1
|
Yang J, Chen Y, Zhang L, Zhou S, You L, Song J. Application of edible insects to food products: A review on the functionality, bioactivity and digestibility of insect proteins under high-pressure/ultrasound processing. Food Chem 2025; 468:142469. [PMID: 39693885 DOI: 10.1016/j.foodchem.2024.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Edible insect products are recognized for their high-quality protein content and an array of essential nutrients, including minerals and fatty acids. As the demand for sustainable protein sources grows, insect-based foods are gaining attention as a viable solution to help address global food security. Emerging technologies including high-pressure processing (HPP) and ultrasound (US) have the potential to influence the key functional properties of insect proteins-such as solubility, gelling ability, foamability, and emulsifying capacity-making them more suitable for incorporation into various food products. Additionally, the physicochemical properties and functionality of these proteins can be altered by digestive processes. This review focuses on the physicochemical and functional properties, as well as the biological activities, of edible insects modified by HHP and US technologies. It also explores, for the first time, how digestion impacts the quality and biological activities of insect-based products.
Collapse
Affiliation(s)
- Jing Yang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China.
| | - Yan Chen
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Linqing Zhang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Shuling Zhou
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Linfeng You
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Tarahi M, Aghababaei F, McClements DJ, Pignitter M, Hadidi M. Bioactive peptides derived from insect proteins: Preparation, biological activities, potential applications, and safety issues. Food Chem 2025; 465:142113. [PMID: 39581148 DOI: 10.1016/j.foodchem.2024.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Bioactive peptides are polypeptides with specific amino acid sequences that exhibit biological activities and health benefits. Insects have emerged as a sustainable source of proteins in human food and animal feed due to their efficient resource utilization, low environmental footprint, and good nutritional profile. Moreover, insect-derived bioactive peptides (IBPs) offer potential applications in functional foods and pharmaceuticals due to their antioxidant, antimicrobial, antihypertensive, anti-inflammatory, antidiabetic, and anti-obesity activities. In this article, the isolation, purification, and properties of IBPs are reviewed, as well as their potential health benefits, commercial applications, and safety. Despite the growing interest in incorporating IBPs into food products, challenges regarding consumer acceptance, safety, and regulations still persist. Thus, there is a pressing need for further research in this area, as well as clarification of the regulatory framework, before the full potential of insects as a sustainable source of bioactive peptides for human consumption can be realized.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
3
|
Gonzalez‐de la Rosa T, Marquez‐Paradas E, Leon MJ, Montserrat‐de la Paz S, Rivero‐Pino F. Exploring Tenebrio molitor as a source of low-molecular-weight antimicrobial peptides using a n in silico approach: correlation of molecular features and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1711-1736. [PMID: 39412188 PMCID: PMC11726611 DOI: 10.1002/jsfa.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Yellow mealworm (Tenebrio molitor) larvae are increasingly recognized as a potential source of bioactive peptides due to their high protein content. Antimicrobial peptides from sustainable sources are a research topic of interest. This study aims to characterize the peptidome of T. molitor flour and an Alcalase-derived hydrolysate, and to explore the potential presence of antimicrobial peptides using in silico analyses, including prediction tools, molecular docking and parameter correlations. RESULTS T. molitor protein was hydrolysed using Alcalase, resulting in a hydrolysate (TMH10A) with a 10% degree of hydrolysis. The peptidome was analysed using LC-TIMS-MS/MS, yielding over 6000 sequences. These sequences were filtered using the PeptideRanker tool, selecting the top 100 sequences with scores >0.8. Bioactivity predictions indicated that specific peptides, particularly WLNSKGGF and GFIPYEPFLKKMMA, showed significant antimicrobial potential, particularly against bacteria, fungi and viruses. Correlations were found between antifungal activity and physicochemical properties such as net charge, hydrophobicity and isoelectric point. CONCLUSIONS The study identified specific T. molitor-derived peptides with strong predicted antimicrobial activity through in silico analysis. These peptides, particularly WLNSKGGF and GFIPYEPFLKKMMA, might offer potential applications in food safety and healthcare. Further experimental validation is required to confirm their efficacy. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Gonzalez‐de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
| | - Elvira Marquez‐Paradas
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
| | - Maria J Leon
- Department of Microbiology and ParasitologySchool of Pharmacy, University of SevilleSevilleSpain
| | - Sergio Montserrat‐de la Paz
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
| | - Fernando Rivero‐Pino
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods TeamParmaItaly
| |
Collapse
|
4
|
Wechakorn K, Payaka A, Masoongnoen J, Wattanalaorsomboon S, Sansenya S. Inhibition potential of n-hexadecanoic and oleic acids from edible insects against α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase: in vitro and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39797568 DOI: 10.1002/jsfa.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico. RESULTS The total phenolic content of the edible insect extracts correlated with enzyme inhibitory activity. The quercetin and kaempferol content of B. mori ethyl acetate (EtOAc) extract was also closely related to α-amylase inhibitory activity. The EtOAc and hexane extracts of B. mori showed similar inhibition potential to acarbose and tacrine against α-amylase and AChE, respectively. The hexane extract of O. fuscidentalis exhibited comparable tyrosinase inhibitory activity to kojic acid. n-Hexadecanoic acid and oleic acid were the predominant bioactive compounds in all of the extracts. A kinetic study revealed that n-hexadecanoic acid acted as a mixed-type inhibitor against α-amylase, similar to acarbose, whereas oleic acid showed non-competitive inhibition against AChE, unlike tacrine. Docking studies suggested that these fatty acids bind to the active sites of α-amylase and AChE. CONCLUSION The findings suggest that n-hexadecanoic acid and oleic acid from edible insects could be potential candidates for treating diabetes mellitus and Alzheimer's disease. An animal model might be used for further examination to confirm these findings. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand
| | | | - Jintana Masoongnoen
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand
| | - Sukrit Wattanalaorsomboon
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand
| | - Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand
| |
Collapse
|
5
|
Bermúdez-Oria A, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Antioxidant activity and inhibitory effects on angiotensin I-converting enzyme and α-glucosidase of trans-p-coumaroyl-secologanoside (comselogoside) and its inclusion complex with β-cyclodextrin. Bioaccessibility during simulated in vitro gastrointestinal digestion. Food Chem 2024; 460:140724. [PMID: 39121769 DOI: 10.1016/j.foodchem.2024.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study explored the impact of complexing comselogoside (COM) with β-cyclodextrin (β-CD) on antioxidant capacity and investigated its in vitro inhibitory effects against α-glucosidase and angiotensin I-converting enzyme (ACE). The COM: β-CD complex in three molar ratios (1:2, 1:1, and 2:1) showed significantly higher antioxidant activity compared to free COM, assessed by DPPH and ferric reducing power assays. COM exhibited weak to moderate α-glucosidase inhibition (IC50 1221 μM) and notable ACE inhibition (IC50 119.4 μM). Encapsulation improved ACE inhibition notably for the 1:2 and 2:1 M ratios. The cleavage of secoiridoid moiety of COM by β-glucosidase further enhanced ACE inhibition from IC50 of 63.91 to 41.75 μg/mL in the hydrolysed mixture. In vitro gastrointestinal digestion revealed 34-40% bioaccessibility of COM and its β-CD complex. This study demonstrates the potential of encapsulated COM as a functional food or supplement for preventing and treating diabetes, hypertension, and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
6
|
de Matos FM, Rasera GB, de Castro RJS. Multifunctional properties of peptides derived from black cricket (Gryllus assimilis) and effects of in vitro digestion simulation on their bioactivities. Food Res Int 2024; 196:115134. [PMID: 39614589 DOI: 10.1016/j.foodres.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Insects are a rich source of proteins and are produced in systems that have lower environmental impact. As an alternative protein source, they can be consumed directly or used as an ingredient in other formulations. Recently, there has been growing interest in utilizing insect proteins as a substrate to obtain bioactive peptides as well as in investigating the maintenance of their biological properties under physiological conditions. This study aimed to evaluate the impact of simulated digestion on the bioactive properties of protein hydrolysates from black crickets (Gryllus assimilis). Following simulated digestion of the hydrolysate obtained through the application of Flavourzyme, the scavenging activities of ABTS and DPPH radicals, and ferric reducing antioxidant power (FRAP) increased by approximately 17 %, 246 %, and 173 %, respectively. For the hydrolysate obtained using the binary combination of Flavourzyme/Neutrase, the inhibitory activities of α-amylase and α-glucosidase after digestion were 47.87 % and 12.73 %, respectively, not significantly (p > 0.05) different from non-digested hydrolysates. The angiotensin-converting enzyme (ACE) inhibitory activity of the sample hydrolyzed with Flavourzyme/Alcalase proteases was 42.22 %, but this property was completely lost after in vitro digestion. Untargeted proteomic analysis allowed the identification of 22 peptides in the <3 kDa fraction of the digested black cricket protein. The LPPLP sequence was considered potentially bioactive for all activities tested in silico.
Collapse
Affiliation(s)
- Francielle Miranda de Matos
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Teixeira CSS, Carriço-Sá B, Villa C, Costa J, Mafra I, Ferreira IMPLVO, Faria MA, Tavares TG. Uncovering the Potential Somatic Angiotensin-Converting Enzyme (sACE) Inhibitory Capacity of Peptides from Acheta domesticus: Insights from In Vitro Gastrointestinal Digestion. Foods 2024; 13:3462. [PMID: 39517245 PMCID: PMC11544891 DOI: 10.3390/foods13213462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Entomophagy is being proposed as a sustainable and nutritious alternative protein source. Additionally, insect consumption is also associated with some health benefits mediated by bioactive compounds produced during gastrointestinal (GI) digestion. The antihypertensive property resulting from the inhibition of the somatic angiotensin-converting enzyme (sACE) by small peptides is one of the most common bioactivities related to insect consumption. This study aimed to investigate the potential sACE-inhibitory capacity of six peptides (AVQPCF, CAIAW, IIIGW, QIVW, PIVCF, and DVW), previously identified by the in silico GI digestion of Acheta domesticus proteins, validate their formation after in vitro GI digestion of A. domesticus by LC-MS/MS, and assess the bioactivity of the bioaccessible digesta. The results showed that the IC50 values of AVQPCF, PIVCF, and CAIAW on sACE were 3.69 ± 0.25, 4.63 ± 0.16, and 6.55 ± 0.52 μM, respectively. The obtained digesta demonstrated a sACE-inhibitory capacity of 77.1 ± 11.8 µg protein/mL extract (IC50). This is the first report of the sACE-inhibitory capacity attributed to whole A. domesticus subjected to GI digestion without any pre-treatment or protein concentration. This evidence highlights the potential antihypertensive effect of both the digesta and the identified peptides.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Joana Costa
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Isabel M. P. L. V. O. Ferreira
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Miguel A. Faria
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Tânia G. Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Yimam MA, Andreini M, Carnevale S, Muscaritoli M. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition. Front Nutr 2024; 11:1461621. [PMID: 39449824 PMCID: PMC11499197 DOI: 10.3389/fnut.2024.1461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The current global trend in the nutrition, epidemiologic and demographic transitions collectively alarms the need to pursue a sustainable protein diet that respects ecosystem and biodiversity from alternative sources, such as algae, fungi and edible insects. Then, changing the nutrition reality is extremely important to impede the global syndemic of obesity, undernutrition and climate change. This review aims to synthesize the published literature on the potential roles of alternative proteins and their derived bioactive peptides in preventive and clinical nutrition, identify research gaps and inform future research areas. Google Scholar and PubMed databases from their inception up to 30 June 2024 were searched using keywords to access pertinent articles published in English language for the review. Overall, proteins derived from algae, fungi, and edible insects are high-quality proteins as animal sources and demonstrate significant potential as a sustainable source of bioactive peptides, which are metabolically potent and have negligible adverse effects. They show promise to prevent and treat diseases associated with oxidative stress, obesity, diabetes, cancer, cardiovascular disease (especially hypertension), and neurodegenerative diseases. Given the abundance of algae, fungi and insect peptides performed in vitro or in vivo animals, further clinical studies are needed to fully establish their safety, efficacy and practical application in preventive and clinical nutrition. Additionally, social and behavioral change communication strategies would be important to increase health awareness of nutritional benefits and promote consumer acceptance of alternative protein sources.
Collapse
Affiliation(s)
- Mohammed Ahmed Yimam
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Department of Public Health, College of Health Science, Woldia University, Woldia, Ethiopia
| | - Martina Andreini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Draszanowska A, Kurp L, Starowicz M, Paszczyk B, Czarnowska-Kujawska M, Olszewska MA. Effect of the Addition of Yellow Mealworm ( Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods 2024; 13:3166. [PMID: 39410202 PMCID: PMC11475651 DOI: 10.3390/foods13193166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Edible insects are receiving increased attention as a new food source, although research on their implementation in confectionary products remains scarce. The study analyzed the chemical composition, physical parameters, antioxidative, and sensory characteristics of oatmeal cookies reformulated with yellow mealworm larvae (Tenebrio molitor L.; TM) at 0% (TM0), 10% (TM10), and 30% (TM30). The inclusion of TM in the cookie recipe increased the protein and fat content, improved the ratio of n-6/n-3 acids, and raised oleic acid levels while reducing palmitic acid. Oatmeal cookies were rich in K and P, and including TM significantly increased the content of most minerals, except for Mn and Na. The cookies held significant antioxidant capacity that increased as the concentration of TM increased due to hydrophilic antioxidants. Although lightness decreased with the increase in mealworm substitution, the yellowness, chroma, and hue angle remained similar for TM0 and TM10. The TM30 cookies were significantly darker and softer, which was further confirmed by panelists. The cookie formulation effectively masked the taste and smell of TM since there were no evident differences between the control and TM10 cookies. Cookies with TM30 received high enough ratings to be considered attractive if differentiated sensory characteristics are desired.
Collapse
Affiliation(s)
- Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland
| | - Lidia Kurp
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Juliana Tuwima 10, 10-748 Olsztyn, Poland;
| | - Beata Paszczyk
- Department of Commodity Science and Food Analysis, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (B.P.); (M.C.-K.)
| | - Marta Czarnowska-Kujawska
- Department of Commodity Science and Food Analysis, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (B.P.); (M.C.-K.)
| | - Magdalena Anna Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| |
Collapse
|
10
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
11
|
Summart R, Imsoonthornruksa S, Yongsawatdigul J, Ketudat-Cairns M, Udomsil N. Characterization and molecular docking of tetrapeptides with cellular antioxidant and ACE inhibitory properties from cricket ( Acheta domesticus) protein hydrolysate. Heliyon 2024; 10:e35156. [PMID: 39166016 PMCID: PMC11333913 DOI: 10.1016/j.heliyon.2024.e35156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Wide-ranging bioactivities of enzymatically digested insect protein to produce peptides have been targeted for functional food development. In this study, fractionated peptides obtained from cricket (Acheta domesticus) protein hydrolysate by alcalase digestion were identified and evaluated for their bioactivities. Peptide fractions F44, F45, and F46, isolated through size exclusion chromatography, demonstrated strong cytoprotective effects on SH-SY5Y and HepG2 cells exposed to H2O2. This was evidenced by a 2-fold decrease in reactive oxygen species (ROS) accumulation in the cells and a 3-fold upregulation of genes encoding antioxidant enzymes. The F45 peptide fractions also showed chemical antioxidant activities ranging from approximately 290 to 393 mg trolox/g peptide, measured by DPPH, ABTS, and FRAP assays. Furthermore, F45 demonstrated the highest angiotensin-converting enzyme I (ACE) inhibitory activity, 57.93 %. F45 induced higher levels of Nrf2, SOD1, SOD2, CAT, GSR, and GPx4 gene expression in SH-SY5Y and HepG2 cells compared to cells treated with H2O2 and no peptides (p < 0.05). Cells treated with H2O2 and F45 exhibited significantly increased antioxidant enzyme activity, including SOD, CAT, GSR, and GPx (p < 0.05). The F45B fraction from F45 was sequenced to obtain FVEG and FYDQ tetrapeptides. Molecular docking analysis revealed their high binding affinity to cellular antioxidant enzymes (SOD, CAT, GSR, GPx1, and GPx4), an antioxidant-related protein (Keap1), and ACE. These results suggest that the novel tetrapeptides from Acheta domesticus demonstrate important biological activities, establishing them as significant cellular antioxidant activities and a potential source of antihypertensive peptides.
Collapse
Affiliation(s)
- Ratasark Summart
- Division of Food Technology, Mahidol University Kanchanaburi Campus, Kanchanaburi, 71150, Thailand
| | - Sumeth Imsoonthornruksa
- Center for Biomolecular Structure Function and Application, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure Function and Application, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Natteewan Udomsil
- Division of Food Technology, Mahidol University Kanchanaburi Campus, Kanchanaburi, 71150, Thailand
| |
Collapse
|
12
|
Ruszkowska M, Tańska M, Miedzianka J, Kowalczewski PŁ. Field Cricket ( Gryllus bimaculatus) and Spirulina ( Arthrospira platensis) Powders as Environmentally Friendly Protein Enrichment Ingredients in Corn Snacks. Foods 2024; 13:2390. [PMID: 39123581 PMCID: PMC11311995 DOI: 10.3390/foods13152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Unconventional protein sources are currently extensively studied as food ingredients. This study aimed to evaluate the effect of 1.5% and 3% field cricket powder (GB) and 2-8% of its mixture (1:1) with spirulina powder (S) on the nutritional value, physicochemical properties, and sensory characteristics of corn extrudates. Additionally, 2% baking powder (BP) was added to assess its impact on the properties of the enriched extrudates. The results showed that both GB and GB + S improved nutritional value, with protein content increasing by up to 46% and higher levels of essential amino acids, particularly leucine and valine. However, these ingredients decreased the expansion ratio (by up to 15%), colour lightness (by up to 30%), and yellowness (by up to 47%) and increased the hardness (by up to 25%) of the corn extrudates. The S addition positively influenced product storage stability but decreased its sensory acceptance, especially aroma and taste. The BP addition mitigated the negative effects of higher GB and GB + S concentrations, particularly on sensory characteristics. In conclusion, incorporating up to 6% of the GB + S mixture provides a higher protein content with only minor changes to the product's characteristics compared to GB. Ratings exceeding 4.2 points indicate the good acceptability of these snacks.
Collapse
Affiliation(s)
- Millena Ruszkowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | | |
Collapse
|
13
|
Rocchetti G, Leni G, Rebecchi A, Dordoni R, Giuberti G, Lucini L. The distinctive effect of different insect powders as meat extenders in beef burgers subjected to cooking and in vitro gastrointestinal digestion. Food Chem 2024; 442:138422. [PMID: 38241998 DOI: 10.1016/j.foodchem.2024.138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Mealworm (MWP), migratory locust (LP), and house cricket (CP) are novel foods recently authorized by the European Commission. This work tested their powders as meat extenders at 5% inclusion in beef burgers. Insect powders were abundant in phenolics, recording the highest values in LP (1184.9 μg/g). The sensory analysis highlighted a higher visual and olfactory acceptability for MWP-burgers, followed by CP- and LP-burgers, whereas the texture of cooked burgers remained unaffected. Following pan-cooking, MWP-burgers and control exhibited comparable chemical profiles, while a significant down-accumulation of the heterocyclic amine 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline was observed in CP-burgers. In vitro gastrointestinal digestion highlighted metabolomic trends like control for MWP- and LP-burgers. In contrast, a reduced accumulation of lipids and increased content of dipeptides like glutaminylarginine (possibly acting as enzyme modulators) was observed for the CP-burgers.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Giulia Leni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Roberta Dordoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
14
|
Solà-Ginés M, Miró L, Bellver-Sanchis A, Griñán-Ferré C, Pallàs M, Pérez-Bosque A, Moretó M, Pont L, Benavente F, Barbosa J, Rodríguez C, Polo J. Nutritional, molecular, and functional properties of a novel enzymatically hydrolyzed porcine plasma product. PLoS One 2024; 19:e0301504. [PMID: 38728303 PMCID: PMC11086891 DOI: 10.1371/journal.pone.0301504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, an enzymatically hydrolyzed porcine plasma (EHPP) was nutritionally and molecularly characterized. EHPP molecular characterization showed, in contrast to spray-dried plasma (SDP), many peptides with relative molecular masses (Mr) below 8,000, constituting 73% of the protein relative abundance. IIAPPER, a well-known bioactive peptide with anti-inflammatory and antioxidant properties, was identified. In vivo functionality of EHPP was tested in C. elegans and two different mouse models of intestinal inflammation. In C. elegans subjected to lipopolysaccharide exposure, EHPP displayed a substantial anti-inflammatory effect, enhancing survival and motility by 40% and 21.5%, respectively. Similarly, in mice challenged with Staphylococcus aureus enterotoxin B or Escherichia coli O42, EHPP and SDP supplementation (8%) increased body weight and average daily gain while reducing the percentage of regulatory Th lymphocytes. Furthermore, both products mitigated the increase of pro-inflammatory cytokines expression associated with these challenged mouse models. In contrast, some significant differences were observed in markers such as Il-6 and Tnf-α, suggesting that the products may present different action mechanisms. In conclusion, EHPP demonstrated similar beneficial health effects to SDP, potentially attributable to the immunomodulatory and antioxidant activity of its characteristic low Mr bioactive peptides.
Collapse
Affiliation(s)
| | - Lluïsa Miró
- APC Europe S.L.U., Granollers, Spain
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Aina Bellver-Sanchis
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Anna Pérez-Bosque
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Miquel Moretó
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Programe, Generalitat de Catalunya, Barcelona, Spain
| | | | - José Barbosa
- Serra Húnter Programe, Generalitat de Catalunya, Barcelona, Spain
| | | | | |
Collapse
|
15
|
Rivero-Pino F, Gonzalez-de la Rosa T, Montserrat-de la Paz S. Edible insects as a source of biopeptides and their role in immunonutrition. Food Funct 2024; 15:2789-2798. [PMID: 38441670 DOI: 10.1039/d3fo03901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Many edible insect species are attracting the attention of the food industry and consumers in Western societies due to their high content and quality of protein, and consequently, the potential to be used as a more environmentally friendly dietary source could be beneficial for humans. On the other hand, prevention of inflammatory diseases using nutritional interventions is currently being proposed as a sustainable and cost-effective strategy to improve people's health. In this regard, finding bioactive compounds such as peptides with anti-inflammatory properties from sustainable sources (e.g., edible insects) is one area of particular interest, which might have a relevant role in immunonutrition. This review aims to summarize the recent literature on the discovery of immunomodulatory peptides through in vitro studies from edible insects, as well as to describe cell-based assays aiming to prove their bioactivity. On top of that, in vivo studies (i.e., animal and human), although scarce, have been mentioned in relation to the topic. In addition, the challenges and future perspectives related to edible-insect peptides and their role in immunonutrition are discussed. The amount of literature aiming to demonstrate the potential immunomodulatory activity of edible-insect peptides is scarce but promising. Different approaches have been employed, especially cell assays and animal studies employing insect meal as supplementation in the diet. Insects such as Tenebrio molitor or Gryllodes sigillatus are some of the most studied and have demonstrated to contain bioactive peptides. Further investigations, mostly with humans, are needed in order to clearly state that peptides from edible insects may contribute to the modulation of the immune system.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain.
| |
Collapse
|
16
|
Yang J, Hong J, Aihaiti A, Mu Y, Yin X, Zhang M, Liu X, Wang L. Preparation of sea buckthorn ( Hippophae rhamnoides L.) seed meal peptide by mixed fermentation and its effect on volatile compounds and hypoglycemia. Front Nutr 2024; 11:1355116. [PMID: 38414486 PMCID: PMC10896959 DOI: 10.3389/fnut.2024.1355116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
This study employed mixed bacterial strains to ferment seabuckthorn seed meal into peptides, and conducted a comprehensive evaluation of the growth adaptive conditions, molecular weight distribution, volatile compounds, and in vitro hypoglycemic activity required for fermentation. Results showed that when the amount of maltose was 1.1% and MgSO4·7H2O was added at 0.15 g/L, the peptide yield reached 43.85% with a mixed fermentation of Lactobacillus fermentum, Bacillus subtilis, Lactobacillus casei, Lactobacillus rhamnosus, and Lactobacillus acidophilus. Components with a molecular weight below 1 kDa were found to be more effective in inhibiting the activity of α-amylase and α-glucosidase, with the identified sequence being FYLPKM. Finally, SPME/GC-MS results showed that 86 volatile components were detected during the fermentation of seabuckthorn seed meal, including 22 alcohols, 9 acids, 7 ketones, 14 alkanes, 20 esters, and 14 other compounds. With prolonged fermentation time, the content of acids and esters increased significantly.
Collapse
Affiliation(s)
- Jiangyong Yang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jingyang Hong
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | | | - Ying Mu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xuefeng Yin
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Minwei Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaolu Liu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
17
|
Ahmed N, Asif S, Arfan M, Mahmood Q, Islam A, Gatasheh MK, Zia M. Synthesis and Characterization of Short α and β-Mixed Peptides with Excellent Anti-Lipase Activities. Molecules 2024; 29:765. [PMID: 38398517 PMCID: PMC10892623 DOI: 10.3390/molecules29040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity is a source of significant pathologies and deadly diseases, including heart disease, diabetes, and cancer. One of the most intriguing strategies in the hunt for new anti-obesity medications is the inhibition of pancreatic lipase (PL). This study presents a novel application of short α and β-mixed peptides as pancreatic lipase inhibitors. These peptides were synthesized in the solution phase and characterized using FTIR and 1H-NMR. L-proline is present in a high percentage of natural anti-lipase peptides and was used as a β-amino acid in this study to enhance anti-lipase activity and proteolytic stability. Moreover, L-α-proline was converted to β-amino acid derivatives using the Arndt-Eistert method with the advantage of stereo control at the α-carbon. The synthesized peptides with anti-lipase activity are N-Boc-β-Pro-Gly-OBz (93%), N-Boc-O-Bz-Tyr-β-Pro-β-Pro-Gly-OBz (92%), N-Boc-O-Bz-Tyr-β-Pro-COOH (91%), N-Boc-Phe-β-Pro-OCH3 (90%), and N-Boc-O-Bz-Tyr-β-Pro-OCH3 (89%). These peptides may function as lead molecules for further modification to more significant molecules, which can help control obesity.
Collapse
Grants
- RSP2024R393 King Saud University
- 9ebfe58b5d63cfdf,0fc4036025155e1a,3a852f3e85a2433b,ffc04817768e29d8,1eae9545a3244bed,db5d8742b53a782c,fc9of098bf237c77,8ce5883758852285 Qaiser Mahmood
- 0bb1baa309ebdbb0,6a5aa5d7ed313e53,61843063f3444df7,58875d947b81e726,615b239e803be0b0,45e50be7ef0245f1,c5d9a4fe383b609e,0ceab0ce3ca2061e Amjad Islam
Collapse
Affiliation(s)
- Naeem Ahmed
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sabahat Asif
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Muhammad Arfan
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China;
| | - Amjad Islam
- Key Laboratory for Preparation and Application of Ordered Structured Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China;
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|
18
|
Sánchez-Estrada MDLL, Aguirre-Becerra H, Feregrino-Pérez AA. Bioactive compounds and biological activity in edible insects: A review. Heliyon 2024; 10:e24045. [PMID: 38293460 PMCID: PMC10825307 DOI: 10.1016/j.heliyon.2024.e24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
New strategies to combat hunger are a current and urgent demand. The increase in population has generated a high demand for products and services that affect food production, cultivation areas, and climate. Viable and sustainable alternative sources have been sought to meet food quality requirements. In this context, edible insects are a good source of macro-nutrients, and bioactive compounds confer biological properties that improve their nutritional aspects and benefit human health. This review aims to present the benefits and contributions of edible insects from the point of view of the biological contribution of macronutrients, and bioactive compounds, as well as consider some anti-nutritional aspects reported in edible insects. It was found that insects possess most of the macronutrients necessary for human life and are rich in bioactive compounds commonly found in plants. These bioactive compounds can vary significantly depending on the developmental stage, diet, and species of edible insects. However, they also contain phytochemicals in which anti-nutrients predominate, which can adversely affect humans with allergenic reactions or reduced nutrient viability when consumed in high amounts or for prolonged periods. Hydrocyanide, oxalates, soluble oxalate, and phytate are the most studied anti-nutrients. However, the doses at which they occur are far below the limits in foods. In addition, anti-nutrient levels decrease significantly in processing, such as oven-drying and defatting methods. However, there are few studies, so more trials are needed to avoid generalizing. Therefore, edible insects can be considered complete food.
Collapse
Affiliation(s)
- María de la Luz Sánchez-Estrada
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana Angélica Feregrino-Pérez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| |
Collapse
|
19
|
Syahrulawal L, Torske MO, Sapkota R, Næss G, Khanal P. Improving the nutritional values of yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) larvae as an animal feed ingredient: a review. J Anim Sci Biotechnol 2023; 14:146. [PMID: 38042833 PMCID: PMC10693714 DOI: 10.1186/s40104-023-00945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 12/04/2023] Open
Abstract
Yellow mealworm larvae (YML; Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.
Collapse
Affiliation(s)
- Linggawastu Syahrulawal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway
| | - Magnhild Oust Torske
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway
| | - Rumakanta Sapkota
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, Roskilde, 4000, Denmark
| | - Geir Næss
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway.
| |
Collapse
|
20
|
Ferrazzano GF, D’Ambrosio F, Caruso S, Gatto R, Caruso S. Bioactive Peptides Derived from Edible Insects: Effects on Human Health and Possible Applications in Dentistry. Nutrients 2023; 15:4611. [PMID: 37960264 PMCID: PMC10650930 DOI: 10.3390/nu15214611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Novel foods, including edible insects, are emerging because of their nutritional characteristics and low environmental impacts and could represent a valid alternative source of food in a more sustainable way. Edible insects have been shown to have beneficial effects on human health. Insect-derived bioactive peptides exert antihypertensive, antioxidant, anti-inflammatory, and antimicrobial properties and have protective effects against common metabolic conditions. In this review, the roles of edible insects in human health are reported, and the possible applications of these peptides in clinical practice are discussed. A special mention is given to the role of antimicrobial peptides and their potential applications in controlling infections in orthodontic procedures. In this context, insects' antimicrobial peptides might represent a potential tool to face the onset of infective endocarditis, with a low chance to develop resistances, and could be manipulated and optimized to replace common antibiotics used in clinical practice so far. Although some safety concerns must be taken into consideration, and the isolation and production of insect-derived proteins are far from easy, edible insects represent an interesting source of peptides, with beneficial effects that may be, in the future, integrated into clinical and orthodontic practice.
Collapse
Affiliation(s)
- Gianmaria Fabrizio Ferrazzano
- UNESCO Chair in Health Education and Sustainable Development, Paediatric Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Francesca D’Ambrosio
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Silvia Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| |
Collapse
|
21
|
Lu H, Xie T, Wu Q, Hu Z, Luo Y, Luo F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023; 15:4267. [PMID: 37836551 PMCID: PMC10574726 DOI: 10.3390/nu15194267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
With the change in people's lifestyle, diabetes has emerged as a chronic disease that poses a serious threat to human health, alongside tumor, cardiovascular, and cerebrovascular diseases. α-glucosidase inhibitors, which are oral drugs, have proven effective in preventing and managing this disease. Studies have suggested that bioactive peptides could serve as a potential source of α-glucosidase inhibitors. These peptides possess certain hypoglycemic activity and can effectively regulate postprandial blood glucose levels by inhibiting α-glucosidase activity, thus intervening and regulating diabetes. This paper provides a systematic summary of the sources, isolation, purification, bioavailability, and possible mechanisms of α-glucosidase inhibitory peptides. The sources of the α-glucosidase inhibitory peptides were introduced with emphasis on animals, plants, and microorganisms. This paper also points out the problems in the research process of α-glucosidase inhibitory peptide, with a view to providing certain theoretical support for the further study of this peptide.
Collapse
Affiliation(s)
- Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya School of Medicine, Central South University, Changsha 410008, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
22
|
Zielińska E, Pankiewicz U. The Potential for the Use of Edible Insects in the Production of Protein Supplements for Athletes. Foods 2023; 12:3654. [PMID: 37835307 PMCID: PMC10573045 DOI: 10.3390/foods12193654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Several types of proteins are used in athletes' supplementation; nevertheless, given the problem of protein deficiency in the world and the growing need for ecological sources of protein, it is very interesting to study the quality of alternative protein sources, such as insect protein. This study investigated the nutritional value, micronutrient content, amino acid profile, and chemical score of banded cricket protein quality in the form of flour, defatted flour, and a protein preparation, as well as popular commercial protein supplements. In addition, in vitro digestion was performed, and the antiradical activity of the hydrolysates was compared. Generally, the defatted cricket flour was the most similar to commercial supplements regarding nutritional value because it contained 73.68% protein. Furthermore, the defatted flour was abundant in essential minerals, such as iron (4.59 mg/100 g d.w.), zinc (19.01 mg/100 g d.w.), and magnesium (89.74 mg/100 g d.w.). However, the protein preparation had an amino acid profile more similar to that of commercial supplements (total content of 694 mg/g protein). The highest antiradical activity against ABTS·+ was noted for the defatted flour (0.901 mM TE/100 g) and against DPPH· for the cricket flour (2.179 mM TE/100 g). Therefore, cricket can be considered an organic protein source for the production of valuable protein supplements.
Collapse
Affiliation(s)
- Ewelina Zielińska
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland;
| | | |
Collapse
|
23
|
Ma Z, Mondor M, Goycoolea Valencia F, Hernández-Álvarez AJ. Current state of insect proteins: extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct 2023; 14:8129-8156. [PMID: 37656123 DOI: 10.1039/d3fo02865h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This review aims to provide an updated overview of edible insect proteins and the bioactivity of insect-derived peptides. The essential amino acid content of edible insects is compared with well-known protein sources to demonstrate that edible insects have the potential to cover the protein quality requirements for different groups of the population. Then the current methodologies for insect protein extraction are summarized including a comparison of the protein extraction yield and the final protein content of the resulting products for each method. Furthermore, in order to improve our understanding of insect proteins, their functional properties (such as solubility, foaming capacity, emulsifying, gelation, water holding capacity and oil holding capacity) are discussed. Bioactive peptides can be released according to various enzymatic hydrolysis protocols. In this context, the bioactive properties of insect peptides (antihypertensive, antidiabetic, antioxidant and anti-inflammatory properties) have been discussed. However, the allergens present in insect proteins are still a major concern and an unsolved issue for insect-based product consumption; thus, an analysis of cross reactivity and the different methods available to reduce allergenicity are proposed. Diverse studies of insect protein hydrolysates/peptides have been ultimately promoting the utilization of insect proteins for future perspectives and the emerging processing technologies to enhance the wider utilization of insect proteins for different purposes.
Collapse
Affiliation(s)
- Zidan Ma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Martin Mondor
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, J2S 8E3, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | | |
Collapse
|
24
|
Zou L, Zhou Y, Yu X, Chen C, Xiao G. Angiotensin I-Converting Enzyme Inhibitory Activity of Two Peptides Derived from In Vitro Digestion Products of Pork Sausage with Partial Substitution of NaCl by KCl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406188 DOI: 10.1021/acs.jafc.3c01149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 μM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| |
Collapse
|
25
|
Teixeira CSS, Villa C, Sousa SF, Costa J, Ferreira IMPLVO, Mafra I. An in silico approach to unveil peptides from Acheta domesticus with potential bioactivity against hypertension, diabetes, cardiac and pulmonary fibrosis. Food Res Int 2023; 169:112847. [PMID: 37254421 DOI: 10.1016/j.foodres.2023.112847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Entomophagy is a sustainable alternative source of proteins for human nutrition. Acheta domesticus is one of the three insect species that complies with the European Union Regulation on novel foods, but to date, there are no reports on their potential bioactive peptides. In this study, an in silico approach was applied to simulate the gastrointestinal (GI) digestion of six A. domesticus proteins and identify new peptides with potential anti-hypertensive and/or anti-diabetic properties, resulting from their capability to inhibit the somatic Angiotensin-I converting enzyme (sACE) and/or dipeptidyl peptidase 4 (DPP-4), respectively. A molecular docking protocol was applied to evaluate the binding interactions between the 43 peptides ranked with high probability of being bioactive and three drug targets: DPP-4 and two catalytic domains (N- and C-) of sACE. Five peptides (AVQPCF, CAIAW, IIIGW, DATW and QIVW) showed high docking scores for both enzymes, suggesting their potential to inhibit the DPP-4 and both catalytic domains of sACE, thus possessing multifunctional bioactive properties. Two peptides (PIVCF and DVW) showed higher docking scores for the N-domain of sACE, indicating a potential action as selective inhibitors and consequently with anti-cardiac and pulmonary fibrosis bioactivities. This is the first study identifying peptides originated from the simulated GI digestion of A. domesticus with potential activities against hypertension, diabetes, cardiac and pulmonary fibrosis.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel M P L V O Ferreira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
27
|
Teixeira CSS, Villa C, Costa J, Ferreira IMPLVO, Mafra I. Edible Insects as a Novel Source of Bioactive Peptides: A Systematic Review. Foods 2023; 12:2026. [PMID: 37238844 PMCID: PMC10216942 DOI: 10.3390/foods12102026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The production of food and feed to meet the needs of the growing world's population will soon become a serious challenge. In search for sustainable solutions, entomophagy is being proposed as an alternative source of proteins, with economic and environmental advantages when compared to meat. Edible insects are not only a valuable source of important nutrients, but their gastrointestinal digestion also originates small peptides with important bioactive properties. The present work intends to provide an exhaustive systematic review on research articles reporting bioactive peptides identified from edible insects, as demonstrated by in silico, in vitro, and/or in vivo assays. A total of 36 studies were identified following the PRISMA methodology, gathering 211 potentially bioactive peptides with antioxidant, antihypertensive, antidiabetic, antiobesity, anti-inflammatory, hypocholesterolemia, antimicrobial, anti-severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), antithrombotic, and immunomodulatory properties, originated from the hydrolysates of 12 different insect species. From these candidates, the bioactive properties of 62 peptides were characterized in vitro and 3 peptides were validated in vivo. Data establishing the scientific basis of the health benefits associated with the consumption of edible insects can be a valuable contribution to overcoming the cultural issues that hinder the introduction of insects in the Western diet.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.S.S.T.); (C.V.); (J.C.); (I.M.P.L.V.O.F.)
| |
Collapse
|
28
|
Tan YC, Gan CY, Shafie MH, Yap PG, Mohd Rodhi A, Ahmad A, Murugaiyah V, Abdulla MH, Johns EJ. A comprehensive review on the pancreatic lipase inhibitory peptides: A future anti-obesity strategy. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dysregulation of lipid homeostasis contributes to obesity and can directly lead to several critical public health concerns globally. This paper aimed to present a brief review of related properties and the use of pancreatic lipase inhibitors as the future weight loss drug discovery and development procured from a wide range of natural sources. A total of 176 pancreatic lipase inhibitory peptides were identified from recent publications and peptide databases. These peptides were classified into three categories according to their peptide length and further analyzed using bioinformatic approaches to identify their structural activity relationship. Molecular docking analyses were conducted for each amino acid at the terminal position of the peptides to predict the binding affinity between peptide-enzyme protein complexes based on intermolecular contact interactions. Overall, the observations revealed the features of the inhibitory peptides and their inhibitory mechanisms and interactions. These findings strived to benefit scientists whose research may be relevant to anti-obesity drug development and/or discovery thereby support effective translation of preclinical research for humans’ health being.
Collapse
Affiliation(s)
- Yong Chia Tan
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Pei Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Ainolsyakira Mohd Rodhi
- Analytical Biochemistry Research Centre (ABrC), Universiti Innovation Incubator Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul 11900, Penang, MALAYSIA
| | - Ashfaq Ahmad
- College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, SAUDI ARABIA
| | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
- Center for Drug Research, Universiti Sains Malaysia, Penang, MALAYSIA
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, University College of Cork, Cork, IRELAND
| | - Edward James Johns
- Department of Physiology, School of Medicine, University College of Cork, Cork, IRELAND
| |
Collapse
|
29
|
Ye H, Xu Y, Sun Y, Liu B, Chen B, Liu G, Cao Y, Miao J. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein. Food Res Int 2023; 165:112450. [PMID: 36869471 DOI: 10.1016/j.foodres.2022.112450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
In this study, hypolipidemic peptides were obtained from tea protein by enzymatic hydrolysis, ultrafiltration and high-performance liquid chromatography. Subsequently, the hypolipidemic peptides were identified by mass spectrometry and screened through molecular docking technology, and the hypolipidemic activities and mechanisms of the active peptides were explored. The results showed that the hydrolysate of hypolipidemic peptides obtained by pepsin hydrolysis for 3 h had good bile salt binding ability. After purification, identification and molecular docking screening, three novel hypolipidemic peptides FLF, IYF and QIF were obtained. FLF, IYF and QIF can interact with the receptor proteins 1LPB and 1F6W through hydrogen bonds, π-π bonds, hydrophobic interactions and van der Waals forces, thus exerting hypolipidemic activities. Activity studies showed that, compared with the positive controls, FLF, IYF and QIF had excellent sodium taurocholate binding abilities, pancreatic lipase inhibitory activities and cholesterol esterase inhibitory activities. Moreover, FLF, IYF and QIF can effectively inhibit lipogenic differentiation of 3T3-L1 preadipocytes, reduce intracellular lipid and low-density lipoprotein content and increase high-density lipoprotein content. These results indicated that the three novel hypolipidemic peptides screened in this study had excellent hypolipidemic activities and were expected to be used as natural-derived hypolipidemic active ingredients for the development and application in functional foods.
Collapse
Affiliation(s)
- Haoduo Ye
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Yunnan Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Benying Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Bingbing Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
30
|
Nayebhashemi M, Enayati S, Zahmatkesh M, Madanchi H, Saberi S, Mostafavi E, Mirbzadeh Ardakani E, Azizi M, Khalaj V. Surface display of pancreatic lipase inhibitor peptides by engineered Saccharomyces boulardii: Potential as an anti-obesity probiotic. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
31
|
Quah Y, Tong SR, Bojarska J, Giller K, Tan SA, Ziora ZM, Esatbeyoglu T, Chai TT. Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture. Molecules 2023; 28:molecules28031233. [PMID: 36770900 PMCID: PMC9921607 DOI: 10.3390/molecules28031233] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Shi-Ruo Tong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Joanna Bojarska
- Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katrin Giller
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Zyta Maria Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Correspondence:
| |
Collapse
|
32
|
Durrani R, Meiyun Y, Yang B, Durand E, Delavault A, Bowen H, Weiwei H, Yiyang L, Lili S, Fei G. Identification of novel bioactive proteins and their produced oligopeptides from Torreya grandis nuts using proteomic based prediction. Food Chem 2022; 405:134843. [DOI: 10.1016/j.foodchem.2022.134843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
33
|
Ma X, Fan X, Wang D, Li X, Wang X, Yang J, Qiu C, Liu X, Pang G, Abra R, Wang L. Study on preparation of chickpea peptide and its effect on blood glucose. Front Nutr 2022; 9:988628. [PMID: 36185665 PMCID: PMC9523602 DOI: 10.3389/fnut.2022.988628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chickpeas are the third largest bean in the world and are rich in protein. In this study, chickpea peptides were prepared by the enzyme-bacteria synergy method. Taking the peptide yield as the index, we first screened 8 strains suitable for the fermentation of chickpea peptides from 16 strains, carried out sodium dodecyl sulfate polyacrylamide gel electrophoresis, and then screened 4 strains with the best decomposition effect of chickpea protein. The molecular weight, amino acid content, and α-glucosidase inhibitory activity of the chickpea peptides fermented by these four strains were detected. Finally, the strains with the best α-glucosidase inhibitory activity were obtained, and the inhibitory activities of the different molecular weight components of the chickpea peptides fermented by the strains with the best α-glucosidase inhibitory were detected. It was found that Bifidobacterium species had the best fermentation effect, and the highest peptide yield was 52.99 ± 0.88%. Lactobacillus thermophilus had the worst fermentation effect, and the highest peptide yield was 43.22 ± 0.47%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that Bifidobacterium species, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus paracasei have a better effect on the decomposition of chickpea protein in the fermentation process, and the molecular weight of their fermented peptides is basically below 20 KDa. Among the four strains, the α-glycosidase inhibition of chickpea peptide fermented by Lactobacillus acidophilus was the best, which was 58.22 ± 1.10% when the peptide concentration was 5.0 mg/ml. In chickpea peptide fermented by Lactobacillus acidophilus, the influence of molecular weight on the inhibitory activity is not obvious when the molecular weight is <10 kD, and the molecular weight range of the best inhibitory effect is 3–10 kD, and the inhibitory rate of α-glucosidase is 37 ± 1.32% at 2.0 mg/ml. This study provides a theoretical basis for the study of a new preparation method for chickpea peptide and its hypoglycemic effect.
Collapse
Affiliation(s)
- Xuemei Ma
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xing Fan
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Deping Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xianai Li
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Xiaoyun Wang
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
| | - Jiangyong Yang
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Chenggong Qiu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaolu Liu
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guangxian Pang
- Shenxin Science and Technology Cooperation Base Co. LTD, Urumqi, China
| | - Redili Abra
- Xinjiang Arman Food Group Co. LTD, Urumqi, China
- Redili Abra
| | - Liang Wang
- College Life Science and Technology, Xinjiang University, Urumqi, China
- *Correspondence: Liang Wang
| |
Collapse
|
34
|
Tian Y, Liu C, Wang S, Du M, Zhu B. Efficient screening of pancreatic lipase inhibitors from cod meat hydrolysate through ligand fishing strategy. Front Nutr 2022; 9:969558. [PMID: 36034931 PMCID: PMC9403610 DOI: 10.3389/fnut.2022.969558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity has become an increasingly serious public health problem. Pancreatic lipase (PL) is identified as a ideal target for the prevention and treatment of obesity. Orlistat, the only approved PL inhibitor (PLI), is a powerful weight loss drug but has many side effects. Therefore, there is an urgent need to discover powerful PLIs with high safety. Protein hydrolysate has been demonstrated to be a treasure trove of PLIs, but recognizing responsible functional peptides from them is like looking for a needle in a haystack. In this work, we synthesized and optimized a PL ligand fishing model (PLLFM) using magnetic nanoparticles (MNPs), then PLLFM was used to quickly fish out potential PLIs from the Cod meat hydrolysate (CMH). Finally, two new PLIs, GSPPPSG and KLEGDLK were identified with IC50 of 0.60 and 1.08 mg/mL, respectively. The Lineweaver-Burk diagram showed that GSPPPSG is a non-competitively dominant mixed-type PLI, whereas KLEGDLK is a competitive inhibitory-type PLI. Moreover, molecular docking suggested that both peptides can stably bind to the key amino acid residues of the PL active site, mainly through hydrogen bonding, hydrophobic, and electrostatic interactions. In general, we not only established a method to rapidly fish out potential PLIs from protein hydrolysate, but also provided safe and efficient lead compounds for the development of novel diet foods or drugs.
Collapse
Affiliation(s)
- Yongqi Tian
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Cuicui Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
35
|
Making a meal out of bugs. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1002/fsat.3602_5.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
37
|
Djouadi A, Sales JR, Carvalho MO, Raymundo A. Development of Healthy Protein-Rich Crackers Using Tenebrio molitor Flour. Foods 2022; 11:foods11050702. [PMID: 35267335 PMCID: PMC8909587 DOI: 10.3390/foods11050702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Entomophagy is still a widespread practice in Africa and Asia, although it is declining due to the westernization of diets. Today, the issue of its rehabilitation is underway; indeed, the nutritional economic and ecological stakes of this consumption are strategic. It can be considered an important way to face the scarcity of natural resources, environmental pressures due to the increasing world population, and demand for protein. Tenebrio molitor larvae flour was recently approved by the European Food Safety Authority (EFSA) as a novel food. The aim of the present work was to create protein-rich healthy cracker from insect flour, achieving the claim “source of protein” with a target market focused on the healthy products for consumption on the go. Contents of T. molitor flour from 2 to 20% (%w/w) were tested, using a previously optimized formulation and the comparison in terms of nutritional, physical, and sensory properties with a standard formulation was performed. T. molitor incorporation allowed an improvement in the nutritional profile of snacks, through an increase of 15% in protein content and an enrichment in minerals (namely potassium, phosphorus, copper, and zinc). The crackers containing a 6% of insect flour were the most appreciated by the panelists. The incorporation of T. molitor induced a reduction in firmness and an increase in crispness, resulting from the impact of the protein on the structure. This aspect has a positive impact with respect of the acceptance of snacks—70% of the panelists consider the possibility to buy the crackers with 6% enrichment. A darkening of the samples with the increase in the incorporation of T. molitor flour was also observed, accompanied by a reduction of about 20% of the L* values. Globally, insect protein can play an important role in redesigning food diets, making them more sustainable, with less environmental impact and equally balanced.
Collapse
Affiliation(s)
- Anna Djouadi
- National Institute of Agronomic Sciences for Food and the Environment, AgroSup Dijon, University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Joana Rides Sales
- LEAF—Linking Landscape Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada de Ajuda, 1349-017 Lisboa, Portugal; (J.R.S.); (M.O.C.)
| | - Maria Otília Carvalho
- LEAF—Linking Landscape Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada de Ajuda, 1349-017 Lisboa, Portugal; (J.R.S.); (M.O.C.)
| | - Anabela Raymundo
- LEAF—Linking Landscape Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada de Ajuda, 1349-017 Lisboa, Portugal; (J.R.S.); (M.O.C.)
- Correspondence:
| |
Collapse
|
38
|
Unravelling the α-glucosidase inhibitory properties of chickpea protein by enzymatic hydrolysis and in silico analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Errico S, Spagnoletta A, Verardi A, Moliterni S, Dimatteo S, Sangiorgio P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr Rev Food Sci Food Saf 2021; 21:148-197. [PMID: 34773434 DOI: 10.1111/1541-4337.12863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, it is urgent to produce in larger quantities and more sustainably to reduce the gap between food supply and demand. In a circular bioeconomy vision, insects receive great attention as a sustainable alternative to satisfy food and nutritional needs. Among all insects, Tenebrio molitor (TM) is the first insect approved by the European Food Safety Authority as a novel food in specific conditions and uses, testifying its growing relevance and potential. This review holistically presents the possible role of TM in the sustainable and circular solution to the growing needs for food and nutrients. We analyze all high value-added products obtained from TM (powders and extracts, oils and fatty acids, proteins and peptides, and chitin and chitosan), their recovery processes (evaluating the best ones in technical and environmental terms), their nutritional and economical values, and their biological effects. Safety aspects are also mentioned. TM potential is undoubted, but some aspects still need to be discussed, including the health effects of substances and microorganisms in its body, the optimal production conditions (that affect product quality and safety), and TM capacity to convert by-products into new products. Environmental, economic, social, and market feasibility studies are also required to analyze the new value chains. Finally, to unlock the enormous potential of edible insects as a source of nutritious and sustainable food, it will be necessary to overcome the cultural, psychological, and regulatory barriers still present in Western countries.
Collapse
Affiliation(s)
- Simona Errico
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Anna Spagnoletta
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Alessandra Verardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Stefania Moliterni
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Salvatore Dimatteo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Paola Sangiorgio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| |
Collapse
|
40
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
41
|
Mealworm ( Tenebrio molitor): Potential and Challenges to Promote Circular Economy. Animals (Basel) 2021; 11:ani11092568. [PMID: 34573534 PMCID: PMC8468824 DOI: 10.3390/ani11092568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The main objective of this review is to analyse the potential of insects from the perspective of circular economy, focusing our attention on mealworm larvae. After pointing out the key concepts of circular economy and describing the use of insects in bioconversion processes, we discuss the most relevant uses of the mealworm in different industries, which show the great contribution this insect can make within circular productive systems. This topic has attracted a lot of attention due to its implications from an economic and environmental point of view. Recently, mealworm larvae were positively assessed by European Food Safety Authority (EFSA) as a safe novel food. As a matter of fact, the mealworm is the first edible insect to achieve this important milestone in the EU. Due to this new scientific opinion, considerable expectations arise on mealworms and their potential in different fields, which will surely lead to market developments in the following years. Abstract Over the last few years, the concept of Circular Economy (CE) has received a lot of attention due to its potential contribution to the Sustainable Development Goals (SDGs), especially by reconciling economic growth with the protection of the environment through its grow-make-use-restore approach. The use of insects in circular production systems has been a good example of this concept as insects can transform a wide range of organic waste and by-products into nutritious feedstuffs, which then go back into the production cycle. This paper explores the potential of mealworms (Tenebrio molitor) in circular production systems by reviewing their use and applicability in several industries such as pharmaceuticals, agriculture, food, etc. Despite the high versatility of this insect and its potential as a substitute source of nutrients and other valuable components, there are still many legislative and behavioural challenges that hinder its adoption and acceptance.
Collapse
|
42
|
Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants (Basel) 2021; 10:antiox10071122. [PMID: 34356355 PMCID: PMC8301197 DOI: 10.3390/antiox10071122] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Edible insects are gaining attention as a novel food; however, studies with their use in food are still limited. This study aimed to determine the chemical composition, physical parameters, sensory acceptance, and biological properties of muffins enriched with different levels of cricket (Gryllodes sigillatus) and mealworm (Tenebrio molitor) flours. The approximate composition was analyzed, along with the physical and textural properties, color, and consumer acceptance. Moreover, the antioxidant properties, starch digestibility, and glycemic index were determined in vitro. As we expected, the protein content in muffins supplemented with insect flour increased, while the carbohydrates content decreased. Moreover, the total phenolic content and antioxidant capacity against ABTS·+ and DPPH· increased correspondingly as the percentage of insect flour in the muffins increased. The estimated glycemic index was lower for the fortified muffins than the control (p < 0.05). Additionally, enriched muffins were accepted by consumers, and their taste positively surprised respondents (p < 0.05). Therefore, the results obtained are satisfactory as regards the use of insects for the supplementation of traditional products, and further research into the addition of insects to other nutrient matrices is needed. Furthermore, examining the effect of insect addition on in vivo food biological activity is highly desirable.
Collapse
|
43
|
van Huis A, Rumpold B, Maya C, Roos N. Nutritional Qualities and Enhancement of Edible Insects. Annu Rev Nutr 2021; 41:551-576. [PMID: 34186013 DOI: 10.1146/annurev-nutr-041520-010856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last decade, the urgency to find alternative and sustainable protein sources has prompted an exponential increase in the interest in insects as a human food source. Edible insects contribute suitable amounts of energy and protein, fatty acids, and micronutrients to the human diet. Nutritional values of insects can be manipulated to meet specific needs. Edible insects in food-insecure countries can contribute to improving diets and preventing undernutrition. Bioactive compounds in insects may reduce health risks. Food safety risks are low and mainly relate to those of allergenicity. Strategies to overcome barriers to the consumption of insect products include emphasizing their sustainability, increasing their tastiness, and developing the ability to disguise insects in familiar products. A new sector of insects as food and feed is emerging. Major challenges include legislation, lowering prices by automation and cheap substrates, developing insect products that appeal to consumers, and exploring the health benefits. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Birgit Rumpold
- Department of Education for Sustainable Nutrition and Food Science, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Cassandra Maya
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; ,
| | - Nanna Roos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; ,
| |
Collapse
|
44
|
Rivero-Pino F, Guadix A, Guadix EM. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor. Food Funct 2021; 12:873-880. [PMID: 33410437 DOI: 10.1039/d0fo02696d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The exponential increase in world population is leading to a need for new sustainable protein sources that could supply the high demands without resulting in an enormous environmental impact. Bioactive peptides from food proteins are currently seen as capable of modulating physiological processes, such as diabetes. The potential of insects as a cheap source of antidiabetic peptides is a recent research topic. In this work, fractionation and identification of dipeptidyl peptidase IV (DPP-IV) and α-glucosidase inhibitory peptides from mealworm (Tenebrio molitor) was carried out. Peptides from 500 to 1600 Da showed the highest level of DPP-IV inhibition (IC50 value of 0.91 mg ml-1) and peptides below 500 Da showed the highest level of α-glucosidase inhibition (IC50 value of 2.58 mg ml-1). Numerous novel peptides were identified from the most bioactive fractions, and based on the molecular features usually described for these peptides, some of them are suggested to be the bioactive peptides responsible for the inhibition observed (e.g. APVAH for DPP-IV inhibition and CSR for α-glucosidase inhibition). Hence, these insect protein hydrolysates or their purified fractions could be used as ingredients for regulation of the glycaemic index.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain.
| | | | | |
Collapse
|
45
|
Zielińska E, Pankiewicz U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules 2020; 25:molecules25235629. [PMID: 33265946 PMCID: PMC7730627 DOI: 10.3390/molecules25235629] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Edible insects, due to their high nutritional value, are a good choice for traditional food supplementation. The effects of partial replacement of wheat flour and butter with mealworm flour (Tenebrio molitor) on the quality attributes of shortcake biscuits were studied. The approximate composition was analyzed, along with the physical properties and color. Moreover, the antioxidant properties, starch digestibility, and glycemic index were determined in vitro. The protein and ash contents in biscuits supplemented with mealworm flour increased, while the carbohydrates content decreased. The increasing insect flour substitution decreased the lightness (L*) and yellowness (b*) but increased the redness (a*), total color difference (ΔE), and browning index (BI). The spread factor for the sample with the highest proportion of mealworm flour was significantly higher than the other biscuits. Furthermore, higher additions of mealworm flour increased the antioxidant activity of the biscuits and contributed to an increase in the content of slowly digested starch, with a decrease in the content of rapidly digested starch. Therefore, the results of the research are promising and indicate the possibility of using edible insects to enrich food by increasing the nutritional and health-promoting values.
Collapse
|
46
|
Hall F, Reddivari L, Liceaga AM. Identification and Characterization of Edible Cricket Peptides on Hypertensive and Glycemic In Vitro Inhibition and Their Anti-Inflammatory Activity on RAW 264.7 Macrophage Cells. Nutrients 2020; 12:nu12113588. [PMID: 33238450 PMCID: PMC7700588 DOI: 10.3390/nu12113588] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/25/2023] Open
Abstract
Recent studies continue to demonstrate the potential of edible insects as a protein base to obtain bioactive peptides applicable for functional food development. This study aimed at identifying antihypertensive, anti-glycemic, and anti-inflammatory peptides derived from the in vitro gastrointestinal digests of cricket protein hydrolysates. After sequential fractionation, the protein digest subfraction containing the lowest molecular weight (<0.5 kDa), hydrophobic (C18) and cationic peptides (IEX) was found responsible for the most bioactivity. The cationic peptide fraction significantly reduced (p < 0.05) α-amylase, α-glucosidase, and angiotensin converting enzyme (ACE) activity in vitro, and also inhibited the expression of NF-κB in RAW 264.7 macrophage cells. A total of 28 peptides were identified with mass spectrometry (LC–MS/MS) and de novo sequencing from the potent fraction. Three novel peptides YKPRP, PHGAP, and VGPPQ were chosen for the molecular docking studies. PHGAP and VGPPQ exhibited a higher degree of non-covalent interactions with the enzyme active site residues and binding energies comparable to captopril. Results from this study demonstrate the bioactive potential of edible cricket peptides, especially as ACE inhibitors.
Collapse
Affiliation(s)
- Felicia Hall
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, West Lafayette, IN 47907, USA;
- Department of Food Science, Purdue University, 745 Agriculture Drive, West Lafayette, IN 47907, USA;
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Drive, West Lafayette, IN 47907, USA;
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, West Lafayette, IN 47907, USA;
- Department of Food Science, Purdue University, 745 Agriculture Drive, West Lafayette, IN 47907, USA;
- Correspondence: ; Tel.: +1-765-496-2460
| |
Collapse
|
47
|
Rivero-Pino F, Espejo-Carpio FJ, Pérez-Gálvez R, Guadix A, Guadix EM. Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020; 9:E983. [PMID: 32718070 PMCID: PMC7466190 DOI: 10.3390/foods9080983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides. In this review, we aimed to summarize the whole process that must be considered when talking about including these molecules as a bioactive ingredient. In this regard, at first, the production, purification and identification of bioactive peptides is summed up. The detailed metabolic pathways described included carbohydrate hydrolases (glucosidase and amylase) and dipeptidyl-peptidase IV inhibition, due to their importance in the food-derived peptides research field. Then, their characterization, concerning bioavailability in vitro and in situ, stability and functionality in food matrices, and ultimately, the in vivo evidence (from invertebrate animals to humans), was described. The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.J.E.-C.); (E.M.G.)
| | | | | |
Collapse
|
49
|
Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020; 9:E846. [PMID: 32610520 PMCID: PMC7404774 DOI: 10.3390/foods9070846] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, bioactive peptides are natural compounds of food or part of protein that are inactive in the precursor molecule. However, they may be active after hydrolysis and can be transported to the active site. Biologically active peptides can also be synthesized chemically and characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition of enzymes involved in the development of diseases. The scientific literature has described many peptides with bioactive properties obtained from different sources. Information about the structure, origin, and properties of peptides can also be found in many databases. This review will describe peptides inhibiting the development of current diseases, peptides with antimicrobial properties, and new alternative sources of peptides based on the current knowledge and documentation of their bioactivity. All these issues are part of modern research on peptides and their use in current health or technological problems in food production.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Ewelina Zielińska
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Damian Zieliński
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|