1
|
Santos-Ramirez JMDL, Martinez-Gonzalez VG, Mendiola-Escobedo CA, Cotera-Sarabia JM, Gallo-Villanueva RC, Martinez-Duarte R, Perez-Gonzalez VH. Short Communication: Ultralow Voltage Electrokinetic Particle Trapping in DC-iEK Devices Using 9 V Alkaline Batteries as Power Supply. Electrophoresis 2024. [PMID: 39607317 DOI: 10.1002/elps.202400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
This contribution describes direct current insulator-based electrokinetic (DC-iEK) microfluidic devices stimulated by 9 V alkaline batteries for the trapping of 2-µm diameter fluorescent polystyrene particles. These devices featured two triangular insulating posts within the fluidic channel. Particle trapping was clearly observed at 18 V (two 9 V batteries connected in series), but only intermittent particle trapping was observed with a single 9 V battery. Particle trapping was determined by measuring the increase in relative fluorescence intensity at the gap region between the single pair of triangular posts. Results demonstrate that the use of low stimulating voltages (deemed as ultralow) in DC-iEK systems may be more suitable for accurate and precise electrokinetic characterization of particles-by exhibiting a very well-localized trapping region with negligible particle oscillations therein, respectively-than for high-performance and high-throughput particle manipulation (i.e., concentration, separation, filtering, or isolation).
Collapse
Affiliation(s)
| | | | | | - Jose M Cotera-Sarabia
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, USA
| | | |
Collapse
|
2
|
Sheu J, Seyler S, Fazlul Karim Rasel AKM, Hayes MA. Enhanced Green Fluorescent Protein Streaming Dielectrophoresis in Insulator-Based Microfluidic Devices. Electrophoresis 2024. [PMID: 39523919 DOI: 10.1002/elps.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
There is tantalizing evidence that proteins can be accurately and selectively manipulated by higher order electric field effects within microfluidic devices. The accurate and precise manipulation of proteins in these platforms promises to disrupt and revolutionize many fields, most notably analytical biochemistry. Several lines of experimental evidence suggest much higher forces are generated compared to those calculated from traditional theories and those higher forces arise from subtle structural features of the proteins providing selectivity. New theories reflect some of the experimental evidence in the magnitude of the force predicted and inclusion of subtle structural features absent in traditional continuum theory. Unfortunately, the experimental evidence is largely exploratory in nature and lacks one or more important elements that prevents a clear interpretation and comparison to not only the other existing data, but also quantitative comparison to the evolving theoretical descriptions. Here, a clear and interpretable experimental system is presented that quantitatively determines the dielectrophoretic susceptibility of unlabeled, unaggregated native-structure protein molecules that are exposed to modest electric fields (105-106 V/m) for short periods of time (∼5 ms) without significant increases in local concentration. The platform uses sub-nanogram quantities of protein, the probed volume upon determination is a few picoliters, and the total analysis time is 10 s.
Collapse
Affiliation(s)
- Jerry Sheu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Sean Seyler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Ware J, Shea D, Lim JY, Malakian A, Armstrong R, Pethig R, Ibsen S. Collection of serum albumin aggregate nanoparticles from human plasma by dielectrophoresis. Electrophoresis 2024; 45:1748-1763. [PMID: 39081085 PMCID: PMC11695576 DOI: 10.1002/elps.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 10/17/2024]
Abstract
Dielectrophoresis (DEP) is a fast and reliable nanoparticle recovery method that utilizes nonuniform electric fields to manipulate particles based on their material composition and size, enabling recovery of biologically-derived nanoparticles from plasma for diagnostic applications. When applying DEP to undiluted human plasma, collection of endogenous albumin proteins was observed at electric field gradients much lower than predicted by theory to collect molecular proteins. To understand this collection, nanoparticle tracking analysis of bovine serum albumin (BSA) dissolved in 0.5× phosphate-buffered saline was performed and showed that albumin spontaneously formed aggregate nanoparticles with a mean diameter of 237 nm. These aggregates experienced a dielectrophoretic force as a function of aggregate radius rather than the diameter of individual protein molecules which contributed to their collection. In high conductance buffer (6.8 mS/cm), DEP was able to move these aggregates into regions of high electric field gradient, and in lower conductance buffer (0.68 mS/cm), these aggregates could be moved into high or low gradient regions depending on the applied frequency. Disruption of BSA aggregates using a nonionic detergent significantly decreased the particle diameter, resulting in decreased dielectrophoretic collection of albumin which increased the collection consistency of particles of interest. These results provide techniques to manipulate albumin aggregates via DEP, which impacts collection of diagnostic biomarkers.
Collapse
Affiliation(s)
- Jason Ware
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Delaney Shea
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Jeong Youn Lim
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Anna Malakian
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Randall Armstrong
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering & Electronics, The University of Edinburgh, Edinburgh EH9 3JF, UK
| | - Stuart Ibsen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
4
|
Barekatain M, Liu Y, Archambeau A, Cherezov V, Fraser S, White KL, Hayes MA. Insulator-based dielectrophoresis-assisted separation of insulin secretory vesicles. eLife 2024; 13:e74989. [PMID: 39190030 PMCID: PMC11349295 DOI: 10.7554/elife.74989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Organelle heterogeneity and inter-organelle contacts within a single cell contribute to the limited sensitivity of current organelle separation techniques, thus hindering organelle subpopulation characterization. Here, we use direct current insulator-based dielectrophoresis (DC-iDEP) as an unbiased separation method and demonstrate its capability by identifying distinct distribution patterns of insulin vesicles from INS-1E insulinoma cells. A multiple voltage DC-iDEP strategy with increased range and sensitivity has been applied, and a differentiation factor (ratio of electrokinetic to dielectrophoretic mobility) has been used to characterize features of insulin vesicle distribution patterns. We observed a significant difference in the distribution pattern of insulin vesicles isolated from glucose-stimulated cells relative to unstimulated cells, in accordance with maturation of vesicles upon glucose stimulation. We interpret the difference in distribution pattern to be indicative of high-resolution separation of vesicle subpopulations. DC-iDEP provides a path for future characterization of subtle biochemical differences of organelle subpopulations within any biological system.
Collapse
Affiliation(s)
- Mahta Barekatain
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Yameng Liu
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Ashley Archambeau
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Scott Fraser
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
5
|
Zavatski S, Martin OJF. Visual and Quantitative Analysis of the Trapping Volume in Dielectrophoresis of Nanoparticles. NANO LETTERS 2024; 24:10305-10312. [PMID: 39133749 PMCID: PMC11342383 DOI: 10.1021/acs.nanolett.4c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Nanoparticle manipulation requires careful analysis of the forces at play. Unfortunately, traditional force measurement techniques based on the particle velocity do not provide sufficient resolution, while balancing approaches involving counteracting forces are often cumbersome. Here, we demonstrate that a nanoparticle dielectrophoretic response can be quantitatively studied by a straightforward visual delineation of the dielectrophoretic trapping volume. We reveal this volume by detecting the width of the region depleted of gold nanoparticles by the dielectrophoretic force. Comparison of the measured widths for various nanoparticle sizes with numerical simulations obtained by solving the particle-conservation equation shows excellent agreement, thus providing access to the particle physical properties, such as polarizability and size. These findings can be further extended to investigate various types of nano-objects, including bio- and molecular aggregates, and offer a robust characterization tool that can enhance the control of matter at the nanoscale.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Kordzadeh-Kermani V, Ashrafizadeh SN, Madadelahi M. Dielectrophoretic separation/classification/focusing of microparticles using electrified lab-on-a-disc platforms. Anal Chim Acta 2024; 1310:342719. [PMID: 38811136 DOI: 10.1016/j.aca.2024.342719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Separation, classification, and focusing of microparticles are essential issues in microfluidic devices that can be implemented in two categories: using labeling and label-free methods. Label-free methods differentiate microparticles based on their inherent properties, including size, density, shape, electrical conductivity/permittivity, and magnetic susceptibility. Dielectrophoresis is an advantageous label-free technique for this objective. Besides, centrifugal microfluidic devices exploit centrifugal forces to move liquid and particles. The simultaneous combination of dielectrophoretic and centrifugal forces exerted on microparticles still needs to be scrutinized more to predict their trajectories in such devices. RESULTS An integrated system utilizing two categories in microfluidics is proposed: dielectrophoretic manipulation of microparticles and centrifugal-driven microfluidics, followed by a numerical analysis. In this regard, we assumed a rectangular microchannel with internal unilateral planar electrodes equipped with three equal-sized outlets placed radially on a centrifugal platform where microparticles flow toward the disc's outer edge. The effect of different coordinate-based parameters, including radial and lateral distances (X and Y offsets)/tilting angles toward the radius direction (α), on the particles' movement was investigated. Additionally, the effect of operational parameters, including applied voltage, the microchannel width, the number of enabled electrodes, the diameter of particles, and the configuration of electrodes, were analyzed, and the distributions of particles toward the outlets were monitored. It was found that enhanced particle focusing becomes possible at lower rotation speeds and higher electric field values. Furthermore, the proposed centrifugal-DEP system's efficiency for classifying red blood cells/platelets and Live/Dead yeast cells systems was evaluated. SIGNIFICANCE Our integrated system is introduced as a novel method for focusing and classifying various microparticles with no need for sheath flows, having the ability to conduct particles at desired routes and focusing width. Furthermore, the system effectively separates various bioparticles and offers ease of operation and high-efficiency throughput over conventional dielectrophoretic devices.
Collapse
Affiliation(s)
- Vahid Kordzadeh-Kermani
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico.
| |
Collapse
|
7
|
Anand G, Safaripour S, Snoeyink C. Anomalous, dielectrophoretic transport of molecules in non-electrolytes. J Sep Sci 2024; 47:e2300719. [PMID: 38066389 DOI: 10.1002/jssc.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024]
Abstract
The electric field (E-field) dielectric polarization-based separations mechanism represents a novel method for separating solutions at small length scales. An E-field gradient with a maximum strength of 0.4 MV/m applied across a 10 μm deep channel is shown to increase the concentration inside the low E-field region by ≈ 40% relative to the high E-field region. This concentration change is two orders of magnitude higher than the estimated change predicted using the classical equilibrium thermodynamics for the same E-field. The deviation between the predicted and the experimental results suggests that the change in volumetric E-field energy with solute concentration is insufficient to explain this phenomenon. The study also explores the effect of varying strength of E-field and frequency of supplied voltage on the dielectric polarization-based separation efficiency. While the increase in the former increases the separation efficiency, the increase in the latter reduces the degree of concentration change due to ineffective charging of the electrodes.
Collapse
Affiliation(s)
- Gaurav Anand
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York, USA
| | - Samira Safaripour
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York, USA
| | - Craig Snoeyink
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
9
|
Anand G, Safaripour S, Snoeyink C. Dielectric polarization-based separations in an ionic solution. RSC Adv 2023; 13:22185-22192. [PMID: 37492504 PMCID: PMC10363714 DOI: 10.1039/d3ra03169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
A novel non-electrophoretic, electric field-based separation mechanism capable of transporting ions based on their dielectric properties is presented here for the first time. Though this polarization-based mechanism behaves similarly to dielectrophoresis, the separation mechanism is remarkably very efficient at small length scales compared to any dielectrophoretic separation mechanism for particles. For an applied electric field of strength as low as ∼0.75 MV m-1 across a 100 μm channel, the working solute - sodium fluorescein - is shown to decrease in its concentration by ≈20% in electric field region relative to the non electric field region. The existing macroscopic theoretical models like electrohydrodynamics and equilibrium thermodynamics are shown to underestimate the concentration change by two orders of magnitude for the same electric field strength. This surprisingly large difference between theory and experimental results suggests that the electric field-based equilibrium thermodynamic model lacks a key physics.
Collapse
Affiliation(s)
- Gaurav Anand
- Department of Mechanical and Aerospace Engineering, University at Buffalo Buffalo USA
| | - Samira Safaripour
- Department of Mechanical and Aerospace Engineering, University at Buffalo Buffalo USA
| | - Craig Snoeyink
- Department of Mechanical and Aerospace Engineering, University at Buffalo Buffalo USA
- University at Buffalo 211 Bell Hall Buffalo 14260 NY USA
| |
Collapse
|
10
|
Babaei E, Wright D, Gordon R. Fringe Dielectrophoresis Nanoaperture Optical Trapping with Order of Magnitude Speed-Up for Unmodified Proteins. NANO LETTERS 2023; 23:2877-2882. [PMID: 36999922 DOI: 10.1021/acs.nanolett.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single molecule analysis of proteins in an aqueous environment without modification (e.g., labels or tethers) elucidates their biophysics and interactions relevant to drug discovery. By combining fringe-field dielectrophoresis with nanoaperture optical tweezers we demonstrate an order of magnitude faster time-to-trap for proteins when the counter electrode is outside of the solution. When the counter electrode is inside the solution (the more common configuration found in the literature), electrophoresis speeds up the trapping of polystyrene nanospheres, but this was not effective for proteins in general. Since time-to-trap is critical for high-thoughput analysis, these findings are a major advancement to the nanoaperture optical trapping technique for protein analysis.
Collapse
Affiliation(s)
- Elham Babaei
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Demelza Wright
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| |
Collapse
|
11
|
Boika A. On Practical Aspects of Single-Entity Electrochemical Measurements with Hot Microelectrodes. Anal Chem 2023; 95:4577-4584. [PMID: 36862018 DOI: 10.1021/acs.analchem.2c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
When a 10s-100s MHz frequency alternating current (ac) waveform is applied to a disk ultramicroelectrode (UME) in an electrochemical cell, one achieves what is known as a hot microelectrode, or a hot UME. The electrical energy generates heat in an electrolyte solution surrounding the electrode, and the heat transfer leads to formation of a hot zone with the size comparable to the electrode diameter. In addition to heating, ac electrokinetic phenomena generated by the waveform include dielectrophoresis (DEP) and electrothermal fluid flow (ETF). These phenomena can be harvested to manipulate the motion of analyte species and achieve significant improvements in their single-entity electrochemical (SEE) detection. This work evaluates various microscale forces observable with hot UMEs in relation to their utility to improve the sensitivity and specificity of the SEE analysis. Considering only mild heating (with a UME temperature increase not exceeding 10 K), the sensitivity of the SEE detection of metal nanoparticles and bacterial (Staph. aureus) species is shown to be strongly affected by the DEP and ETF phenomena. The conditions have been identified, such as the ac frequency and supporting electrolyte concentration, that can lead to orders-of-magnitude enhancement of the frequency of analyte collisions with a hot UME. In addition, even mild heating is expected to result in up to four times increase in the magnitude of blocking collisions' current steps, with similar outcomes expected for electrocatalytic collisional systems. The findings presented here are thought to provide guidance to researchers wishing to adopt hot UME technology for SEE analysis. With many possibilities still open, the future of such a combined approach is expected to be bright.
Collapse
Affiliation(s)
- Aliaksei Boika
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
12
|
Prüfer M, Wenger C, Bier FF, Laux EM, Hölzel R. Activity of AC electrokinetically immobilized horseradish peroxidase. Electrophoresis 2022; 43:1920-1933. [PMID: 35904497 DOI: 10.1002/elps.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2 O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.
Collapse
Affiliation(s)
- Mareike Prüfer
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| | - Christian Wenger
- IHP GmbH - Leibniz Institute for Innovative Microelectronics, Frankfurt/Oder, Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Eva-Maria Laux
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| |
Collapse
|
13
|
Henriksson A, Neubauer P, Birkholz M. Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors? BIOSENSORS 2022; 12:784. [PMID: 36290922 PMCID: PMC9599301 DOI: 10.3390/bios12100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.
Collapse
Affiliation(s)
- Anders Henriksson
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Mario Birkholz
- IHP—Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
14
|
Electrified lab on disc systems: A comprehensive review on electrokinetic applications. Biosens Bioelectron 2022; 214:114381. [DOI: 10.1016/j.bios.2022.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
|
15
|
Pethig R. Protein Dielectrophoresis: A Tale of Two Clausius-Mossottis-Or Something Else? MICROMACHINES 2022; 13:261. [PMID: 35208384 PMCID: PMC8876334 DOI: 10.3390/mi13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Standard DEP theory, based on the Clausius-Mossotti (CM) factor derived from solving the boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP) data obtained for 22 different globular proteins over the past three decades. The calculated DEP force appears far too small to overcome the dispersive forces associated with Brownian motion. An empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor, predicts a protein's DEP response from the magnitude of the dielectric β-dispersion produced by its relaxing permanent dipole moment. A new theory, supported by molecular dynamics simulations, replaces the macroscopic boundary-value problem with calculation of the cross-correlation between the protein and water dipoles of its hydration shell. The empirical and formal theory predicts a positive DEP response for protein molecules up to MHz frequencies, a result consistently reported by electrode-based (eDEP) experiments. However, insulator-based (iDEP) experiments have reported negative DEP responses. This could result from crystallization or aggregation of the proteins (for which standard DEP theory predicts negative DEP) or the dominating influences of electrothermal and other electrokinetic (some non-linear) forces now being considered in iDEP theory.
Collapse
Affiliation(s)
- Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering & Electronics, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|
16
|
Lapizco-Encinas BH. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 2021; 414:885-905. [PMID: 34664103 DOI: 10.1007/s00216-021-03687-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
17
|
Yousuff CM, Tirth V, Zackria Ansar Babu Irshad M, Irshad K, Algahtani A, Islam S. Numerical Study of Joule Heating Effects on Microfluidics Device Reliability in Electrode Based Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5819. [PMID: 34640216 PMCID: PMC8510067 DOI: 10.3390/ma14195819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
In electrode-based microfluidic devices, micro channels having narrow cross sections generate undesirable temperature inside the microfluidic device causing strong thermal distribution (joule heating) that eventually leads to device damage or cell loss. In this work, we investigate the effects of joule heating due to different electrode configuration and found that, electrodes with triangular arrangements produce less heating effect even at applied potential of 30 V, without compromising the performance of the device and separation efficiency. However, certain electrode materials have low thermal gradients but erode the channel quickly thereby affecting the reliability of the device. Our simulation also predicts optimal medium conductivity (10 mS/m with 10 V) for cells to survive inside the channel until they are selectively isolated into the collection outlet. Our investigations will aid the researchers in the designing of efficient and reliable microfluidic devices to overcome joule heating inside the microchannels.
Collapse
Affiliation(s)
- Caffiyar Mohammed Yousuff
- Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, India;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed Zackria Ansar Babu Irshad
- Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, India;
| | - Kashif Irshad
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd, University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia;
| |
Collapse
|
18
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
19
|
Liu Y, Hayes MA. Orders-of-Magnitude Larger Force Demonstrated for Dielectrophoresis of Proteins Enabling High-Resolution Separations Based on New Mechanisms. Anal Chem 2020; 93:1352-1359. [DOI: 10.1021/acs.analchem.0c02763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yameng Liu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Mark A. Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
20
|
Affiliation(s)
- Matthias Heyden
- School of Molecular Sciences, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
21
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
22
|
Quevedo DF, Lentz CJ, Coll de Peña A, Hernandez Y, Habibi N, Miki R, Lahann J, Lapizco-Encinas BH. Electrokinetic characterization of synthetic protein nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1556-1567. [PMID: 33134000 PMCID: PMC7590587 DOI: 10.3762/bjnano.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/29/2020] [Indexed: 05/11/2023]
Abstract
The application of nanoparticle in medicine is promising for the treatment of a wide variety of diseases. However, the slow progress in the field has resulted in relatively few therapies being translated into the clinic. Anisotropic synthetic protein nanoparticles (ASPNPs) show potential as a next-generation drug-delivery technology, due to their biocompatibility, biodegradability, and functionality. Even though ASPNPs have the potential to be used in a variety of applications, such as in the treatment of glioblastoma, there is currently no high-throughput technology for the processing of these particles. Insulator-based electrokinetics employ microfluidics devices that rely on electrokinetic principles to manipulate micro- and nanoparticles. These miniaturized devices can selectively trap and enrich nanoparticles based on their material characteristics, and subsequently release them, which allows for particle sorting and processing. In this study, we use insulator-based electrokinetic (EK) microdevices to characterize ASPNPs. We found that anisotropy strongly influences electrokinetic particle behavior by comparing compositionally identical anisotropic and non-anisotropic SPNPs. Additionally, we were able to estimate the empirical electrokinetic equilibrium parameter (eE EEC) for all SPNPs. This particle-dependent parameter can allow for the design of various separation and purification processes. These results show how promising the insulator-based EK microdevices are for the analysis and purification of clinically relevant SPNPs.
Collapse
Affiliation(s)
- Daniel F Quevedo
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Cody J Lentz
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Adriana Coll de Peña
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Yazmin Hernandez
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Nahal Habibi
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Rikako Miki
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| |
Collapse
|
23
|
Hölzel R, Pethig R. Protein Dielectrophoresis: I. Status of Experiments and an Empirical Theory. MICROMACHINES 2020; 11:E533. [PMID: 32456059 PMCID: PMC7281080 DOI: 10.3390/mi11050533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/04/2022]
Abstract
The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP experiments employed a gradient field factor ∇Em2 that is much smaller (in some instances by many orders of magnitude) than the ~4 1021 V2/m3 required, according to current DEP theory, to overcome the dispersive forces associated with Brownian motion. This failing results from the macroscopic Clausius-Mossotti (CM) factor being restricted to the range 1.0 > CM > -0.5. Current DEP theory precludes the protein's permanent dipole moment (rather than the induced moment) from contributing to the DEP force. Based on the magnitude of the β-dispersion exhibited by globular proteins in the frequency range 1 kHz-50 MHz, an empirically derived molecular version of CM is obtained. This factor varies greatly in magnitude from protein to protein (e.g., ~37,000 for carboxypeptidase; ~190 for phospholipase) and when incorporated into the basic expression for the DEP force brings most of the reported protein DEP above the minimum required to overcome dispersive Brownian thermal effects. We believe this empirically-derived finding validates the theories currently being advanced by Matyushov and co-workers.
Collapse
Affiliation(s)
- Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam-Golm, Germany;
| | - Ronald Pethig
- School of Engineering, Institute for Integrated Micro and Nanosystems, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|