1
|
Nguyen LAM, Pham TH, Ganeshalingam M, Thomas R. A multimodal analytical approach is important in accurately assessing terpene composition in edible essential oils. Food Chem 2024; 454:139792. [PMID: 38810452 DOI: 10.1016/j.foodchem.2024.139792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Terpenes in essential oils (EOs) have recently received significant attention due to their potential to improve brain and whole-body health. A deeper understanding of the terpene composition of edible EOs is important for fully exploring their possible applications. In our study, we employed a comprehensive study using four different methods to analyze EO samples, including GC-MS with solid phase microextraction (SPME), liquid injection (LI), derivatization to trimethylsilyl ethers (TMSE), and LC-MS. Our findings revealed that relying on a single analytical method may be insufficient for detecting all terpenes in EOs. Despite identifying a total of 156 terpenes in the samples, only 58 were detectable across all 4 methods. To obtain a more accurate terpene profile of EOs, we advocate for the combined use of LI-GC and TMSE-GC. The terpenes detected by these two methods are complementary, enabling the detection of all terpenes with high VIP in the samples.
Collapse
Affiliation(s)
- Le Anh Minh Nguyen
- School of Science and the Environment/Environmental Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador A2H 5G4, Canada; Department of Biology/Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, Ontario, Canada.
| | - Thu Huong Pham
- School of Science and the Environment/Environmental Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador A2H 5G4, Canada
| | - Moganatharsa Ganeshalingam
- Department of Biology/Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, Ontario, Canada
| | - Raymond Thomas
- Department of Biology/Biotron Experimental Climate Change Research Centre, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Aftab N, Gupta A, Prasad P, Kushwaha HK, Kishor R, Singh V, Chandra S, Venkatesha KT, Kumar D, Kumar N, Shanker K, Gupta N, Kumar B. Exploring Genetic Diversity for High CBD Content in Cannabis Accessions in Tropical and Subtropical Regions of India. Biochem Genet 2024:10.1007/s10528-024-10914-2. [PMID: 39322818 DOI: 10.1007/s10528-024-10914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Cannabis, also known as marijuana or hemp, has been utilized since ancient times for industrial, religious, recreational, and medical uses. However, regardless of the intended use, there are legal requirements for quantitative testing of cannabinoids across the supply chains. This investigation aimed to evaluate the genetic diversity of 54 Cannabis samples collected from tropical and subtropical regions in India. The research found a high genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), heritability, and genetic advance for total cannabidiol (CBD) content. The genotypic and phenotypic correlation among the morpho-chemical characters revealed strong positive correlations among most characters. Clustering and Principal component analysis identified three accessions in cluster II (CIM-CS-65, CIM-CS-189 & CIM-CS-64) with high CBD content that could be used for breeding and as sources of high CBD content in Cannabis. CIM-CS-64, with its high CBD content with 0.01%THC content, holds potential as a valuable parental line for utilization in hybridization programs and recombinant breeding. Furthermore, in accordance with the NDPC Act of 1985, CIM-CS-64 can be commercialized for medicinal purposes, making it a promising source for the development of medicinal CBD products.
Collapse
Grants
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- GAP-430 Asheesh Concentrates International LLP (ACI), Mumbai (Maharashtra) India
- Candidate Id: 132-3067-6419/2K23/1 CSIR-Direct SRF, CSIR, Govt. of India, New Delhi
Collapse
Affiliation(s)
- Nashra Aftab
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akancha Gupta
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Prasad
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Himanshu Kumar Kushwaha
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Kishor
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vagmi Singh
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani Chandra
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - K T Venkatesha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre-Pantnagar, US Nagar, 263149, Uttarakhand, India
| | - Dipender Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre-Pantnagar, US Nagar, 263149, Uttarakhand, India
| | - Narendra Kumar
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karuna Shanker
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
| | - Namita Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
| | - Birendra Kumar
- Seed Quality Lab, Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Xia W, Liu S, Chu H, Chen X, Huang L, Bai T, Jiao X, Wang W, Jiang H, Wang X. Rational Design and Modification of NphB for Cannabinoids Biosynthesis. Molecules 2024; 29:4454. [PMID: 39339449 PMCID: PMC11434003 DOI: 10.3390/molecules29184454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The rapidly growing field of cannabinoid research is gaining recognition for its impact in neuropsychopharmacology and mood regulation. However, prenyltransferase (NphB) (a key enzyme in cannabinoid precursor synthesis) still needs significant improvement in order to be usable in large-scale industrial applications due to low activity and limited product range. By rational design and high-throughput screening, NphB's catalytic efficiency and product diversity have been markedly enhanced, enabling direct production of a range of cannabinoids, without the need for traditional enzymatic conversions, thus broadening the production scope of cannabinoids, including cannabigerol (CBG), cannabigerolic acid (CBGA), cannabigerovarin (CBGV), and cannabigerovarinic acid (CBGVA). Notably, the W3 mutant achieved a 10.6-fold increase in CBG yield and exhibited a 10.3- and 20.8-fold enhancement in catalytic efficiency for CBGA and CBGV production, respectively. The W4 mutant also displayed an 9.3-fold increase in CBGVA activity. Molecular dynamics simulations revealed that strategic reconfiguration of the active site's hydrogen bonding network, disulfide bond formation, and enhanced hydrophobic interactions are pivotal for the improved synthetic efficiency of these NphB mutants. Our findings advance the understanding of enzyme optimization for cannabinoid synthesis and lay a foundation for the industrial-scale production of these valuable compounds.
Collapse
Affiliation(s)
- Wenhao Xia
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.X.); (X.C.)
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| | - Shimeng Liu
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| | - Huanyu Chu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Xianqing Chen
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.X.); (X.C.)
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| | - Lihui Huang
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| | - Tao Bai
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| | - Xi Jiao
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| | - Wen Wang
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.X.); (X.C.)
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Xiao Wang
- Jiaxing Synbiolab Technology Co., Ltd., Jiaxing 314000, China; (S.L.); (L.H.); (T.B.); (X.J.)
| |
Collapse
|
4
|
Sin JEV, Shen P, Huang L, Wu Y, Chan SH. Determination of Cannabinoids in Meat Products and Animal Feeds in Singapore Using Liquid Chromatography-Tandem Mass Spectrometry. Foods 2024; 13:2581. [PMID: 39200508 PMCID: PMC11353810 DOI: 10.3390/foods13162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
There has been a growing interest in the use of hemp as an animal feed ingredient considering its economic value and nutritional properties. However, there is a paucity of research regarding the safety of hemp-based animal feed currently. Thus, this raises safety concerns on the potential transfer of cannabinoids from hemp-based animal feed to animal products intended for human consumption and its health effects. As such, the detection and quantification of cannabinoids in meat and animal feeds would be desirable for monitoring purposes. In this study, a simple, rapid and sensitive method for the simultaneous quantification of four major cannabinoids (delta-9-tetrahydrocannabinol, cannabidiol, cannabinol and tetrahydrocannabinolic acid) in meat and animal feeds by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was successfully developed and validated. The method was selective and sensitive, achieving limits of detection and quantification for the four cannabinoids from 5 to 7 µg/kg and 15 to 21 µg/kg, respectively. The overall recovery with matrix-matched calibration curves for the cannabinoids ranged from 87-115%. The coefficients of variation were between 2.17-13.38% for intraday precision and 3.67-12.14% for inter-day precision. The method was subsequently applied to monitor cannabinoids in 120 meat and 24 animal feed samples. No cannabinoid was detected, suggesting no imminent food safety concerns arising from the potential incorporation of hemp and by-products in animal feed and nutrition under the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- Jia En Valerie Sin
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; (J.E.V.S.)
| | - Ping Shen
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; (J.E.V.S.)
| | - Lifei Huang
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; (J.E.V.S.)
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; (J.E.V.S.)
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; (J.E.V.S.)
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive, Singapore 117543, Singapore
| |
Collapse
|
5
|
Swaminathan M, Tarifa A, DeCaprio AP. Development and validation of a method for analysis of 25 cannabinoids in oral fluid and exhaled breath condensate. Anal Bioanal Chem 2024; 416:4325-4340. [PMID: 38864915 DOI: 10.1007/s00216-024-05369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Currently, there is a significant demand in forensic toxicology for biomarkers of cannabis exposure that, unlike ∆9-tetrahydrocannabinol, can reliably indicate time and frequency of use, be sampled with relative ease, and correlate with impairment. Oral fluid (OF) and exhaled breath condensate (EBC) are alternative, non-invasive sample matrices that hold promise for identifying cannabis exposure biomarkers. OF, produced by salivary glands, is increasingly utilized in drug screening due to its non-invasive collection and is being explored as an alternative matrix for cannabinoid analysis. EBC is an aqueous specimen consisting of condensed water vapor containing water-soluble volatile and non-volatile components present in exhaled breath. Despite potential advantages, there are no reports on the use of EBC for cannabinoid detection. This study developed a supported liquid extraction approach and LC-QqQ-MS dMRM analytical method for quantification of 25 major and minor cannabinoids and metabolites in OF and EBC. The method was validated according to the ANSI/ASB 036 standard and other published guidelines. LOQ ranged from 0.5 to 6.0 ng/mL for all cannabinoids in both matrices. Recoveries for most analytes were 60-90%, with generally higher values for EBC compared to OF. Matrix effects were observed with some cannabinoids, with effects mitigated by use of matrix-matched calibration. Bias and precision were within ± 25%. Method applicability was demonstrated by analyzing ten authentic OF and EBC samples, with positive detections of multiple analytes in both matrices. The method will facilitate comprehensive analysis of cannabinoids in non-invasive sample matrices for the development of reliable cannabis exposure biomarkers.
Collapse
Affiliation(s)
- Meena Swaminathan
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Anamary Tarifa
- Department of Chemistry & Biochemistry and Global & Forensic Justice Center, Florida International University, Miami, FL, 33199, USA
| | - Anthony P DeCaprio
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA.
- Department of Chemistry & Biochemistry and Global & Forensic Justice Center, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
6
|
Elhendawy MA, Radwan MM, Ibrahim EA, Wanas AS, Chandra S, Godfrey M, ElSohly MA. Validation and Quantitation of Fifteen Cannabinoids in Cannabis and Marketed Products Using High-Performance Liquid Chromatography-Ultraviolet/Photodiode Array Method. Cannabis Cannabinoid Res 2024; 9:e1091-e1107. [PMID: 37797227 DOI: 10.1089/can.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Cannabis sativa is a psychoactive plant indigenous to Central and South Asia, traditionally used both for recreational and religious purposes, in addition to folk medicine. Cannabis is a rich source of natural compounds, the most important of which are commonly known as cannabinoids that cause a variety of effects through interaction with the endocannabinoid system. Materials and Methods: In this study, a high-performance liquid chromatography-ultraviolet/photodiode array (PDA) method was developed and validated for the analysis of 15 cannabinoids in cannabis plant materials and cannabis-based marketed products. These cannabinoids are cannabidivarinic acid, cannabidivarin, cannabidiolic acid, cannabigerolic acid, cannabigerol, cannabidiol, delta-9-tetrahydrocannabivarin, delta-9-tetrahydrocannabivarinic acid, cannabinol, delta-9-tetrahyrocannabinol, delta-8-tetrahyrocannabinol, cannabicyclol, cannabichromene, delta-9-tetrahyrocannabinolic acid A, and cannabichromenic acid. The separation was carried out using a reversed-phase Luna® C18(2) column and a mobile phase consisting of 75% acetonitrile and 0.1% formic acid in water. A PDA detector was used, and data were extracted at λ=220 nm. Principal component analysis of cannabis four varieties was performed. Results: The method was linear over the calibration range of 5-75 μg/mL with R2>0.999 for all cannabinoids. This method was sensitive and gave good baseline separation of all examined cannabinoids with limits of detection ranging between 0.2 and 1.6 μg/mL and limits of quantification ranging between 0.6 and 4.8 μg/mL. The average recoveries for all cannabinoids were between 81% and 104%. The measured repeatability and intermediate precisions (% relative standard deviation) in all varieties ranged from 0.35% to 9.84% and 1.11% to 5.26%, respectively. Conclusions: The proposed method is sensitive, selective, reproducible, and accurate. It can be applied for the simultaneous determination of these cannabinoids in the C. sativa biomass and cannabis-derived marketed products.
Collapse
Affiliation(s)
- Mostafa A Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
- Department of Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Elsayed A Ibrahim
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Pharmaceutical Analytical Chemistry Department, Suez Canal University, Ismailia, Egypt
| | - Amira S Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
7
|
Benes F, Binova Z, Zlechovcova M, Maly M, Stranska M, Hajslova J. Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences. Food Res Int 2024; 190:114487. [PMID: 38945557 DOI: 10.1016/j.foodres.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́neẃ bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.
Collapse
Affiliation(s)
- Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marie Zlechovcova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Matej Maly
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
8
|
Kale R, Chaturvedi D, Dandekar P, Jain R. Analytical techniques for screening of cannabis and derivatives from human hair specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1133-1149. [PMID: 38314866 DOI: 10.1039/d3ay00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cannabis and associated substances are some of the most frequently abused drugs across the globe, mainly due to their anxiolytic and euphorigenic properties. Nowadays, the analysis of hair samples has been given high importance in forensic and analytical sciences and in clinical studies because they are associated with a low risk of infection, do not require complicated storage conditions, and offer a broad window of non-invasive detection. Analysis of hair samples is very easy compared to the analysis of blood, urine, and saliva samples. This review places particular emphasis on methodologies of analyzing hair samples containing cannabis, with a special focus on the preparation of samples for analysis, which involves screening and extraction techniques, followed by confirmatory assays. Through this manuscript, we have presented an overview of the available literature on the screening of cannabis using mass spectroscopy techniques. We have presented a detailed overview of the advantages and disadvantages of this technique, to establish it as a suitable method for the analysis of cannabis from hair samples.
Collapse
Affiliation(s)
- Rohit Kale
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
9
|
Meyer G, Adisa M, Dodson Z, Adejumo E, Jovanovich E, Song L. A liquid chromatography electrospray ionization tandem mass spectrometry method for quantification of up to eighteen cannabinoids in hemp-derived products. J Pharm Biomed Anal 2024; 238:115847. [PMID: 37976987 DOI: 10.1016/j.jpba.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A LC-ESI/MS/MS method was developed for quantification of up to eighteen cannabinoids, the maximum number published so far. A thorough study of published LC-ESI/MS/MS methods using triple quadrupole mass spectrometers revealed a possible misconception that multiple reaction monitoring (MRM) was able to definitively differentiate structural isomers of cannabinoids, especially Δ8-/Δ9-tetrahydrocannabinol (THC), which explained why many of those methods were developed for a limited number of cannabinoids, as small as two, and did not include Δ8-THC. In this study, the use of a quadrupole time-of-flight (QTOF) mass spectrometer for targeted analysis indicated that MRM could not definitively distinguish structural isomers of Δ9-THC, with a possible exception of cannabicyclol (CBL) for less accurate quantification, so their baseline separation was essential for their accurate quantification. After the developed method was successfully validated according to the ISO 17025 guidelines, it was further applied for the analysis of eighteen hemp-derived products, including drinks, water-soluble oils, topical serum, body lotion, face cream, lip balm, gummies, hard candy, coffee, snacks, and pet treats. The LOQ was 0.00008% (w/w) for drinks with the analysis of 12.5 mg/mL extracts, while the LOQ was 0.008% (w/w) for other samples because 125 μg/mL extracts were analyzed due to higher content of cannabinoids in non-drink samples. For the first-time, extraction recovery and matrix effect were tracked in real-time for each sample being analyzed, obtaining 92.9-106.3% and 91.3-120.2% in triplicate measurements, respectively, by spiking abnormal cannabidiol (ACBD), a cannabinoid not naturally present in hemp, into each sample before extraction and ACBD-d3 into each sample after extraction.
Collapse
Affiliation(s)
- Grant Meyer
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Mojisola Adisa
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Zachary Dodson
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Emmanuel Adejumo
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Emily Jovanovich
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Liguo Song
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| |
Collapse
|
10
|
Kanabus J, Bryła M, Roszko M. The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material. Molecules 2023; 28:8008. [PMID: 38138498 PMCID: PMC10746033 DOI: 10.3390/molecules28248008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabinoids are an important group of secondary metabolites found in the plant Cannabis sativa L. The growing interest in the use of hemp in food production (e.g., hemp teas, hemp cookies) makes it necessary to develop a method for determining these compounds in the plant, both fresh and dried. The selection of a suitable extraction liquid for the extraction of cannabinoids and the development of a method for the determination of 17 cannabinoids is a prelude to the development of an effective method for the extraction of these compounds. In the present study, a novel, simple, and efficient method was developed and validated for the determination of up to 17 cannabinoids in fresh plant parts (inflorescences and leaves) of Cannabis sativa L. and in dried material, including hemp teas. Analyses were performed using ultra-high-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry setup operating with a heated electrospray interface (UHPLC-HESI-MS). Based on the comparison, methanol was selected as the best for the extraction of cannabinoids from fresh and dried material. The efficiency and validity of the method were assessed using certified reference material (dried Cannabis) and confirmed by z-score from participation in an international proficiency test conducted by ASTM International for dried hemp.
Collapse
Affiliation(s)
- Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | | | | |
Collapse
|
11
|
Gilmore AM, Elhendawy MA, Radwan MM, Kidder LH, Wanas AS, Godfrey M, Hildreth JB, Robinson AE, ElSohly MA. Absorbance-Transmittance Excitation Emission Matrix Method for Quantification of Major Cannabinoids and Corresponding Acids: A Rapid Alternative to Chromatography for Rapid Chemotype Discrimination of Cannabis sativa Varieties. Cannabis Cannabinoid Res 2023; 8:911-922. [PMID: 35486823 PMCID: PMC10589469 DOI: 10.1089/can.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Phytocannabinoids naturally occur in the cannabis plant (Cannabis sativa), and Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) predominate. There is a need for rapid inexpensive methods to quantify total THC (for statutory definition) and THC-CBD ratio (for classification into three chemotypes). This study explores the capabilities of a spectroscopic technique that combines ultraviolet-visible and fluorescence, absorbance-transmittance excitation emission matrix (A-TEEM). Methods: The A-TEEM technique classifies 49 dry flower extracts into three C. sativa chemotypes, and quantifies the total THC-CBD ratio, using validated gas chromatography (GC)-flame ionization (FID) and High-Performance Liquid Chromatography (HPLC) methods for reference. Multivariate methods used are principal components analysis for a chemotype classification, extreme gradient boost (XGB) discriminant analysis (DA) to classify unknown samples by chemotype, and XGB regression to quantify total THC and CBD content using GC-FID and HPLC data on the same samples. Results: The A-TEEM technique provides robust classification of C. sativa samples, predicting chemotype classification, defined by THC-CBD content, of unknown samples with 100% accuracy. In addition, A-TEEM can quantify total THC and CBD levels relevant to statutory determination, with limit of quantifications (LOQs) of 0.061% (THC) and 0.059% (CBD), and high cross-validation (>0.99) and prediction (>0.99), using a GC-FID method for reference data; and LOQs of 0.026% (THC) and 0.080% (CBD) with high cross-validation (>0.98) and prediction (>0.98), using an HPLC method for reference data. A-TEEM is highly predictive in separately quantifying acid and neutral forms of THC and CBD with HPLC reference data. Conclusions: The A-TEEM technique provides a sensitive method for the qualitative and quantitative characterization of the major cannabinoids in solution, with LOQs comparable with GC-FID and HPLC, and high values of cross-validation and prediction. As a spectroscopic technique, it is rapid, with data acquisition <45 sec per measurement; sample preparation is simple, requiring only solvent extraction. A-TEEM has the sensitivity to resolve and quantify cannabinoids in solution based on their unique spectral characteristics. Discrimination of legal and illegal chemotypes can be rapidly verified using XGB DA, and quantitation of statutory levels of total THC and total CBD comparable with GC-FID and HPLC can be obtained using XBD regression.
Collapse
Affiliation(s)
| | - Mostafa A. Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
| | | | - Amira S. Wanas
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
| | | | | | - Mahmoud A. ElSohly
- National Center for Natural Products Research, University of Mississippi, University, Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
12
|
Ieritano C, Thomas P, Hopkins WS. Argentination: A Silver Bullet for Cannabinoid Separation by Differential Mobility Spectrometry. Anal Chem 2023. [PMID: 37224077 DOI: 10.1021/acs.analchem.3c01241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the legality of cannabis continues to evolve globally, there is a growing demand for methods that can accurately quantitate cannabinoids found in commercial products. However, the isobaric nature of many cannabinoids, along with variations in extraction methods and product formulations, makes cannabinoid quantitation by mass spectrometry (MS) challenging. Here, we demonstrate that differential mobility spectrometry (DMS) and tandem-MS can distinguish a set of seven cannabinoids, five of which are isobaric: Δ9-tetrahydrocannabinol (Δ9-THC), Δ8-THC, exo-THC, cannabidiol, cannabichromene, cannabinol, and cannabigerol. Analytes were detected as argentinated species ([M + Ag]+), which, when subjected to collision-induced dissociation, led to the unexpected discovery that argentination promotes distinct fragmentation patterns for each cannabinoid. The unique fragment ions formed were rationalized by discerning fragmentation mechanisms that follow each cannabinoid's MS3 behavior. The differing fragmentation behaviors between species suggest that argentination can distinguish cannabinoids by tandem-MS, although not quantitatively as some cannabinoids produce small amounts of a fragment ion that is isobaric with the major fragment generated by another cannabinoid. By adding DMS to the tandem-MS workflow, it becomes possible to resolve each cannabinoid in a pure N2 environment by deconvoluting the contribution of each cannabinoid to a specific fragmentation channel. To this end, we used DMS in conjunction with a multiple reaction monitoring workflow to assess cannabinoid levels in two cannabis extracts. Our methodology exhibited excellent accuracy, limits of detection (10-20 ppb depending on the cannabinoid), and linearity during quantitation by standard addition (R2 > 0.99).
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - Patrick Thomas
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
13
|
Franzin M, Ruoso R, Del Savio R, Niaki EA, Pettinelli A, Decorti G, Stocco G, Addobbati R. Quantification of 7 cannabinoids in cannabis oil using GC-MS: Method development, validation and application to therapeutic preparations in Friuli Venezia Giulia region, Italy. Heliyon 2023; 9:e15479. [PMID: 37151683 PMCID: PMC10161710 DOI: 10.1016/j.heliyon.2023.e15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The use of therapeutic cannabis preparations in Friuli Venezia Giulia is increasingly expanding. Even if cannabis oil finds its applications in several disorders affecting adults and children, it is not yet a standardized product and, to ensure the quality of the preparation, a quantitative analysis must be carried out before dispensing it to patients. Gas chromatography coupled to mass spectrometry (GC-MS) is a frequently used technique for quantification of cannabinoids, the active compounds of C. sativa. In this context, we developed a GC-MS method for the simultaneous quantification of 7 cannabinoids (CBD, CBDA, CBG, CBN, THCA, THCV and Δ9-THC) that is not time and sample consuming: 10 μL of cannabis oil were used for the sample preparation, that consists in derivatization of analytes through silylation. Calibration curves were built from 0.2 to 2 μg/mL. The percentage of accuracy and precision did not exceed the values recommended by validation guidelines. The limit of detection was 0.01 μg/mL; whereas the lower limit of quantification was 0.2 μg/mL. There was no carry over. The proposed GC-MS method showed good sensitivity, specificity, linearity, accuracy, precision and applicability to therapeutic preparations.
Collapse
Affiliation(s)
- Martina Franzin
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Rachele Ruoso
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Rossella Del Savio
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | | | - Aba Pettinelli
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Corresponding author. Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Via dell'Istria 65/1, 34137 Trieste, Italy.
| | - Riccardo Addobbati
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
14
|
Gloerfelt-Tarp F, Hewavitharana AK, Mieog J, Palmer WM, Fraser F, Ansari O, Kretzschmar T. Using a global diversity panel of Cannabis sativa L. to develop a near InfraRed-based chemometric application for cannabinoid quantification. Sci Rep 2023; 13:2253. [PMID: 36755037 PMCID: PMC9908977 DOI: 10.1038/s41598-023-29148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
C. sativa has gained renewed interest as a cash crop for food, fibre and medicinal markets. Irrespective of the final product, rigorous quantitative testing for cannabinoids, the regulated biologically active constituents of C. sativa, is a legal prerequisite across the supply chains. Currently, the medicinal cannabis and industrial hemp industries depend on costly chromatographic analysis for cannabinoid quantification, limiting production, research and development. Combined with chemometrics, Near-InfraRed spectroscopy (NIRS) has potential as a rapid, accurate and economical alternative method for cannabinoid analysis. Using chromatographic data on 12 therapeutically relevant cannabinoids together with spectral output from a diffuse reflectance NIRS device, predictive chemometric models were built for major and minor cannabinoids using dried, homogenised C. sativa inflorescences from a diverse panel of 84 accessions. Coefficients of determination (r2) of the validation models for 10 of the 12 cannabinoids ranged from 0.8 to 0.95, with models for major cannabinoids showing best performance. NIRS was able to discriminate between neutral and acidic forms of cannabinoids as well as between C3-alkyl and C5-alkyl cannabinoids. The results show that NIRS, when used in conjunction with chemometrics, is a promising method to quantify cannabinoids in raw materials with good predictive results.
Collapse
Affiliation(s)
| | | | - Jos Mieog
- Southern Cross University, Lismore, NSW, 2480, Australia
| | - William M Palmer
- Research Division, Rapid Phenotyping (Hone), Newcastle, NSW, 2300, Australia
| | - Felicity Fraser
- Research Division, Rapid Phenotyping (Hone), Newcastle, NSW, 2300, Australia
| | - Omid Ansari
- Ecofibre Ltd, Virginia, QLD, 4014, Australia.,Hemp GenTech, Fig Tree Pocket, QLD, 4069, Australia
| | | |
Collapse
|
15
|
Jornet-Martínez N, Biosca-Micó J, Campíns-Falcó P, Herráez-Hernández R. A Colorimetric Method for the Rapid Estimation of the Total Cannabinoid Content in Cannabis Samples. Molecules 2023; 28:molecules28031303. [PMID: 36770970 PMCID: PMC9921926 DOI: 10.3390/molecules28031303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
A colorimetric method for the estimation of the total content of cannabinoids in cannabis samples is proposed. The assay is based on the reaction of these compounds with the reagent Fast Blue B (FBB), which has been immobilized into polydimethylsiloxane (PDMS). The reaction and detection conditions have been established according to the results obtained for the individual cannabinoids Δ9-tetrahydrocannabidiol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as for ethanolic extracts obtained from cannabis samples after ultrasonication. In contact with the extract and under basic conditions, the reagent diffuses from the PDMS device, producing a red-brown solution. The absorbances measured at 500 nm after only 1 min of exposure to the FBB/PDMS composites led to responses proportional to the amounts of the cannabinoids in the reaction media. Those absorbances have been then transformed in total cannabinoid content using CBD as a reference compound. The potential utility of the proposed conditions has been tested by analyzing different cannabis samples. The selectivity towards other plants and drugs has been also evaluated. The present method is proposed as a simple and rapid alternative to chromatographic methods for the estimation of the total content of cannabinoids.
Collapse
|
16
|
Christodoulou MC, Christou A, Stavrou IJ, Kapnissi-Christodoulou CP. Evaluation of different extraction procedures for the quantification of seven cannabinoids in cannabis-based edibles by the use of LC-MS. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ramlawi S, Murphy MSQ, Dingwall-Harvey ALJ, Rennicks White R, Gaudet LM, McGee A, DeGrace A, Cantin C, El-Chaâr D, Walker MC, Corsi DJ. Cannabis Use in Pregnancy and Downstream effects on maternal and infant health (CUPiD): a protocol for a birth cohort pilot study. BMJ Open 2022; 12:e066196. [PMID: 36549747 PMCID: PMC9791409 DOI: 10.1136/bmjopen-2022-066196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Cannabis use in pregnancy and post partum is increasing. Accessibility to cannabis has expanded due to the legalisation of cannabis in Canada. Therefore, there is a critical need to monitor the impact of cannabis on pregnancy outcomes and infant neurodevelopment. This pilot study will assess the feasibility of modern recruitment and data collection strategies adapted to the current cannabis environment and inform the design of a multicentre prospective birth cohort. METHODS AND ANALYSIS We will establish a pregnancy and birth cohort of 50 cannabis users and 50 non-users recruited before delivery. We will follow the participants at regular visits from recruitment to 12 weeks post partum. Participants will provide demographic and socioeconomic data, report their cannabis use patterns, and provide biological samples. Biological samples include maternal and infant urine and blood, breastmilk/chestmilk, cord blood, cord tissue, placenta and meconium. All samples will be processed and stored at -80°C until analysis by immunoassay or liquid chromatography-tandem mass spectrometry to determine the presence of cannabis metabolites. In addition, partners will be invited to provide additional socioeconomic and substance use data. ETHICS AND DISSEMINATION Ethics was obtained from Ottawa Health Science Network Research Ethics Board through Clinical Trials Ontario (3791). Our findings will be published in peer-reviewed journals, presented at scientific conferences and shared broadly with patients, healthcare decision-makers, and project partners online and through social media. TRIAL REGISTRATION NUMBER NCT05309226.Cite Now.
Collapse
Affiliation(s)
- Serine Ramlawi
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Malia S Q Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Ruth Rennicks White
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Laura M Gaudet
- Department of Obstetrics and Gynecology, Queen's University, Kingston, Ontario, Canada
- Department of Obstetrics and Gynecology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Amy McGee
- Division of Midwifery, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Amanda DeGrace
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christina Cantin
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
- Champlain Maternal Newborn Regional Program, Ottawa, Ontario, Canada
| | - Darine El-Chaâr
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark C Walker
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel J Corsi
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Addo PW, Sagili SUKR, Bilodeau SE, Gladu-Gallant FA, MacKenzie DA, Bates J, McRae G, MacPherson S, Paris M, Raghavan V, Orsat V, Lefsrud M. Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology. Molecules 2022; 27:molecules27248803. [PMID: 36557949 PMCID: PMC9784742 DOI: 10.3390/molecules27248803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Limited studies have explored different extraction techniques that improve cannabis extraction with scale-up potential. Ultrasound-assisted and microwave-assisted extraction were evaluated to maximize the yield and concentration of cannabinoids and terpenes. A central composite rotatable design was used to optimize independent factors (sample-to-solvent ratio, extraction time, extraction temperature, and duty cycle). The optimal conditions for ultrasound- and microwave-assisted extraction were the sample-to-solvent ratios of 1:15 and 1:14.4, respectively, for 30 min at 60 °C. Ultrasound-assisted extraction yielded 14.4% and 14.2% more oil and terpenes, respectively, compared with microwave-assisted extracts. Ultrasound-assisted extraction increased cannabinoid concentration from 13.2−39.2%. Considering reference ground samples, tetrahydrocannabinolic acid increased from 17.9 (g 100 g dry matter−1) to 28.5 and 20 with extraction efficiencies of 159.2% and 111.4% for ultrasound-assisted and microwave-assisted extraction, respectively. Principal component analyses indicate that the first two principal components accounted for 96.6% of the total variance (PC1 = 93.2% and PC2 = 3.4%) for ultrasound-assisted extraction and 92.4% of the total variance (PC1 = 85.4% and PC2 = 7%) for microwave-assisted extraction. Sample-to-solvent ratios significantly (p < 0.05) influenced the secondary metabolite profiles and yields for ultrasound-assisted extracts, but not microwave-assisted extracts.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Sai Uday Kumar Reddy Sagili
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | | | | | - Douglas A. MacKenzie
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Jennifer Bates
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Garnet McRae
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Maxime Paris
- EXKA Inc., 7625 Route Arthur Sauvé, Mirabel, QC J7N 2R6, Canada
| | - Vijaya Raghavan
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Mark Lefsrud
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-(514)-3987967
| |
Collapse
|
19
|
Addo PW, Sagili SUKR, Bilodeau SE, Gladu-Gallant FA, MacKenzie DA, Bates J, McRae G, MacPherson S, Paris M, Raghavan V, Orsat V, Lefsrud M. Cold Ethanol Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology: Optimization and Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248780. [PMID: 36557913 PMCID: PMC9786071 DOI: 10.3390/molecules27248780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Efficient cannabis biomass extraction can increase yield while reducing costs and minimizing waste. Cold ethanol extraction was evaluated to maximize yield and concentrations of cannabinoids and terpenes at different temperatures. Central composite rotatable design was used to optimize two independent factors: sample-to-solvent ratio (1:2.9 to 1:17.1) and extraction time (5.7 min-34.1 min). With response surface methodology, predicted optimal conditions at different extraction temperatures were a cannabis-to-ethanol ratio of 1:15 and a 10 min extraction time. With these conditions, yields (g 100 g dry matter-1) were 18.2, 19.7, and 18.5 for -20 °C, -40 °C and room temperature, respectively. Compared to the reference ground sample, tetrahydrocannabinolic acid changed from 17.9 (g 100 g dry matter-1) to 15, 17.5, and 18.3 with an extraction efficiency of 83.6%, 97.7%, 102.1% for -20 °C, -40 °C, and room temperature, respectively. Terpene content decreased by 54.1% and 32.2% for extraction at -20 °C and room temperature, respectively, compared to extraction at -40 °C. Principal component analysis showed that principal component 1 and principal component 2 account for 88% and 7.31% of total variance, respectively, although no significant differences in cold ethanol extraction at different temperatures were observed.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Sai Uday Kumar Reddy Sagili
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | | | | | - Douglas A. MacKenzie
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Jennifer Bates
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Garnet McRae
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Maxime Paris
- EXKA Inc., 7625 Route Arthur Sauvé, Mirabel, QC J7N 2R6, Canada
| | - Vijaya Raghavan
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Mark Lefsrud
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-(514)-3987967
| |
Collapse
|
20
|
Development and Validation of the LC-MS/MS Method for Determination of 130 Natural and Synthetic Cannabinoids in Cannabis Oil. Molecules 2022; 27:molecules27238601. [PMID: 36500694 PMCID: PMC9736437 DOI: 10.3390/molecules27238601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary supplements are widely available products used by millions of people around the world. Unfortunately, the procedure of adding pharmaceutical and psychoactive substances has recently been observed, in order to increase the effectiveness of supplements in the form of hemp oils. For this reason, it is extremely important to develop analytical methods for the detection of substances prohibited in dietary supplements and food products. In the present study, using the LC-MS/MS technique, an innovative method for the detection and quantification of 117 synthetic cannabinoids and 13 natural cannabinoids in dietary supplements and food products in the form of oils during one 13-min chromatographic run was developed. Each method was fully validated by characterization of the following parameters: The limit of detection was set to 0.1 ng/mL (100 µg/g, 0.01%). The limit of quantification ranged from 0.05 ng/mL to 50 ng/mL. The criteria assumed for systematic error caused by methodological bias (±20%) resulting from the recovery of analytes after the extraction process, as well as the coefficient of variation (CV) (≤20%), were met for all 130 tested compounds. The positive results of the validation confirmed that the developed methods met the requirements related to the adequacy of their application in a given scope. Additionally, methods developed using the LC-MS/MS technique were verified via proficiency tests. The developed analytical procedure was successfully used in the analysis of hemp oils and capsules containing them in the studied dietary supplements.
Collapse
|
21
|
Mazzara E, Carletti R, Petrelli R, Mustafa AM, Caprioli G, Fiorini D, Scortichini S, Dall'Acqua S, Sut S, Nuñez S, López V, Zheljazkov VD, Bonacucina G, Maggi F, Cespi M. Green extraction of hemp (Cannabis sativa L.) using microwave method for recovery of three valuable fractions (essential oil, phenolic compounds and cannabinoids): a central composite design optimization study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6220-6235. [PMID: 35485728 PMCID: PMC9790304 DOI: 10.1002/jsfa.11971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/22/2022] [Accepted: 04/29/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Solvent-free microwave-assisted extraction (MAE) is a green extraction method capable of boosting the yield and quality profile of hemp essential oil when compared with other conventional extraction techniques. During this process, two by-products are produced, namely the aqueous residue containing bioactive phenolics and the residual deterpenated biomass, which can be used for further extraction and purification of phytocannabinoids. To date, the hemp industry has not utilized these products, although they can be valuable for the food, cosmetic, nutraceutical and pharmaceutical market. RESULTS This study assessed and optimized the variables affecting MAE efficiency, namely microwave irradiation power, extraction time and added water, which were studied using a central composite design approach, and results were used to optimize the extraction process for recovering three valuable fractions: essential oil, polyphenols and phytocannabinoids. The products obtained using the optimized conditions were characterized in terms of yield, chemical profile and antioxidant potential. Moreover, the by-products obtained during the optimized run were further analyzed in terms of their biological activity using both enzymatic and non-enzymatic assays. The aqueous residue demonstrated a powerful α-glucosidase inhibition, a good activity in terms of superoxide radical scavenging activity, a modest efficacy in terms of inhibition of advanced glycation end products formation and no activity in terms of lipase inhibition. The residual deterpenated biomass did not possess significant biological activity. CONCLUSION This work demonstrated valorization of industrial hemp essential oil and its by-products, obtained by a sustainable and eco-friendly extraction method, through an almost waste-free approach. Cannabinoids as well as other valuable bioactive compounds such as glycosidic flavones may be recovered from the residues of the essential oil extraction, representing interesting substances in the pharmaceutical, cosmetic and nutraceutical fields. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Dennis Fiorini
- School of Science and TechnologyUniversity of CamerinoCamerinoItaly
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, Natural Product LaboratoryUniversity of PaduaPaduaItaly
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, Natural Product LaboratoryUniversity of PaduaPaduaItaly
| | - Sonia Nuñez
- Department of Pharmacy, Faculty of Health SciencesUniversidad San JorgeZaragozaSpain
| | - Victor López
- Department of Pharmacy, Faculty of Health SciencesUniversidad San JorgeZaragozaSpain
| | | | | | - Filippo Maggi
- School of PharmacyUniversity of CamerinoCamerinoItaly
| | - Marco Cespi
- School of PharmacyUniversity of CamerinoCamerinoItaly
| |
Collapse
|
22
|
Huang S, Qiu R, Fang Z, Min K, van Beek TA, Ma M, Chen B, Zuilhof H, Salentijn GIJ. Semiquantitative Screening of THC Analogues by Silica Gel TLC with an Ag(I) Retention Zone and Chromogenic Smartphone Detection. Anal Chem 2022; 94:13710-13718. [PMID: 36178203 PMCID: PMC9558087 DOI: 10.1021/acs.analchem.2c01627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
With the ever-evolving cannabis industry, low-cost and high-throughput analytical methods for cannabinoids are urgently needed. Normally, (potentially) psychoactive cannabinoids, typically represented by Δ9-tetrahydrocannabinol (Δ9-THC), and nonpsychoactive cannabinoids with therapeutic benefits, typically represented by cannabidiol (CBD), are the target analytes. Structurally, the former (tetrahydrocannabinolic acid (THCA), cannabinol (CBN), and THC) have one olefinic double bond and the latter (cannabidiolic acid (CBDA), cannabigerol (CBG), and CBD) have two, which results in different affinities toward Ag(I) ions. Thus, a silica gel thin-layer chromatography (TLC) plate with the lower third impregnated with Ag(I) ions enabled within minutes a digital chromatographic separation of strongly retained CBD analogues and poorly retained THC analogues. The resolution (Rs) between the closest two spots from the two groups was 4.7, which is almost 8 times higher than the resolution on unmodified TLC. After applying Fast Blue BB as a chromogenic reagent, smartphone-based color analysis enabled semiquantification of the total percentage of THC analogues (with a limit of detection (LOD) of 11 ng for THC, 54 ng for CBN, and 50 ng for THCA when the loaded volume is 1.0 μL). The method was validated by analyzing mixed cannabis extracts and cannabis extracts. The results correlated with those of high-performance liquid chromatography with ultraviolet detection (HPLC-UV) (R2 = 0.97), but the TLC approach had the advantages of multi-minute analysis time, high throughput, low solvent consumption, portability, and ease of interpretation. In a desiccator, Ag(I)-TLC plates can be stored for at least 3 months. Therefore, this method would allow rapid distinction between high and low THC varieties of cannabis, with the potential for on-site applicability.
Collapse
Affiliation(s)
- Si Huang
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
- Laboratory
of Organic Chemistry, Wageningen University, Wageningen6708 WE, The Netherlands
| | - Ruiying Qiu
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
| | - Zhengfa Fang
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
| | - Ke Min
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
| | - Teris A. van Beek
- Laboratory
of Organic Chemistry, Wageningen University, Wageningen6708 WE, The Netherlands
| | - Ming Ma
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
| | - Bo Chen
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
| | - Han Zuilhof
- Key
Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory
of Chemical Biology & Traditional Chinese Medicine Research of
Ministry of Education, Hunan Normal University, Changsha410081, China
- Laboratory
of Organic Chemistry, Wageningen University, Wageningen6708 WE, The Netherlands
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Gert IJ. Salentijn
- Laboratory
of Organic Chemistry, Wageningen University, Wageningen6708 WE, The Netherlands
- Wageningen
Food Safety Research (WFSR), Wageningen
University & Research, Wageningen6700 AE, The Netherlands
| |
Collapse
|
23
|
A novel handheld FT-NIR spectroscopic approach for real-time screening of major cannabinoids content in hemp. Talanta 2022; 247:123559. [DOI: 10.1016/j.talanta.2022.123559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 01/30/2023]
|
24
|
Analytical method validation for assay determination of cannabidiol and tetrahydrocannabinol in hemp oil infused products by RP-HPLC. Sci Rep 2022; 12:12453. [PMID: 35864137 PMCID: PMC9304360 DOI: 10.1038/s41598-022-13737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
A simple quantitative reverse phase high performance liquid chromatographic (RP-HPLC) method has been developed and validated for assay determination of cannabidiol and tetrahydrocannabinol in hemp oil infused products. The RP-HPLC method was developed and optimized for the mobile phase composition, flow rate, column selection and detector wavelength. An isocratic elution of samples were performed on SOLAS 100 Å C18 150 mm × 4.6 mm, 5 μm column with a mobile phase containing 75/25 acetonitrile/water v/v, with a flow rate of 1.5 mL/min by using an ultraviolet–visible (UV/Vis) detector operating at 214 nm. The RP-HPLC method was validated to meet regulatory requirements which covers specificity, accuracy, range, linearity, precision, system suitability and robustness. The validated assay test method was applied successfully to quantify cannabidiol and tetrahydrocannabinol in commercial hemp oil infused products such as tablets, soft gel capsules, plant extract oils, oral drops, tincture, and beverage enhancers. All the test results were found acceptable as per ICH guidelines, and this confirmed the feasibility of this method for its intended use in regular quality control and assay of cannabidiol and tetrahydrocannabinol in hemp oil infused products.
Collapse
|
25
|
Tay LL, Hulse J, Paroli R. FTIR and Raman Spectroscopic Characterization of Cannabinoids. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) are three key phytochemical components of cannabis. All three have demonstrated phytochemical activity and are implicated in pharmacological use of cannabis. In this paper, we present the FTIR and Raman spectroscopic characterization of THC, CBD and CBN compounds obtained from certified reference materials. Spontaneous Raman, mid-Infrared (MIR) absorption spectra as well as the analogous surface-enhanced counterparts (Surface enhanced Raman spectroscopy (SERS) and surface enhanced Infrared absorption (SEIRA)) of the cannabinoids are discussed in detail here. We have also examined the laser induced photothermal changes that occur in THC and CBD under spontaneous Raman acquisition conditions as revealed in their Raman spectra. Vibrational spectroscopy provides a robust, portable and cost effective analytical approach to quality control for various medicinal and consumer cannabinoid products. The pure compound spectra of the three cannabinoids presented in this work will help end-users to establish better quantitative analysis methods based on these techniques.
Collapse
Affiliation(s)
- Li-Lin Tay
- National Research Council Canada, 6356, Ottawa, Ontario, Canada
| | - John Hulse
- National Research Council Canada, 6356, Ottawa, Ontario, Canada
| | - Ralph Paroli
- National Research Council Canada, 6356, Ottawa, Canada
| |
Collapse
|
26
|
Monti MC, Frei P, Weber S, Scheurer E, Mercer-Chalmers-Bender K. Beyond Δ9-tetrahydrocannabinol and cannabidiol: chemical differentiation of cannabis varieties applying targeted and untargeted analysis. Anal Bioanal Chem 2022; 414:3847-3862. [PMID: 35380230 PMCID: PMC9061671 DOI: 10.1007/s00216-022-04026-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
Abstract
Cannabis sativa (C. sativa) is commonly chemically classified based on its Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content ratios. However, the plant contains nearly 150 additional cannabinoids, referred to as minor cannabinoids. Minor cannabinoids are gaining interest for improved plant and product characterization, e.g., for medical use, and bioanalytical questions in the medico-legal field. This study describes the development and validation of an analytical method for the elucidation of minor cannabinoid fingerprints, employing liquid chromatography coupled to high-resolution mass spectrometry. The method was used to characterize inflorescences from 18 different varieties of C. sativa, which were cultivated under the same standardized conditions. Complementing the targeted detection of 15 cannabinoids, untargeted metabolomics employing in silico assisted data analysis was used to detect additional plant ingredients with focus on cannabinoids. Principal component analysis (PCA) was used to evaluate differences between varieties. The overall purpose of this study was to examine the ability of targeted and non-targeted metabolomics using the mentioned techniques to distinguish cannabis varieties from each other by their minor cannabinoid fingerprint. Quantitative determination of targeted cannabinoids already gave valuable information on cannabinoid fingerprints as well as inter- and intra-variety variability of cannabinoid contents. The untargeted workflow led to the detection of 19 additional compounds. PCA of the targeted and untargeted datasets revealed further subgroups extending commonly applied phenotype classification systems of cannabis. This study presents an analytical method for the comprehensive characterization of C. sativa varieties.
Collapse
Affiliation(s)
- Manuela Carla Monti
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Priska Frei
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Sophie Weber
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Katja Mercer-Chalmers-Bender
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland.
| |
Collapse
|
27
|
Finley SJ, Javan GT, Green RL. Bridging Disciplines: Applications of Forensic Science and Industrial Hemp. Front Microbiol 2022; 13:760374. [PMID: 35479622 PMCID: PMC9038041 DOI: 10.3389/fmicb.2022.760374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
Forensic laboratories are required to have analytical tools to confidently differentiate illegal substances such as marijuana from legal products (i.e., industrial hemp). The Achilles heel of industrial hemp is its association with marijuana. Industrial hemp from the Cannabis sativa L. plant is reported to be one of the strongest natural multipurpose fibers on earth. The Cannabis plant is a vigorous annual crop broadly separated into two classes: industrial hemp and marijuana. Up until the eighteenth century, hemp was one of the major fibers in the United States. The decline of its cultivation and applications is largely due to burgeoning manufacture of synthetic fibers. Traditional composite materials such as concrete, fiberglass insulation, and lumber are environmentally unfavorable. Industrial hemp exhibits environmental sustainability, low maintenance, and high local and national economic impacts. The 2018 Farm Bill made way for the legalization of hemp by categorizing it as an ordinary agricultural commodity. Unlike marijuana, hemp contains less than 0.3% of the cannabinoid, Δ9-tetrahydrocannabinol, the psychoactive compound which gives users psychotropic effects and confers illegality in some locations. On the other hand, industrial hemp contains cannabidiol found in the resinous flower of Cannabis and is purported to have multiple advantageous uses. There is a paucity of investigations of the identity, microbial diversity, and biochemical characterizations of industrial hemp. This review provides background on important topics regarding hemp and the quantification of total tetrahydrocannabinol in hemp products. It will also serve as an overview of emergent microbiological studies regarding hemp inflorescences. Further, we examine challenges in using forensic analytical methodologies tasked to distinguish legal fiber-type material from illegal drug-types.
Collapse
|
28
|
Takashina S, Takahashi M, Morimoto K, Inoue K. LC-MS/MS Assay for the Measurement of Cannabidiol Profiling in CBD Oil from Japanese Market and Application for Convertible Tetrahydrocannabinol in Acetic Acid Condition. Chem Pharm Bull (Tokyo) 2022; 70:169-174. [PMID: 35110438 DOI: 10.1248/cpb.c21-00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabidiol (CBD), a major non-psychoactive cannabinoid, has a lot of attention due to its potential relaxing properties and led the trend in commercial CBD aroma/oral hemp seed oil from the Japanese market. In this study, a routine assay for evaluating CBD oil samples was performed using LC coupled with tandem mass spectrometry (LC-MS/MS) and was used to apply the convertible tetrahydrocannabinol (THC) in acetic acid conditions. Based on the electrospray positive ion mode, the detection of cannabidiolic acid (CBDA; m/z 359 > 219), cannabigerolic acid (CBGA; m/z 361 > 343), cannabigerol (CBG; m/z 317 > 193), CBD (m/z 315 > 193), THC (m/z 315 > 193) and cannabinol (CBN; m/z 311 > 223) was performed by satisfying separation with high density of C18 column. Oil samples (50 mg) were diluted with isopropanol (5 mL), to which stable isotope internal standards were added by dilution with methanol/water (50/50), and accuracy rates ranged from 97.8 to 102.2%. This method was used to evaluate the CBD oil products (5 kinds) from the Japanese market. Our survey found obvious counterfeit (non-detectable CBD) CBD oil from Japanese market. Following that, we investigated the conversion of THC in CBD oil samples in simple conditions such as 10% acetic acid and 70 °C for 6 h and discovered that converts THC proportions are approximately 5% ((THC content/CBD content) × 100) and <1.0%. Thus, our developed LC-MS/MS assay could be applied to monitor the CBD concentration and convertible THC from CBD oil.
Collapse
Affiliation(s)
| | - Miki Takahashi
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Koji Morimoto
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
29
|
Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Tran J, Elkins AC, Spangenberg GC, Rochfort SJ. High-Throughput Quantitation of Cannabinoids by Liquid Chromatography Triple-Quadrupole Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030742. [PMID: 35164007 PMCID: PMC8840290 DOI: 10.3390/molecules27030742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
The high-throughput quantitation of cannabinoids is important for the cannabis industry. As medicinal products increase, and research into compounds that have pharmacological benefits increase, and the need to quantitate more than just the main cannabinoids becomes more important. This study aims to provide a rapid, high-throughput method for cannabinoid quantitation using a liquid chromatography triple-quadrupole mass spectrometer (LC-QQQ-MS) with an ultraviolet diode array detector (UV-DAD) for 16 cannabinoids: CBDVA, CBDV, CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, CBNA, THC, Δ8-THC, CBL, CBC, THCA-A and CBCA. Linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, recovery and matrix effect were all evaluated. The validated method was used to determine the cannabinoid concentration of four different Cannabis sativa strains and a low THC strain, all of which have different cannabinoid profiles. All cannabinoids eluted within five minutes with a total analysis time of eight minutes, including column re-equilibration. This was twice as fast as published LC-QQQ-MS methods mentioned in the literature, whilst also covering a wide range of cannabinoid compounds.
Collapse
Affiliation(s)
- Jonathan Tran
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
| | - Aaron C. Elkins
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
- Correspondence:
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Bundoora, VIC 3083, Australia; (J.T.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
31
|
Goldman S, Bramante J, Vrdoljak G, Guo W, Wang Y, Marjanovic O, Orlowicz S, Di Lorenzo R, Noestheden M. The analytical landscape of cannabis compliance testing. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1996390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julia Bramante
- Cannabis Sciences Program, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Gordon Vrdoljak
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Weihong Guo
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Yun Wang
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Olivera Marjanovic
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | | | | | - Matthew Noestheden
- SCIEX, Concord, Canada
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|
32
|
The Separation of Cannabinoids on Sub-2 µm Immobilized Polysaccharide Chiral Stationary Phases. Pharmaceuticals (Basel) 2021; 14:ph14121250. [PMID: 34959650 PMCID: PMC8704058 DOI: 10.3390/ph14121250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
The increased use and applicability of Cannabis and Cannabis-derived products has skyrocketed over the last 5 years. With more and more governing bodies moving toward medical and recreational legalization, the need for robust and reliable analytical testing methods is also growing. While many stationary phases and methods have been developed for this sort of analysis, chiral stationary phases (CSPs) are unique in this area; not only can they serve their traditional chiral separation role, but they can also be used to perform achiral separations. Given that mixtures of cannabinoids routinely contain enantiomers, diastereomers, and structural isomers, this offers an advantage over the strictly achiral-only analyses. This work presents the separation of a 10-cannabinoid mixture on several polysaccharide-based sub-2 µm CSPs with both normal-phase and reversed-phase ultra-high-performance liquid chromatography (UHPLC) conditions. Along with the separation of the mixture, appropriate single-peak identification was performed to determine the elution order and reported where applicable.
Collapse
|
33
|
HPLC-DAD Analysis of Hemp Oil Supplements for Determination of Four Cannabinoids: Cannabidiol, Cannabidiolic Acid, Cannabinol and Delta 9-Tetrahydrocannabinol. SEPARATIONS 2021. [DOI: 10.3390/separations8120227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Growing consumer interest in hemp oilseed supplements requires quality control. Therefore, appropriate, effective and verified analytical methods are needed for the determination of some bioactive cannabinoids in them. The aim of the study is to present an extended (compared to our previous research) validated high performance liquid chromatography with diode array detection (HPLC-DAD) method for the determination of four cannabinoids (cannabidiol, cannabidiolic acid, cannabinol and delta-9-tetrahydrocannabinol) in an oil matrix, which was used to determine these cannabinoids in seven commercial hemp oil supplements. In our method, the isolation of the target compounds was based on liquid extraction with acetonitrile combined with the freezing (at −41 °C) of the oil phase. The results show that in some cases, the determined concentrations of cannabinoids in the tested supplements differ significantly from those declared by the manufacturers. As for the main medicinal cannabinoid (CBD) in hemp oil supplements, in two cases, the measured concentration was significantly lower (1.45 and 1.81%) than the declared (5 and 5%), and in the other supplements, the obtained results confirm the declared amount of CBD within the error range from 3.29 to 9.2%. Therefore, to ensure the safe and beneficial use of these supplements by consumers, it is necessary to monitor their cannabinoid composition.
Collapse
|
34
|
Kanabus J, Bryła M, Roszko M, Modrzewska M, Pierzgalski A. Cannabinoids-Characteristics and Potential for Use in Food Production. Molecules 2021; 26:6723. [PMID: 34771132 PMCID: PMC8588477 DOI: 10.3390/molecules26216723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Scientific demonstrations of the beneficial effects of non-psychoactive cannabinoids on the human body have increased the interest in foods containing hemp components. This review systematizes the latest discoveries relating to the characteristics of cannabinoids from Cannabis sativa L. var. sativa, it also presents a characterization of the mentioned plant. In this review, we present data on the opportunities and limitations of cannabinoids in food production. This article systematizes the data on the legal aspects, mainly the limits of Δ9-THC in food, the most popular analytical techniques (LC-MS and GC-MS) applied to assay cannabinoids in finished products, and the available data on the stability of cannabinoids during heating, storage, and access to light and oxygen. This may constitute a major challenge to their common use in food processing, as well as the potential formation of undesirable degradation products. Hemp-containing foods have great potential to become commercially popular among functional foods, provided that our understanding of cannabinoid stability in different food matrices and cannabinoid interactions with particular food ingredients are expanded. There remains a need for more data on the effects of technological processes and storage on cannabinoid degradation.
Collapse
Affiliation(s)
- Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.); (M.M.); (A.P.)
| | | | | | | | | |
Collapse
|
35
|
Capriotti AL, Cannazza G, Catani M, Cavaliere C, Cavazzini A, Cerrato A, Citti C, Felletti S, Montone CM, Piovesana S, Laganà A. Recent applications of mass spectrometry for the characterization of cannabis and hemp phytocannabinoids: From targeted to untargeted analysis. J Chromatogr A 2021; 1655:462492. [PMID: 34507140 DOI: 10.1016/j.chroma.2021.462492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
This review is a collection of recent applications of mass spectrometry studies for the characterization of phytocannabinoids in cannabis and hemp plant material and related products. The focus is mostly on recent applications using mass spectrometry as detector, in hyphenation to typical separation techniques (i.e., liquid chromatography or gas chromatography), but also with less common couplings or by simple direct analysis. The papers are described starting from the most common approach for targeted quantitative analysis, with applications using low-resolution mass spectrometry equipment, but also with the introduction of high-resolution mass analyzers as the detectors. This reflects a common trend in this field, and introduces the most recent applications using high-resolution mass spectrometry for untargeted analysis. The different approaches used for untargeted analysis are then described, from simple retrospective analysis of compounds without pure standards, through untargeted metabolomics strategies, and suspect screening methods, which are the ones currently allowing to achieve the most detailed qualitative characterization of the entire phytocannabinoid composition, including minor compounds which are usually overlooked in targeted studies and in potency evaluation. These approaches also represent powerful strategies to answer questions on biological and pharmacological activity of cannabis, and provide a sound technology for improved classification of cannabis varieties. Finally, open challenges are discussed for future directions in the detailed study of complex phytocannabinoid mixtures.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, Modena 41125, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Cinzia Citti
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, Modena 41125, Italy
| | - Simona Felletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
36
|
Zhang Y, You Z, Hou C, Liu L, Xiao A. An Electrochemical Sensor Based on Amino Magnetic Nanoparticle-Decorated Graphene for Detection of Cannabidiol. NANOMATERIALS 2021; 11:nano11092227. [PMID: 34578543 PMCID: PMC8467804 DOI: 10.3390/nano11092227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
For detection of cannabidiol (CBD)—an important ingredient in Cannabis sativa L.—amino magnetic nanoparticle-decorated graphene (Fe3O4-NH2-GN) was prepared in the form of nanocomposites, and then modified on a glassy carbon electrode (GCE), resulting in a novel electrochemical sensor (Fe3O4-NH2-GN/GCE). The applied Fe3O4-NH2 nanoparticles and GN exhibited typical structures and intended surface groups through characterizations via transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), vibrating sample magnetometer (VSM), and Raman spectroscopy. The Fe3O4-NH2-GN/GCE showed the maximum electrochemical signal for CBD during the comparison of fabricated components via the cyclic voltammetry method, and was systematically investigated in the composition and treatment of components, pH, scan rate, and quantitative analysis ability. Under optimal conditions, the Fe3O4-NH2-GN/GCE exhibited a good detection limit (0.04 μmol L−1) with a linear range of 0.1 μmol L−1 to 100 μmol L−1 (r2 = 0.984). In the detection of CBD in the extract of C. sativa leaves, the results of the electrochemical method using the Fe3O4-NH2-GN/GCE were in good agreement with those of the HPLC method. Based on these findings, the proposed sensor could be further developed for the portable and rapid detection of natural active compounds in the food, agricultural, and pharmaceutical fields.
Collapse
Affiliation(s)
| | | | | | - Liangliang Liu
- Correspondence: (L.L.); (A.X.); Tel.: +86-731-88998525 (L.L.); +86-731-88998536 (A.X.)
| | - Aiping Xiao
- Correspondence: (L.L.); (A.X.); Tel.: +86-731-88998525 (L.L.); +86-731-88998536 (A.X.)
| |
Collapse
|
37
|
Cirrincione M, Saladini B, Brighenti V, Salamone S, Mandrioli R, Pollastro F, Pellati F, Protti M, Mercolini L. Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance - infrared (ATR-FTIR) spectroscopy: A proof of concept. J Pharm Biomed Anal 2021; 204:114270. [PMID: 34332310 DOI: 10.1016/j.jpba.2021.114270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
An original, innovative, high-throughput method based on attenuated total reflectance - Fourier's transform infrared (ATR-FTIR) spectroscopy has been developed for the proof-of-concept discrimination of fibre-type from drug-type Cannabis sativa L. inflorescences. The cannabis sample is placed on the instrument plate and analysed without any previous sample pretreatment step. In this way, a complete analysis lasts just a few seconds, the time needed to record an ATR-FTIR spectrum. The method was calibrated and cross-validated using data provided by liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis of the different cannabis samples and carried out the statistical assays for quantitation. During cross-validation, complete agreement was obtained between ATR-FTIR and LC-MS/MS identification of the cannabis chemotype. Moreover, the method has proved to be capable of quantifying with excellent accuracy (75-103 % vs. LC-MS/MS) seven neutral and acidic cannabinoids (THC, THCA, CBD, CBDA, CBG, CBGA, CBN) in inflorescences from different sources. The extreme feasibility and speed of execution make this ATR-FTIR method highly attractive as a proof-of-concept for a possible application to quality controls during pharmaceutical product manufacturing, as well as on-the-street cannabis controls and user counselling.
Collapse
Affiliation(s)
- Marco Cirrincione
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Bruno Saladini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Virginia Brighenti
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100, Novara, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100, Novara, Italy
| | - Federica Pellati
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
38
|
Thermal stability of cannabinoids in dried cannabis: a kinetic study. Anal Bioanal Chem 2021; 414:377-384. [PMID: 33420535 DOI: 10.1007/s00216-020-03098-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
This study was undertaken to quantitatively explore the effect of temperature on the degradation of cannabinoids in dried cannabis flower. A total of 14 cannabinoids were monitored using liquid chromatography and tandem mass spectrometry in temperature environments from - 20 to + 40 ∘C lasting up to 1 year. We find that a network of first-order degradation reactions is well-suited to model the observed changes for all cannabinoids. While most studies focus on high-temperature effects on the cannabinoids, this study provides high-precision quantitative assessment of room temperature kinetics with applications to shelf-life predictions and age estimates of cannabis products.
Collapse
|