoma
City, Oklahoma 73116, United States
| | - Dana W. Kolpin
- U.S.
Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | - Brian B. Arnall
- Oklahoma
State University, Stillwater, Oklahoma 74078, United States
| | - Kenneth J. Forshay
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80225, United States
| | - Justin F. Groves
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | | | | | - Luke R. Iwanowicz
- U.S.
Geological Survey, Kearneysville, West Virginia, 25430, United States
| | | | - Rachael F. Lane
- U.S. Geological
Survey, Lawrence, Kansas 66049, United States
| | | | | | - David A. Roth
- U.S. Geological Survey, Boulder, Colorado 80303, United States
| | | | | |
Collapse
|
15
|
Zhang HY, Huang Z, Liu YH, Hu LX, He LY, Liu YS, Zhao JL, Ying GG. Occurrence and risks of 23 tire additives and their transformation products in an urban water system. ENVIRONMENT INTERNATIONAL 2023; 171:107715. [PMID: 36577297 DOI: 10.1016/j.envint.2022.107715] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Tire wear particles (TWPs) enter road surface with the friction between tires and road surfaces. Under the volatilization, leaching, and transformation action on TWPs by sunlight and rain, tire additives are released into urban water systems, such as surface rainfall runoff, wastewater treatment plants (WWTPs), receiving surface waters, and drinking water treatment plant (DWTP). In this study, we investigated the occurrence of 23 tire additives and their transformation products in the urban water system of the Pearl River Delta region, South China. Nineteen target compounds were detected in the surface runoff, with 1,3-Diphenylguanidine (DPG) showing highest maximum concentration of 58780 ng/L. Benzothiazole and its transformation products are detected at the frequency of 100 % with the total concentrations of 480-42160 ng/L. The antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) was also detected up to 1562 ng/L, which was considerably higher than that of the parent compound 6PPD (the maximum concentration of 7.52 ng/L). Eleven and 8 compounds were detected in WWTPs influents and effluents, respectively, with removal rates of - 62-100 %. Seventeen compounds were detected in the receiving Zhujiang and Dongjiang rivers, while 9 compounds were detected in drinking water sources and DWTP samples. Road runoff, with total concentrations of target compounds up to 79200 ng/L, is suggested as the main non-point source for receiving rivers, while WWTPs effluents are the point sources due to incomplete removal of target compounds after accepting the initial runoff. 6PPD-Q and other 10 compounds displayed median to high ecological risks in surface waters, and the human daily intake of tire additives was estimated to be 2.63 × 10-8-3.16 × 10-5 mg/(kg d) via drinking water. This is the first report of the 6PPD-Q and 1,3-Diphenylurea levels in surface waters in China.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yue-Hong Liu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
16
|
Rauert C, Vardy S, Daniell B, Charlton N, Thomas KV. Tyre additive chemicals, tyre road wear particles and high production polymers in surface water at 5 urban centres in Queensland, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158468. [PMID: 36075411 DOI: 10.1016/j.scitotenv.2022.158468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Plastics pollution is a global issue impacting every part of our environment. Tyre road wear particle (TRWP) plastics pollution is thought to be one of the largest pollution sources in urban environments. These plastics are also of concern due to the presence of additive chemicals, incorporated during manufacture, that can be released into the surrounding environment. This study aimed to provide information on concentrations of a range of anthropogenic plastics related pollutants in the Australian environment through a scoping study of surface water in 5 key urban centres around Queensland, Australia. Samples were analysed for a suite of 15 common tyre additive chemicals, TRWPs and 6 common high production polymers, and included the new transformation product of concern 6PPD-quinone which has recent reports of causing mass mortality events in certain aquatic species. The additives were ubiquitously detected (2.9-1440 ng/L) with 6PPD-quinone concentrations lower than in previous studies (<0.05-24 ng/L) and TRWPs detected at 18 of the 21 sites (
Collapse
Affiliation(s)
- Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia.
| | - Suzanne Vardy
- Water Quality and Investigation, Water Ecosystem Sciences, Science Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | | | - Nathan Charlton
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| |
Collapse
|
17
|
Marques Dos Santos M, Cheriaux C, Jia S, Thomas M, Gallard H, Croué JP, Carato P, Snyder SA. Genotoxic effects of chlorinated disinfection by-products of 1,3-diphenylguanidine (DPG): Cell-based in-vitro testing and formation potential during water disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129114. [PMID: 35739694 DOI: 10.1016/j.jhazmat.2022.129114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
1,3-diphenylguanidine (DPG) is a commonly used rubber and polymer additive, that has been found to be one of the main leachate products of tire wear particles and from HDPE pipes. Its introduction to aquatic environments and potentially water supplies lead to further questions regarding the effects of disinfection by-products potentially formed. Using different bioassay approaches and NGS RNA-sequencing, we show that some of the chlorinated by-products of DPG exert significant toxicity. DPG and its chlorinated by-products also can alter cell bioenergetic processes, affecting cellular basal respiration rates and ATP production, moreover, DPG and its two chlorination products, 1,3-bis-(4-chlorophenyl)guanidine (CC04) and 1-(4-chlorophenyl)-3-(2,4-dichlorophenyl)guanidine (CC11), have an impact on mitochondrial proton leak, which is an indicator of mitochondria damage. Evidence of genotoxic effects in the form of DNA double strand breaks (DSBs) was suggested by RNA-sequencing results and further validated by an increased expression of genes associated with DNA damage response (DDR), specifically the canonical non-homologous end joining (c-NHEJ) pathway, as determined by qPCR analysis of different pathway specific genes (XRCC6, PRKDC, LIG4 and XRCC4). Immunofluorescence analysis of phosphorylated histone H2AX, another DSB biomarker, also confirmed the potential genotoxic effects observed for the chlorinated products. In addition, chlorination of DPG leads to the formation of different chlorinated products (CC04, CC05 and CC15), with analysed compounds representing up to 42% of formed products, monochloramine is not able to effectively react with DPG. These findings indicate that DPG reaction with free chlorine doses commonly applied during drinking water treatment or in water distribution networks (0.2-0.5 mg/L) can lead to the formation of toxic and genotoxic chlorinated products.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Camille Cheriaux
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Mikael Thomas
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Pascal Carato
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
18
|
Wiener E, LeFevre GH. White Rot Fungi Produce Novel Tire Wear Compound Metabolites and Reveal Underappreciated Amino Acid Conjugation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:391-399. [PMID: 35578639 PMCID: PMC9100321 DOI: 10.1021/acs.estlett.2c00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/01/2023]
Abstract
There is increasing concern about tire wear compounds (TWCs) in surface water and stormwater as evidence grows on their toxicity and widespread detection in the environment. Because TWCs are prevalent in stormwater, there is a need to understand fate and treatment options including biotransformation in green infrastructure (e.g., bioretention). Particularly, fungal biotransformation is not well-studied in a stormwater context despite the known ability of certain fungi to remove recalcitrant contaminants. Here, we report the first study on fungal biotransformation of the TWCs acetanilide and hexamethoxymethylmelamine (HMMM). We found that the model white rot fungus, Trametes versicolor, removed 81.9% and 69.6% of acetanilide and HMMM, respectively, with no significant sorption to biomass. The bicyclic amine 1,3-diphenylguanidine was not removed. Additionally, we identified novel TWC metabolites using semi-untargeted metabolomics via high-resolution mass spectrometry. Key metabolites include multiple isomers of HMMM biotransformation products, melamine as a possible "dead-end" product of HMMM (verified with an authentic standard), and a glutamine-conjugated product of acetanilide. These metabolites have implications for environmental toxicity and treatment. Our discovery of the first fungal glutamine-conjugated product highlights the need to investigate amino acid conjugation as an important pathway in biotransformation of contaminants, with implications in other fields including natural products discovery.
Collapse
Affiliation(s)
- Erica
A. Wiener
- Department
of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- C.
Maxwell Stanley Hydraulics Laboratory, IIHR−Hydroscience
& Engineering, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- C.
Maxwell Stanley Hydraulics Laboratory, IIHR−Hydroscience
& Engineering, Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Rauert C, Charlton N, Okoffo ED, Stanton RS, Agua AR, Pirrung MC, Thomas KV. Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2421-2431. [PMID: 35099932 DOI: 10.1021/acs.est.1c07451] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tire road wear particles (TRWPs) are one of the largest sources of microplastics to the urban environment with recent concerns as they also provide a pathway for additive chemicals to leach into the environment. Stormwater is a major source of TRWPs and associated additives to urban surface water, with additives including the antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) demonstrating links to aquatic toxicity at environmentally relevant concentrations. The present study used complementary analysis methods to quantify both TRWPs and a suite of known tire additive chemicals (including 6PPD-quinone) to an urban tributary in Australia during severe storm events. Concentrations of additives increased more than 40 times during storms, with a maximum concentration of 2760 ng/L for ∑15additives, 88 ng/L for 6PPD-quinone, and a similar profile observed in each storm. TRWPs were detected during storm peaks with a maximum concentration between 6.4 and 18 mg/L, and concentrations of TRWPs and all additives were highly correlated. Contaminant mass loads to this catchment were estimated as up to 100 g/storm for ∑15additives, 3 g/storm for 6PPD-quinone, and between 252 and 730 kg of TRWPs/storm. While 6PPD-quinone concentrations in this catchment were lower than previous studies, elevated concentrations post storm suggest prolonged aquatic exposure.
Collapse
Affiliation(s)
- Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Nathan Charlton
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Ryan S Stanton
- Chemical Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Alon R Agua
- Chemical Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Michael C Pirrung
- Chemical Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| |
Collapse
|
20
|
Johannessen C, Helm P, Metcalfe CD. Runoff of the Tire-Wear Compound, Hexamethoxymethyl-Melamine into Urban Watersheds. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:162-170. [PMID: 33515272 PMCID: PMC7846915 DOI: 10.1007/s00244-021-00815-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023]
Abstract
Hexamethoxymethyl-melamine (HMMM) is used as a crosslinking agent in resins and plastics and in the manufacture of tires. In the present study, surface water samples were collected from two rivers adjacent to high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples collected from the Don River and Highland Creek during rain events and a period of rapid snowmelt were preconcentrated using solid phase extraction and analyzed using liquid chromatography with high-resolution mass spectrometry. Elevated concentrations (> 1 µg/L) of HMMM were detected in surface waters during rain events in October of 2019 and during snow melt in early March of 2020. There were lower average concentrations of HMMM detected during rain events in the winter and spring of 2020. Temporal profiles of changes in the concentrations of HMMM in composite samples collected every 3 h during a rain event in October 2019 closely corresponded to the hydrograph profiles at the sampling sites, with the HMMM concentrations peaking > 6 h after the peak in water levels. This work contributes to the literature showing that HMMM is a ubiquitous contaminant of urban watersheds and that runoff from roads is a vector for the transport of this compound into urban surface waters.
Collapse
Affiliation(s)
| | - Paul Helm
- Ontario Ministry of Environment, Conservation and Parks, Toronto, ON, Canada
| | - Chris D Metcalfe
- Water Quality Center, Trent University, Peterborough, ON, Canada
| |
Collapse
|
21
|
Johannessen C, Helm P, Lashuk B, Yargeau V, Metcalfe CD. The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:171-179. [PMID: 34347118 PMCID: PMC8335451 DOI: 10.1007/s00244-021-00878-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/21/2021] [Indexed: 05/19/2023]
Abstract
Prompted by a recent report that 6PPD-quinone (6PPD-q), a by-product of a common tire manufacturing additive that is present in road runoff, is toxic to coho salmon (Oncorhynchus kisutch), extracts of water samples collected from an urban river were re-analyzed to determine if this compound was present in stormwater-influenced flows. In addition, extracts were analyzed for 1,3-diphenylguanidine (DPG), which is also used in tire manufacturing. Samples were originally collected in the fall of 2019 and winter of 2020 in the Greater Toronto Area of Canada from the Don River, a highly urbanized watershed in close proximity to several major multi-lane highways. These target compounds were analyzed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection with parallel reaction monitoring. Both 6PPD-q and DPG were detected above limits of quantification (i.e., 0.0098 µg/L) in all extracts. Maximum concentrations for 6PPD-quinone of 2.30 ± 0.05 µg/L observed in the river during storm events exceeded the LC50 for this compound for coho salmon (i.e., > 0.8 µg/L). In composite samples collected at intervals throughout one rain event, both compounds reached peak concentrations a few hours after initiation of the event (i.e., 0.52 µg/L for DPG and 2.85 µg/L for 6PPD-q), but the concentrations of 6PPD-q remained elevated above 2 µg/L for over 10-h in the middle of the event. Estimates of cumulative loads of these compounds in composite samples indicated that kg amounts of these compounds entered the Don River during each hydrological event, and the loads were proportional to the amounts of precipitation. This study contributes to the growing literature indicating that potentially toxic tire-wear compounds are present at elevated levels and are transported via road runoff into urban surface waters during rain events.
Collapse
Affiliation(s)
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Brent Lashuk
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Chris D Metcalfe
- Water Quality Center, Trent University, Peterborough, ON, Canada
| |
Collapse
|
22
|
Gillis PL, Parrott JL, Helm P. Environmental Fate and Effects of Road Run-Off. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:159-161. [PMID: 34977971 PMCID: PMC8817996 DOI: 10.1007/s00244-021-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Patricia L Gillis
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada.
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| |
Collapse
|
23
|
Johannessen C, Helm P, Metcalfe CD. Detection of selected tire wear compounds in urban receiving waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117659. [PMID: 34426371 DOI: 10.1016/j.envpol.2021.117659] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Road runoff is an important vector for the transport of chemicals originating from tire wear into receiving waters. In this study, samples of surface water were collected in the summer of 2020 from two rivers near high-traffic corridors in the Greater Toronto Area (GTA) in Canada. These samples were analyzed for two additives used in tire production, 1,3-diphenyl guanidine (DPG) and hexamethoxymethylmelamine (HMMM), as well 26 of the transformation compounds of HMMM. In addition, samples were analyzed for 6PPD-quinone (6PPD-q), an oxidation by-product of a tire additive that was recently identified as a candidate compound responsible for mass mortalities of Coho salmon (Oncorhynchus kisutch) in spawning streams in the USA. Grab and composite samples were collected during rain events (i.e., wet events) at both locations. Grab samples were collected from the Don River upstream, downstream and at the point of discharge from a municipal wastewater treatment plant (WWTP) during a period of dry weather. Of the target analytes, 6PPD-q, DPG and HMMM, as well as 15 of the transformation compounds of HMMM, were detected at concentrations above limits of quantitation. The concentrations of 6PPD-q in the receiving waters during wet events were within the range of the LC50 for adult Coho salmon. One of the transformation products (TPs) of HMMM, dimethoxymethylmelamine was detected in a composite sample from Highland Creek at an estimated concentration greater than 10 μg/L, indicating that more research is needed to evaluate the potential hazards to the aquatic environment from this compound. Sampling in the Don River during a dry period showed that discharges of wastewater from WWTPs are also continuous sources of the TPs of HMMM. This study contributes to the growing literature showing that chemicals derived from tire wear are ubiquitous in urban watersheds and may be a significant hazard to aquatic organisms.
Collapse
Affiliation(s)
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Chris D Metcalfe
- Water Quality Center, Trent University, Peterborough, ON, Canada
| |
Collapse
|
24
|
Webb DT, Zhi H, Kolpin DW, Klaper RD, Iwanowicz LR, LeFevre GH. Emerging investigator series: municipal wastewater as a year-round point source of neonicotinoid insecticides that persist in an effluent-dominated stream. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:678-688. [PMID: 33889902 PMCID: PMC8159912 DOI: 10.1039/d1em00065a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Neonicotinoids in aquatic systems have been predominantly associated with agriculture, but some are increasingly being linked to municipal wastewater. Thus, the aim of this work was to understand the municipal wastewater contribution to neonicotinoids in a representative, characterized effluent-dominated temperate-region stream. Our approach was to quantify the spatiotemporal concentrations of imidacloprid, clothianidin, thiamethoxam, and transformation product imidacloprid urea: 0.1 km upstream, the municipal wastewater effluent, and 0.1 and 5.1 km downstream from the wastewater outfall (collected twice-monthly for one year under baseflow conditions). Quantified results demonstrated that wastewater effluent was a point-source of imidacloprid (consistently) and clothianidin (episodically), where chronic invertebrate exposure benchmarks were exceeded for imidacloprid (36/52 samples; 3/52 > acute exposure benchmark) and clothianidin (8/52 samples). Neonicotinoids persisted downstream where mass loads were not significantly different than those in the effluent. The combined analysis of neonicotinoid effluent concentrations, instream seasonality, and registered uses in Iowa all indicate imidacloprid, and seasonally clothianidin, were driven by wastewater effluent, whereas thiamethoxam and imidacloprid urea were primarily from upstream non-point sources (or potential in-stream transformation for imidacloprid urea). This is the first study to quantify neonicotinoid persistence in an effluent-dominated stream throughout the year-implicating wastewater effluent as a point-source for imidacloprid (year-round) and clothianidin (seasonal). These findings suggest possible overlooked neonicotinoid indoor human exposure routes with subsequent implications for instream ecotoxicological exposure.
Collapse
Affiliation(s)
- Danielle T Webb
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA. and IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA. and IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, USA
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA. and IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Kumar N, Zhao HN, Awoyemi O, Kolodziej EP, Crago J. Toxicity Testing of Effluent-Dominated Stream Using Predictive Molecular-Level Toxicity Signatures Based on High-Resolution Mass Spectrometry: A Case Study of the Lubbock Canyon Lake System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3070-3080. [PMID: 33600148 DOI: 10.1021/acs.est.0c05546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Current aquatic toxicity assessments usually focus on targeted analyses coupled with toxicity testing to determine the impacts of complex mixtures on aquatic organisms. However, based on this approach alone, it is sometimes difficult to explain observed toxicity from the selected chemical analytes. Recent analytical advances such as high-resolution mass spectrometry (HRMS) can improve the characterizations of the chemical composition of complex mixtures, but the intensive labor required to produce confident identifications limits its utility in high-throughput screening. In the present study, we evaluated a rapid workflow to predict potential toxicity signatures of complex water samples based on high-throughput, tentative HRMS identifications derived from database matching, followed by identification of chemical-ligand interactions and pathway identification. We tested the workflow with water samples from the effluent-dominated Lubbock Canyon Lake System (LCLS). Results across all sites showed that predicted toxicity signatures had little variation when correcting for HRMS false-positive rates. The most common pathways across sites were gonadotropin-releasing hormone receptor and α-adrenergic receptor signaling. Alterations to the predicted pathways were successfully observed in larval zebrafish exposures to LCLS water samples. These results may allow researchers to better utilize rapid assessments of HRMS data for the assessment of adverse impacts on aquatic organisms.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Olushola Awoyemi
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98402, United States
| | - Jordan Crago
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
26
|
Overdahl KE, Sutton R, Sun J, DeStefano NJ, Getzinger GJ, Ferguson PL. Assessment of emerging polar organic pollutants linked to contaminant pathways within an urban estuary using non-targeted analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:429-445. [PMID: 33656498 PMCID: PMC9136708 DOI: 10.1039/d0em00463d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A comprehensive, non-targeted analysis of polar organic pollutants using high resolution/accurate mass (HR/AM) mass spectrometry approaches has been applied to water samples from San Francisco (SF) Bay, a major urban estuary on the western coast of the United States, to assess occurrence of emerging contaminants and inform future monitoring and management activities. Polar Organic Chemical Integrative Samplers (POCIS) were deployed selectively to evaluate the influence of three contaminant pathways: urban stormwater runoff (San Leandro Bay), wastewater effluent (Coyote Creek, Lower South Bay), and agricultural runoff (Napa River). Grab samples were collected before and after deployment of the passive samplers to provide a quantitative snapshot of contaminants for comparison. Composite samples of wastewater effluent (24 hours) were also collected from several wastewater dischargers. Samples were analyzed using liquid-chromatography coupled to high resolution mass spectrometry. Resulting data were analyzed using a customized workflow designed for high-fidelity detection, prioritization, identification, and semi-quantitation of detected molecular features. Approximately 6350 compounds were detected in the combined data set, with 424 of those compounds tentatively identified through high quality spectral library match scores. Compounds identified included ethoxylated surfactants, pesticide and pharmaceutical transformation products, polymer additives, and rubber vulcanization agents. Compounds identified in samples were reflective of the apparent sources and pathways of organic pollutant inputs, with stormwater-influenced samples dominated by additive chemicals likely derived from plastics and vehicle tires, as well as ethoxylated surfactants.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Tian Z, Zhao H, Peter KT, Gonzalez M, Wetzel J, Wu C, Hu X, Prat J, Mudrock E, Hettinger R, Cortina AE, Biswas RG, Kock FVC, Soong R, Jenne A, Du B, Hou F, He H, Lundeen R, Gilbreath A, Sutton R, Scholz NL, Davis JW, Dodd MC, Simpson A, McIntyre JK, Kolodziej EP. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021; 371:185-189. [PMID: 33273063 DOI: 10.1126/science.abd6951] [Citation(s) in RCA: 466] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.
Collapse
Affiliation(s)
- Zhenyu Tian
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Haoqi Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Jill Wetzel
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Christopher Wu
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jasmine Prat
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Emma Mudrock
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Rachel Hettinger
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Allan E Cortina
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Rajshree Ghosh Biswas
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | | - Ronald Soong
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Bowen Du
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Fan Hou
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Huan He
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rachel Lundeen
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Alicia Gilbreath
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, Lacey, WA 98503, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Andre Simpson
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Rauert C, Kaserzon SL, Veal C, Yeh RY, Mueller JF, Thomas KV. The first environmental assessment of hexa(methoxymethyl)melamine and co-occurring cyclic amines in Australian waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140834. [PMID: 32679507 DOI: 10.1016/j.scitotenv.2020.140834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Hexa(methoxymethyl)melamine (HMMM) is commonly used as a cross-linking agent in coatings and as a vulcaniser in tyre production to increase the durability of tyres. Early reports of elevated aquatic concentrations of HMMM and a range of co-occurring cyclic amines have been linked to toxicity and mortality events of aquatic organisms. There are currently only few studies reporting environmental concentrations of HMMM and the co-occurring cyclic amines, and this study reports the first environmental assessment in Australian surface waters. Archive passive water samples from 40 rivers, creeks and lakes in South East Queensland, Australia, and covering five years of biannual sampling, were analysed to determine spatial and temporal trends. Concentrations of HMMM and cyclic amines in Australian surface waters (<5-46 and <MDL-280 ng/L respectively) were towards the low end of concentrations reported in surface water in North America/Europe. While previous studies have indicated that HMMM can be used as an indicator chemical of tyre wear particle inputs from stormwater runoff to a water system, the variable spatial and temporal trends at these sites indicates there are a range of different sources, and more research is needed into these chemicals to understand their occurrence in the environment.
Collapse
Affiliation(s)
- Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102 Brisbane, Australia.
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102 Brisbane, Australia
| | - Cameron Veal
- Seqwater, 117 Brisbane Street, Ipswich, QLD, Australia
| | - Ruby Y Yeh
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102 Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102 Brisbane, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102 Brisbane, Australia
| |
Collapse
|
29
|
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020; 25:E5204. [PMID: 33182304 PMCID: PMC7664861 DOI: 10.3390/molecules25215204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) are abundantly used by people, and some of them are excreted unaltered or as metabolites through urine, with the sewage being the most important source to their release to the environment. These compounds are in almost all types of water (wastewater, surface water, groundwater, etc.) at concentrations ranging from ng/L to µg/L. The isolation and concentration of the PPCPs from water achieves the appropriate sensitivity. This step is mostly based on solid-phase extraction (SPE) but also includes other approaches (dispersive liquid-liquid microextraction (DLLME), buckypaper, SPE using multicartridges, etc.). In this review article, we aim to discuss the procedures employed to extract PPCPs from any type of water sample prior to their determination via an instrumental analytical technique. Furthermore, we put forward not only the merits of the different methods available but also a number of inconsistencies, divergences, weaknesses and disadvantages of the procedures found in literature, as well as the systems proposed to overcome them and to improve the methodology. Environmental applications of the developed techniques are also discussed. The pressing need for new analytical innovations, emerging trends and future prospects was also considered.
Collapse
Affiliation(s)
- Daniele Sadutto
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| |
Collapse
|
30
|
Peter KT, Hou F, Tian Z, Wu C, Goehring M, Liu F, Kolodziej EP. More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6152-6165. [PMID: 32302122 DOI: 10.1021/acs.est.0c00872] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Stormwater runoff clearly impacts water quality and ecological health of urban receiving waters. Subsequent management efforts are often guided by conceptual models of contaminant "first flushes", defined by disproportionate concentrations or mass loads early in the storm hydrograph. However, studies examining the dynamics of contaminant transport and receiving water hydrology have primarily focused on "traditional" stormwater contaminants and point sources, with less evaluation of chemically complex nonpoint pollution sources. Accordingly, we conducted baseflow and storm sampling in Miller Creek, a representative small, urban watershed in the Puget Sound region (WA, USA). We comprehensively characterized organic contaminant profiles and dynamics via targeted quantification of 35 stormwater-derived chemicals, complementary nontarget HRMS analyses, and surrogate chemical metrics of ecological health. For quantified analytes, total daily baseflow loads were 0.8-3.4 g/day and storm event loads were ∼80-320 g/storm (∼48 h interval), with nine contaminants detected during storms at >500 ng/L. Notably, urban creek "pollutographs" were much broader than relatively sharp storm hydrographs and exhibited transport-limited (rather than mass-limited) source dynamics, with immediate water quality degradation during low-intensity precipitation and continued mobilization of contaminant mass across the entire hydrograph. Study outcomes support prioritization of source identification and focused stormwater management efforts to improve water quality and promote ecosystem function in small urban receiving waters.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Fan Hou
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Christopher Wu
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Matt Goehring
- Green/Duwamish & Central Puget Sound Watershed (WRIA 9), King County, Seattle, Washington 98104 United States
| | - Fengmao Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195 United States
| |
Collapse
|