1
|
Alukkal CR, Lee LS, Gonzalez DJ. Understanding the impact of pre-digestion thermal hydrolysis process on PFAS in anaerobically digested biosolids. CHEMOSPHERE 2024; 365:143406. [PMID: 39326709 DOI: 10.1016/j.chemosphere.2024.143406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) present in biosolids are influenced by their source, treatment processes, and the dynamics of water resource recovery facilities (WRRF). Understanding these effects is vital for informed decisions in treatment process selection, however, comprehensive studies are sparse. This study examined the impact of anaerobic digestion (AD) and the addition of a thermal hydrolysis process (THP) before AD on PFAS in the solids stream at a WRRF. Targeted analysis of 58 PFAS (linear and branched) and suspect screening of the solid stream before and after AD as well as THP, with the total PFAS (ΣPFAS) concentrations ranging between 244 and 566 μg/kgdw. Precursor and intermediate PFAS, mainly di-substituted polyfluoroalkyl phosphate esters (diPAPs) followed by fluorotelomer carboxylic acids (FTCAs), were the dominant contributors (62-96 mol % ΣPFAS) in all 5 sample types. AD impacts were observed both before and after deploying THP altering the relative contribution of different PFAS classes through biotransformation, with an increase in PFCAs and a decrease in diPAPs. However, we observed that THP reduced the % of precursor conversion as well as conversion of the FTCA intermediates in the AD process as evidenced by a substantial increase in FTCAs post-THP + AD and lower PFCA generation compared to AD only. Total PFAS organofluorine (∑FPFAS) decreased by 28% pre- and post-AD, which on total fluorine (TF) showed a larger reduction to 43%. Fluoride was <3% of the TF in all cases, thus, the greater reduction in TF vs ∑FPFAS could be volatile losses of PFAS and other non-PFAS F-containing molecules. After THP installation, a 32% decrease in (∑FPFAS) was observed in the combined THP-AD system whereas adjusted total organofluorine increased by ∼43%. Overall, achieving higher solids handling capacity and energy neutrality with the THP addition did not lead to a significant difference in quantifiable PFAS concentrations compared to AD-only.
Collapse
Affiliation(s)
- Caroline Rose Alukkal
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Linda S Lee
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA; Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
2
|
Ríos-Bonilla K, Aga DS, Lee J, König M, Qin W, Cristobal JR, Atilla-Gokcumen GE, Escher BI. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39259824 PMCID: PMC11428134 DOI: 10.1021/acs.est.4c06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may cause various deleterious health effects. Epidemiological studies have demonstrated associations between PFAS exposure and adverse neurodevelopmental outcomes. The cytotoxicity, neurotoxicity, and mitochondrial toxicity of up to 12 PFAS including perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and hexafluoropropylene oxide-dimer acid (HPFO-DA) were tested at concentrations typically observed in the environment (e.g., wastewater, biosolids) and in human blood using high-throughput in vitro assays. The cytotoxicity of all individual PFAS was classified as baseline toxicity, for which prediction models based on partition constants of PFAS between biomembrane lipids and water exist. No inhibition of the mitochondrial membrane potential and activation of oxidative stress response were observed below the cytotoxic concentrations of any PFAS tested. All mixture components and the designed mixtures inhibited the neurite outgrowth in differentiated neuronal cells derived from the SH-SY5Y cell line at concentrations around or below cytotoxicity. All designed mixtures acted according to concentration addition at low effect and concentration levels for cytotoxicity and neurotoxicity. The mixture effects were predictable from the experimental single compounds' concentration-response curves. These findings have important implications for the mixture risk assessment of PFAS.
Collapse
Affiliation(s)
- Karla
M. Ríos-Bonilla
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Jungeun Lee
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Weiping Qin
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Judith R. Cristobal
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Gunes Ekin Atilla-Gokcumen
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| |
Collapse
|
3
|
Mofokeng NN, Madikizela LM, Tiggelman I, Sanganyado E, Chimuka L. Suspect screening of per-and polyfluoroalkyl substances in paper by selective and non-selective extraction with UHPLC-Q orbitrap MS. CHEMOSPHERE 2024; 363:142904. [PMID: 39033859 DOI: 10.1016/j.chemosphere.2024.142904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Non-targeted analysis and suspect screening of per- and polyfluoroalkyl substances (PFAS) in various matrices have gained traction with advancements in accurate mass analytical instruments. This study employed ultra-high performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for PFAS suspect screening of paper grades used in the paper recycling chain. The samples were prepared using two extraction techniques; selective accelerated solvent extraction with weak anionic exchange solid-phase extraction and non-selective ultrasonic-assisted extraction. A suspect screening protocol was established to tentatively identify suspected PFAS against spectral databases using a systematic approach of peak filtering and study-specific thresholds for reporting, linked to a confidence level. The possible prevalence of previously unreported PFAS in several paper materials across the various collection sites in the paper recycling chain was inferred by the common detection of short-chain polyfluoroalkyl ketones and diketones in the paper recycling chain. The suspect screening tentatively identified 41 unique PFAS, with 3 common to both pre-treatment techniques. The detection of unique PFAS by the two sample pre-treatment techniques highlighted the significance of both selective and non-selective extraction in PFAS screening endeavours. Further, it showed the importance of understanding the acquisition mechanisms employed in mass spectrometry where data-dependent acquisition triggered fragmentation in certain identified compounds, and not in others. The tentatively identified PFAS indicated that there were several previously unreported PFAS in the paper recycling chain and that additional studies were required to investigate their abundance, possible persistence, bioaccumulation and toxicity, in relation to their functional groups and carbon chains.
Collapse
Affiliation(s)
- Nondumiso N Mofokeng
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000, South Africa; Mpact Innovation, Research & Development, Devon Valley Road, Stellenbosch, 7600, South Africa.
| | - Lawrence M Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 28 Pioneer Ave, Roodepoort, Johannesburg, 1709, South Africa
| | - Ineke Tiggelman
- Mpact Innovation, Research & Development, Devon Valley Road, Stellenbosch, 7600, South Africa
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
4
|
Ali MA, Thapa U, Antle J, Tanim EUH, Aguilar JM, Bradley IM, Aga DS, Aich N. Influence of water chemistry and operating parameters on PFOS/PFOA removal using rGO-nZVI nanohybrid. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133912. [PMID: 38447366 DOI: 10.1016/j.jhazmat.2024.133912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Graphene and zero-valent-iron based nanohybrid (rGO-nZVI NH) with oxidant H2O2 can remove perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) through adsorption-degradation in a controlled aquatic environment. In this study, we evaluated how and to what extent different environmental and operational parameters, such as initial PFAS concentration, H2O2 dose, pH, ionic strength, and natural organic matter (NOM), influenced the removal of PFOS and PFOA by rGO-nZVI. With the increase in initial PFAS concentration (from 0.4 to 50 ppm), pH (3 to 9), ionic strength (0 to 100 mM), and NOM (0 to 10 ppm), PFOS removal reduced by 20%, 30%, 2%, and 6%, respectively, while PFOA removal reduced by 54%, 76%, 11%, and 33% respectively. In contrast, PFOS and PFOA removal increased by 10% and 41%, respectively, with the increase in H2O2 (from 0 to 1 mM). Overall, the effect of changes in environmental and operational parameters was more pronounced for PFOA than PFOS. Mechanistically, •OH radical generation and availability showed a profound effect on PFOA removal. Also, the electrostatic interaction between rGO-nZVI NH and deprotonated PFAS compounds was another key factor for removal. Most importantly, our study confirms that rGO-nZVI in the presence of H2O2 can degrade both PFOS and PFOA to some extent by identifying the important by-products such as acetate, formate, and fluoride.
Collapse
Affiliation(s)
- Md Arafat Ali
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Utsav Thapa
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Jonathan Antle
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Ehsan Ul Hoque Tanim
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - John Michael Aguilar
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Ian M Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States.
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States; Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
5
|
Zweigle J, Bugsel B, Fabregat-Palau J, Zwiener C. PFΔScreen - an open-source tool for automated PFAS feature prioritization in non-target HRMS data. Anal Bioanal Chem 2024; 416:349-362. [PMID: 38030884 PMCID: PMC10761406 DOI: 10.1007/s00216-023-05070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a huge group of anthropogenic chemicals with unique properties that are used in countless products and applications. Due to the high stability of their C-F bonds, PFAS or their transformation products (TPs) are persistent in the environment, leading to ubiquitous detection in various samples worldwide. Since PFAS are industrial chemicals, the availability of authentic PFAS reference standards is limited, making non-target screening (NTS) approaches based on high-resolution mass spectrometry (HRMS) necessary for a more comprehensive characterization. NTS usually is a time-consuming process, since only a small fraction of the detected chemicals can be identified. Therefore, efficient prioritization of relevant HRMS signals is one of the most crucial steps. We developed PFΔScreen, a Python-based open-source tool with a simple graphical user interface (GUI) to perform efficient feature prioritization using several PFAS-specific techniques such as the highly promising MD/C-m/C approach, Kendrick mass defect analysis, diagnostic fragments (MS2), fragment mass differences (MS2), and suspect screening. Feature detection from vendor-independent MS raw data (mzML, data-dependent acquisition) is performed via pyOpenMS (or custom feature lists) with subsequent calculations for prioritization and identification of PFAS in both HPLC- and GC-HRMS data. The PFΔScreen workflow is presented on four PFAS-contaminated agricultural soil samples from south-western Germany. Over 15 classes of PFAS (more than 80 single compounds with several isomers) could be identified, including four novel classes, potentially TPs of the precursors fluorotelomer mercapto alkyl phosphates (FTMAPs). PFΔScreen can be used within the Python environment and is easily automatically installable and executable on Windows. Its source code is freely available on GitHub ( https://github.com/JonZwe/PFAScreen ).
Collapse
Affiliation(s)
- Jonathan Zweigle
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany.
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Joel Fabregat-Palau
- Hydrogeochemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Wallace JS, Edirisinghe D, Seyedi S, Noteboom H, Blate M, Balci DD, Abu-Orf M, Sharp R, Brown J, Aga DS. Burning questions: Current practices and critical gaps in evaluating removal of per- and polyfluoroalkyl substances (PFAS) during pyrolysis treatments of biosolids. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2023; 4:100079. [PMID: 37790729 PMCID: PMC10545407 DOI: 10.1016/j.hazl.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Concerns surrounding potential health and environmental impacts of per- and polyfluoroalkyl substances (PFAS) are growing at tremendous rates because adverse health impacts are expected with trace-level exposures. Extreme measures are required to mitigate potential PFAS contamination and minimize exposures. Extensive PFAS use results in the release of diverse PFAS species from domestic, industrial, and municipal effluents to wastewater, which partition to biosolids throughout secondary treatment. Biosolids generated during municipal wastewater treatment are a major environmental source of PFAS due to prevailing disposal practices as fertilizers. Pyrolysis is emerging as a viable, scalable technology for PFAS removal from biosolids while retaining nutrients and generating renewable, raw materials for energy generation. Despite early successes of pyrolysis in PFAS removal, significant unknowns remain about PFAS and transformation product fates in pyrolysis products and emissions. Applicable PFAS sampling methods, analytical workflows, and removal assessments are currently limited to a subset of high-interest analytes and matrices. Further, analysis of exhaust gases, particulate matter, fly ashes, and other pyrolysis end-products remain largely unreported or limited due to cost and sampling limitations. This paper identifies critical knowledge gaps on the pyrolysis of biosolids that must be addressed to assess the effectiveness of PFAS removal during pyrolysis treatment.
Collapse
Affiliation(s)
- Joshua S. Wallace
- Department of Chemistry, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
- RENEW Institute, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
| | - Dulan Edirisinghe
- Department of Chemistry, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
| | - Saba Seyedi
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Haley Noteboom
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Micah Blate
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Derya Dursun Balci
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Mohammad Abu-Orf
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Robert Sharp
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
- Civil & Environmental Engineering, Manhattan College, Riverdale, NY 10471, USA
| | - Jeanette Brown
- Civil & Environmental Engineering, Manhattan College, Riverdale, NY 10471, USA
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
- RENEW Institute, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
7
|
Popoola LT, Olawale TO, Salami L. A review on the fate and effects of contaminants in biosolids applied on land: Hazards and government regulatory policies. Heliyon 2023; 9:e19788. [PMID: 37810801 PMCID: PMC10556614 DOI: 10.1016/j.heliyon.2023.e19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The increase in world population growth and its resultant increase in industrial production to meet its need, have continued to raise the volume of wastewater received by treatment plant facilities. This has expectedly, led to an upsurge in the volume of sewage sludge and biosolids generated from wastewater treatment systems. Biosolids are best managed by application on land because of their agronomic benefits. However, this usage has been discovered to negatively affect humans and impact the environment due to the accumulation of minute concentrations of contaminants still present in the biosolid after treatment, hence the need for government regulations. This review article examined the fate and effects of pollutants, especially persistent organic pollutants (PoPs) of concern and emerging contaminants found in biosolids used for land applications, and also discussed government regulations on biosolid reuse from the perspectives of the two major regulations governing biosolid land application-the EU's Sludge Directive and USEPA's Part 503 Rule, in an attempt to draw attention to their outdated contents since enactment, as they do not currently meet the challenges of biosolid land application and thus, require a comprehensive update. Any update efforts should focus on USEPA's Part 503 Rule, which is less stringent on the allowable concentration of biosolid pollutants. Furthermore, an update should include specific regulations on new and emerging contaminants and persistent organic pollutants (PoPs) such as microplastics, pharmaceutical and personal care products (P&PCPs), surfactants, endocrine-disrupting chemicals, flame retardants, pathogens, and organic pollutants; further reduction of heavy metal standard limits, and consideration of soil phosphate-metal interactions to regulate biosolid agronomic loading rate. Future biosolid research should focus on the concentration of TCS, TCC, and emerging pharmaceuticals, as well as Microplastic transport in biosolid-amended soils, soil-plant transfer mechanism, and metabolism of PFAs in the soils; all of which will inform government policies on biosolid application on land.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Theophilus Ogunwumi Olawale
- Department of Chemical and Petroleum Engineering, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| | - Lukumon Salami
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| |
Collapse
|
8
|
Camdzic D, Dickman RA, Joyce AS, Wallace JS, Ferguson PL, Aga DS. Quantitation of Total PFAS Including Trifluoroacetic Acid with Fluorine Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2023; 95:5484-5488. [PMID: 36946571 PMCID: PMC10601338 DOI: 10.1021/acs.analchem.2c05354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Fluorine nuclear magnetic resonance (19F-NMR) spectroscopy has been shown to be a powerful tool capable of quantifying the total per- and polyfluoroalkyl substances (PFAS) in a complex sample. The technique relies on the characteristic terminal -CF3 shift (-82.4 ppm) in the alkyl chain for quantification and does not introduce bias due to sample preparation or matrix effects. Traditional quantitative analytical techniques for PFAS, such as liquid chromatography-mass spectrometry (LC-MS) and combustion ion chromatography (CIC), contain inherent limitations that make total fluorine analysis challenging. Here, we report a sensitive 19F-NMR method for the analysis of total PFAS, with a limit of detection of 99.97 nM, or 50 μg/L perfluorosulfonic acid. To demonstrate the capabilities of 19F-NMR, the technique was compared to two commonly used methods for PFAS analysis: total oxidizable precursor (TOP) assay and LC-high resolution MS analysis for targeted quantification and suspect screening. In both cases, the 19F-NMR analyses detected higher total PFAS quantities than either the TOP assay (63%) or LC-MS analyses (65%), suggesting that LC-MS and TOP assays can lead to underreporting of PFAS. Importantly, the 19F-NMR detected trifluoroacetic acid at a concentration more than five times the total PFAS concentration quantified using LC-MS in the wastewater sample. Therefore, the use of 19F-NMR to quantify the total PFAS in highly complex samples can be used to complement classic TOP or LC-MS approaches for more accurate reporting of PFAS contamination in the environment.
Collapse
Affiliation(s)
- Dino Camdzic
- Department of Chemistry, University at Buffalo SUNY, Buffalo, New York 14260, United States
| | - Rebecca A Dickman
- Department of Chemistry, University at Buffalo SUNY, Buffalo, New York 14260, United States
| | - Abigail S Joyce
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Joshua S Wallace
- Department of Chemistry, University at Buffalo SUNY, Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo SUNY, Buffalo, New York 14260, United States
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo SUNY, Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo SUNY, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics. Catalysts 2022. [DOI: 10.3390/catal12101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To reduce the energy consumption and cost of the drying of sewage sludge (SS) and to ensure stability during combustion, the pyrolysis and co-combustion characteristics of semi-dry SS after the dehydration of flocculant and bituminous coal (BC) were studied in this work. The results show that the decrease in moisture content accelerates the release of volatile substances, and the increase in heating rate can also enhance the release of water and volatile matters. Furthermore, in the co-combustion of semi-dry SS and BC, the increase in mixing ratio (from 0% to 60%) of semi-dry SS caused the ignition and burnout temperature to decrease from 481 °C to 214 °C and from 702 °C to 627 °C, respectively. During co-combustion, the infrared spectra showed that the temperature range of 300–700 °C was the main gas precipitation area, and the main gaseous products were CO2, NOx, SO2, and volatile organic pollutants (VOCs).
Collapse
|