1
|
Chen X, Zhang Y, Tang W, Zhang G, Wang Y, Yan Z. Genetic Variation, Polyploidy, Hybridization Influencing the Aroma Profiles of Rosaceae Family. Genes (Basel) 2024; 15:1339. [PMID: 39457463 PMCID: PMC11507021 DOI: 10.3390/genes15101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The fragrance and aroma of Rosaceae plants are complex traits influenced by a multitude of factors, with genetic variation standing out as a key determinant which is largely impacted by polyploidy. Polyploidy serves as a crucial evolutionary mechanism in plants, significantly boosting genetic diversity and fostering speciation. OBJECTIVE This review focuses on the Rosaceae family, emphasizing how polyploidy influences the production of volatile organic compounds (VOCs), which are essential for the aromatic characteristics of economically important fruits like strawberries, apples, and cherries. The review delves into the biochemical pathways responsible for VOC biosynthesis, particularly highlighting the roles of terpenoids, esters alcohols, aldehydes, ketones, phenolics, hydrocarbons, alongside the genetic mechanisms that regulate these pathways. Key enzymes, such as terpene synthases and alcohol acyltransferases, are central to this process. This review further explores how polyploidy and hybridization can lead to the development of novel metabolic pathways, contributing to greater phenotypic diversity and complexity in fruit aromas. It underscores the importance of gene dosage effects, isoenzyme diversity, and regulatory elements in determining VOC profiles. CONCLUSIONS These findings provide valuable insights for breeding strategies aimed at improving fruit quality and aligning with consumer preferences. Present review not only elucidates the complex interplay between genomic evolution and fruit aroma but also offers a framework for future investigations in plant biology and agricultural innovation.
Collapse
Affiliation(s)
- Xi Chen
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Yu Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China;
| | - Weihua Tang
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Geng Zhang
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Yuanhua Wang
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Zhiming Yan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| |
Collapse
|
2
|
Li Y, Liu S, Kuang H, Zhang J, Wang B, Wang S. Transcriptomic and Physiological Analysis Reveals the Possible Mechanism of Inhibiting Strawberry Aroma Changes by Ultrasound after Harvest. Foods 2024; 13:2231. [PMID: 39063314 PMCID: PMC11276260 DOI: 10.3390/foods13142231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
The volatile compounds in strawberries play a significant role in the formation of strawberry aroma. However, these compounds undergo continual changes during storage, resulting in a decline in quality. In this study, a total of 67 volatile organic compounds (VOCs) were identified in strawberries through quantitative analysis. At the end of the storage period, the VOC content in the ultrasonic group was 119.02 µg/kg higher than that in the control group. The results demonstrated that the ultrasonic treatment increased the contents of terpenes and esters at the end of storage. Among these, linalool increased from 67.09 to 91.41 µg/kg, while ethyl cinnamate increased from 92.22 to 106.79 µg/kg. Additionally, the expression of the key metabolic genes closely related to these substances was significantly up-regulated. The expression of the FaNES gene, related to terpene metabolism, was up-regulated by 2.8 times in the second day, while the expression of the FaAAT gene, related to ester metabolism, was up-regulated by 1.5 times. In summary, this study provides a theoretical basis for exploring the mechanism of ultrasonic effect on strawberry flavor and quality after harvest.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China; (Y.L.); (S.L.); (H.K.); (J.Z.); (B.W.)
| |
Collapse
|
3
|
Hou G, Yang M, He C, Jiang Y, Peng Y, She M, Li X, Chen Q, Li M, Zhang Y, Lin Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-Wide Identification and Comparative Transcriptome Methods Reveal FaMDHAR50 Regulating Ascorbic Acid Regeneration and Quality Formation of Strawberry Fruits. Int J Mol Sci 2023; 24:ijms24119510. [PMID: 37298465 DOI: 10.3390/ijms24119510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Ascorbic acid (AsA) is a crucial water-soluble antioxidant in strawberry fruit, but limited research is currently available on the identification and functional validation of key genes involved in AsA metabolism in strawberries. This study analyzed the FaMDHAR gene family identification, which includes 168 genes. Most of the products of these genes are predicted to exist in the chloroplast and cytoplasm. The promoter region is rich in cis-acting elements related to plant growth and development, stress and light response. Meanwhile, the key gene FaMDHAR50 that positively regulates AsA regeneration was identified through comparative transcriptome analysis of 'Benihoppe' strawberry (WT) and its natural mutant (MT) with high AsA content (83 mg/100 g FW). The transient overexpression experiment further showed that overexpression of FaMDHAR50 significantly enhanced the AsA content by 38% in strawberry fruit, with the upregulated expression of structural genes involved in AsA biosynthesis (FaGalUR and FaGalLDH) and recycling and degradation (FaAPX, FaAO and FaDHAR) compared with that of the control. Moreover, increased sugar (sucrose, glucose and fructose) contents and decreased firmness and citric acid contents were observed in the overexpressed fruit, which were accompanied by the upregulation of FaSNS, FaSPS, FaCEL1 and FaACL, as well as the downregulation of FaCS. Additionally, the content of pelargonidin 3-glucoside markedly decreased, while cyanidin chloride increased significantly. In summary, FaMDHAR50 is a key positive regulatory gene involved in AsA regeneration in strawberry fruit, which also plays an important role in the formation of fruit flavor, apperance and texture during strawberry fruit ripening.
Collapse
Affiliation(s)
- Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Caixia He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Musha She
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Passa K, Simal C, Tsormpatsidis E, Papasotiropoulos V, Lamari FN. Monitoring of Volatile Organic Compounds in Strawberry Genotypes over the Harvest Period. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091881. [PMID: 37176939 PMCID: PMC10181119 DOI: 10.3390/plants12091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Volatile Organic Compounds (VOCs) over the harvest period have been assessed in twenty-five strawberry genotypes cultivated in western Greece. Using liquid-liquid extraction and gas chromatography-mass spectrometry (GC--MS), twenty-eight volatiles were monitored at early (T1) and mid-harvest (T3) time points to investigate the effect of the genotype and harvest time on strawberry volatilome. A quantitative impact of both harvest date and genotype on VOCs associated with aroma was demonstrated, with the most significant VOCs being terpenes, esters, and acids, followed by lactones and furanones. Harvest date was crucial for terpenoid and phenylpropanoid content, and important for esters, short-chain acids, and lactones. Six out of the twenty-five genotypes (four commercial varieties, including 'Rociera', 'Victory', 'Leyre', and 'Inspire', and two advanced selection genotypes (G2 and G8) were evaluated at two additional time points, covering the entire harvest season. The volatile levels were higher in fruits harvested at early stages (T1-T2) for most of the genotypes examined. The G2 genotype turned out to have a less ample but more stable volatile profile throughout harvesting, while 'Victory', 'Leyre', and 'Inspire' exhibited less abrupt changes than 'Rociera'. This study demonstrates that the determination of VOCs provides significant information regarding the differences in strawberry genotypes related to aroma and enables the selection of genotypes based on specific VOCs content and/or volatile stability over the harvest period. Furthermore, this study pinpoints that growers could opt for optimal harvest dates based on the genotypes and the VOC content.
Collapse
Affiliation(s)
- Kondylia Passa
- Laboratory of Agricultural Genetics & Plant Breeding, Department of Agriculture, University of Patras, 30200 Messolonghi, Greece
| | - Carmen Simal
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | | | - Vasileios Papasotiropoulos
- Laboratory of Agricultural Genetics & Plant Breeding, Department of Agriculture, University of Patras, 30200 Messolonghi, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Bebek Markovinović A, Putnik P, Bičanić P, Brdar D, Duralija B, Pavlić B, Milošević S, Rocchetti G, Lucini L, Bursać Kovačević D. A Chemometric Investigation on the Functional Potential in High Power Ultrasound (HPU) Processed Strawberry Juice Made from Fruits Harvested at two Stages of Ripeness. Molecules 2022; 28:138. [PMID: 36615332 PMCID: PMC9822254 DOI: 10.3390/molecules28010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This work aimed to investigate the influence of high-power ultrasound (HPU) technology on the stability of bioactive compounds in strawberry juices obtained from fruits with different stages of ripeness (75% vs. 100%) and stored at 4 °C for 7 days. HPU parameters were amplitude (25, 50, 75, and 100%), pulses (50 vs. 100%) and treatment time (5 vs. 10 min). Amplitude and pulse had a significant effect (p ≤ 0.05) on all bioactive compounds except flavonols and hydroxycinnamic acids. The treatment duration of 5 min vs. 10 min had a significant positive impact on the content of anthocyanins, flavonols and condensed tannins, while the opposite was observed for total phenols, whereas no statistically significant effect was observed for hydroxycinnamic acids. The temperature changes during HPU treatment correlated positively with almost all HPU treatment parameters (amplitude, pulse, energy, power, frequency). Optimal parameters of HPU were obtained for temperature changes, where the highest content of a particular group of bioactive compounds was obtained. Results showed that by combining fruits with a certain ripeness and optimal HPU treatment, it would be possible to produce juices with highly preserved bioactive compounds, while HPU technology has prospects for application in functional food products.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Paula Bičanić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dora Brdar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Boris Duralija
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Barrios Renteria JC, Espinoza-Espinoza LA, Valdiviezo-Marcelo J, Moreno-Quispe LA. Sensorially accepted Mangifera indica and Myrciaria dubia yogurts with high ascorbic acid content. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.999400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ascorbic acid deficiency has been associated with several health conditions. The objective of this study was to evaluate the content of ascorbic acid and the sensorial qualities of Mangifera indica and Myrciaria dubia yogurts. Four yogurt treatments were elaborated with different concentrations of these fruits (T1: 15% and 5%; T2: 15% and 10%; T3: 20% and 5% and T4: 20% and 10%) respectively, compared with a control treatment (CT: yogurt with 15% of Fragaria vesca). The ascorbic acid contents of the different treatments were determined by spectrophotometry, with values in the following order (T1: 63.2 mg/100 g; T2:114.3 mg/100 g; T3: 57.3 mg/100 g; T4: 115.1 and the control treatment CT:11.5 mg/100 g). The sensorial evaluation consisted of the application of a hedonic scale of 5 points (1: I dislike it very much; 2: I dislike it; 3: I neither like it nor dislike it; 4: I like it; 5: I like it a lot), results show evidence that the acidity level had a significant influence during the sensory evaluation. Treatment (T3) showed the greatest preference. The use of Mangifera indica and Myrciaria dubia in the treatments studied ensured ascorbic acid concentrations compared to the control treatment. This was significantly appreciated by consumers when the percentage of Myrciaria dubia was less than 10% of the total mass of the yogurt.
Collapse
|
7
|
Bebek Markovinović A, Putnik P, Stulić V, Batur L, Duralija B, Pavlić B, Vukušić Pavičić T, Herceg Z, Bursać Kovačević D. The Application and Optimization of HIPEF Technology in the Processing of Juice from Strawberries Harvested at Two Stages of Ripeness. Foods 2022; 11:1997. [PMID: 35885240 PMCID: PMC9324555 DOI: 10.3390/foods11141997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to investigate the influence of high intensity pulsed electric field (HIPEF) technology on the stability of total phenols, anthocyanins, hydroxycinnamic acids, flavonols, and condensed tannins in strawberry juices (Fragaria x ananassa Duch. cv. 'Albion') with different ripening stages (75% and 100%) and stored at +4 °C for 7 days. The HIPEF parameters studied were: (i) electric field strength (40 and 50 kV cm-1), (ii) frequency (100 and 200 Hz), and (iii) treatment duration (3 and 6 min). Of the HIPEF parameters studied, electric field strength and frequency had a statistically significant effect on the content of all phenolic compounds. Treatment duration showed no statistically significant effects on phenolic compounds except for flavonols and condensed tannins. Storage had a positive effect on the stability of most of the phenolic compounds, with the exception of flavonols. Optimization of HIPEF processing showed that strawberry samples at both ripeness levels were suitable for HIPEF treatment to obtain functional fruit juices with a high content of polyphenols.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (L.B.); (T.V.P.); (Z.H.); (D.B.K.)
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Višnja Stulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (L.B.); (T.V.P.); (Z.H.); (D.B.K.)
| | - Luka Batur
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (L.B.); (T.V.P.); (Z.H.); (D.B.K.)
- Department of Dietetics, University Hospital Centre Zagreb, Mije Kišpatića 12, 10000 Zagreb, Croatia
| | - Boris Duralija
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Tomislava Vukušić Pavičić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (L.B.); (T.V.P.); (Z.H.); (D.B.K.)
| | - Zoran Herceg
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (L.B.); (T.V.P.); (Z.H.); (D.B.K.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (L.B.); (T.V.P.); (Z.H.); (D.B.K.)
| |
Collapse
|
8
|
Physicochemical Characteristics and Nutritional Composition during Fruit Ripening of Akebia trifoliata (Lardizabalaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Akebia trifoliata is a high-value medicinal and edible fruit crop in China, and it has begun to be widely cultivated as a new fruit crop in many areas of China. Its fruits crack longitudinally when fully ripe and should be harvested before fruit cracking. Physicochemical characteristics and nutritional composition of the ripening process are prerequisites to establishing proper harvest maturity windows. In the current study, we have investigated the fruit quality characteristics of two A. trifoliata clonal lines (‘Luqing’ and ‘Luyu’) that were harvested at four time points (S1: 120 days after full bloom (DAFB), S2: 134 DAFB, S3: 148 DAFB, S4: 155 DAFB). An increase in fruit size (fruit weight, fruit length, and fruit diameter) was associated with delayed harvest maturity. The firmness of A. trifoliata fruit exhibited a decreasing trend with delaying the harvest stage. In particular, the firmness decreased sharply from S2 to S3 stage. The TSS, fructose, and glucose content in A. trifoliata fruit continuously increased from the S1 to S4 stage and accumulated sharply from S2 to S3 stage. However, the sucrose and starch content showed an increasing trend from the S1 to S2 stage but declined sharply in the S3 or S4 stage. Ascorbic acid progressively increased with the advancement of A. trifoliata maturity stages, while total phenolics and total flavonoids levels declined with fruit ripening. Considering the results of all quality parameters mentioned above, the A. trifoliata fruit harvested at the S3 maturity stage was the ideal harvest maturity for long-distance transportation and higher consumer acceptability before fruit cracking. Our research reveals the dynamic changes in physicochemical characteristics and nutritional composition during fruit ripening of A. trifoliata. Results in this study reflect the importance of maturity stages for fruit quality and provide basic information for optimal harvest management of A. trifoliata.
Collapse
|
9
|
Bebek Markovinović A, Putnik P, Duralija B, Krivohlavek A, Ivešić M, Mandić Andačić I, Palac Bešlić I, Pavlić B, Lorenzo JM, Bursać Kovačević D. Chemometric Valorization of Strawberry ( Fragaria x ananassa Duch.) cv. 'Albion' for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods 2022; 11:640. [PMID: 35267273 PMCID: PMC8909511 DOI: 10.3390/foods11050640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/26/2022] Open
Abstract
Strawberries (Fragaria x ananassa Duch. cv. 'Albion') were harvested at two stages of ripeness (75% vs. 100%) and their physicochemical, sensory, toxicological, and bioactive properties were evaluated before and after processing into juice. The fresh fruits and their by-products were also evaluated. During processing into juice, the color change was higher in the fully ripe fruits, confirming the encouraging prospects for using the less ripe strawberries for processing. The analysis of heavy metals (Cu, Zn, Ni, As, Cd, Pb) was carried out, and in juice and by-product samples of 100% maturity, only Pb was higher than the MDK. Of the 566 pesticides analyzed, only cyprodinil was found in the by-products of the strawberries at 75% maturity, while pyrimethanil was detected in all samples. Fresh strawberries of both ripeness levels were rated similarly to the corresponding juices for all sensory attributes studied, indicating that sensory perception was not affected by processing. However, ripeness was found to be an important factor influencing most sensory attributes. The by-products were the materials with the highest levels of all bioactive compounds. Considering all quality parameters evaluated, the chemometric evaluation confirms the suitability of 75% ripe strawberries for processing into functional juice, which could be important for the juice industry.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Boris Duralija
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Adela Krivohlavek
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Martina Ivešić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Ivana Mandić Andačić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Iva Palac Bešlić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Universidade de Vigo, Area de Tecnoloxia dos Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
10
|
Scott G, Williams C, Wallace RW, Du X. Exploring Plant Performance, Fruit Physicochemical Characteristics, Volatile Profiles, and Sensory Properties of Day-Neutral and Short-Day Strawberry Cultivars Grown in Texas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13299-13314. [PMID: 33988999 DOI: 10.1021/acs.jafc.1c00915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To assist increasing annual acreage of Texas-grown (U.S.A.) strawberries, it is essential to select cultivars with excellent plant and fruit quality characteristics suitable to the diverse environments. This study assessed multiple traits of 10 strawberry cultivars grown under high tunnels. A significant difference (p ≤ 0.05) was observed for all traits, which possessed a wide variability of metabolites. Plant analysis (number of live plants, plant vigor, and harvest yield) indicated that the yield ranged from 226 to 431 g/plant, positively correlated to plant vigor. Fruit physicochemical characteristic analysis, including red color (absorbance at 500 nm) and taste-associated indicators [°Brix, titratable acidity (TA), and total soluble solids (TSS)/TA], showed that °Brix and TSS/TA ranged from 8.0 to 12.9 and from 9.1 to 15.3, respectively. More than 300 volatiles were identified using solid-phase microextraction-gas chromatography-mass spectrometry, and total volatiles varied 1.5 times with high variance of individual compounds between cultivars. Descriptive sensory analysis indicated that strawberry flavor was positively associated with sensory attributes of sweetness, jammy, fruity, buttery, fresh, and creamy while negatively related to bitterness, astringency, and sourness. Partial least squares regression indicated that strawberry flavor was highly correlated with sweet taste and volatile composition. No specific relationship between these traits and day-neutral or June-bearing varieties was identified. Ideal cultivars for Texas growing conditions with superior and balanced flavor qualities were Albion, Sweet Charlie, Camarosa, Camino Real, and Chandler.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Nutrition and Food Sciences, Texas Woman's University, 304 Administration Drive, Denton, Texas 76204, United States
| | - Cierra Williams
- Department of Nutrition and Food Sciences, Texas Woman's University, 304 Administration Drive, Denton, Texas 76204, United States
| | - Russell W Wallace
- Horticultural Sciences, Texas A&M AgriLife Research & Extension Center, 1102 East FM 1294, Lubbock, Texas 79403, United States
| | - Xiaofen Du
- Department of Nutrition and Food Sciences, Texas Woman's University, 304 Administration Drive, Denton, Texas 76204, United States
| |
Collapse
|
11
|
Phan ADT, Damyeh MS, Chaliha M, Akter S, Fyfe S, Netzel ME, Cozzolino D, Sultanbawa Y. The effect of maturity and season on health‐related bioactive compounds in wild harvested fruit of
Terminalia ferdinandiana
(Exell). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Food Technology Department Faculty of Agriculture Can Tho University 3/2 Street Can Tho 900000 Vietnam
| | - Maral Seidi Damyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| | - Mridusmita Chaliha
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| | - Saleha Akter
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| | - Selina Fyfe
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| | - Michael E. Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland Coopers Plains QLD 4108 Australia
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia QLD 4072 Australia
| |
Collapse
|