1
|
Vattino LG, MacGregor CP, Liu CJ, Sweeney CG, Takesian AE. Primary auditory thalamus relays directly to cortical layer 1 interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603741. [PMID: 39071266 PMCID: PMC11275971 DOI: 10.1101/2024.07.16.603741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.
Collapse
Affiliation(s)
- Lucas G. Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P. MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- These authors contributed equally to this work
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Carolyn G. Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anne E. Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Adenis V, Partouche E, Stahl P, Gnansia D, Huetz C, Edeline JM. Asymmetric pulses delivered by a cochlear implant allow a reduction in evoked firing rate and in spatial activation in the guinea pig auditory cortex. Hear Res 2024; 447:109027. [PMID: 38723386 DOI: 10.1016/j.heares.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.
Collapse
Affiliation(s)
- V Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - E Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - P Stahl
- Oticon Medical, Vallauris, France
| | | | - C Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - J-M Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
3
|
Gohari N, Dastgerdi ZH, Rouhbakhsh N, Afshar S, Mobini R. Training Programs for Improving Speech Perception in Noise: A Review. J Audiol Otol 2023; 27:1-9. [PMID: 36710414 PMCID: PMC9884994 DOI: 10.7874/jao.2022.00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/26/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding speech in the presence of noise is difficult and challenging, even for people with normal hearing. Accurate pitch perception, coding and decoding of temporal and intensity cues, and cognitive factors are involved in speech perception in noise (SPIN); disruption in any of these can be a barrier to SPIN. Because the physiological representations of sounds can be corrected by exercises, training methods for any impairment can be used to improve speech perception. This study describes the various types of bottom-up training methods: pitch training based on fundamental frequency (F0) and harmonics; spatial, temporal, and phoneme training; and top-down training methods, such as cognitive training of functional memory. This study also discusses music training that affects both bottom-up and top-down components and speech training in noise. Given the effectiveness of all these training methods, we recommend identifying the defects underlying SPIN disorders and selecting the best training approach.
Collapse
Affiliation(s)
- Nasrin Gohari
- Hearing Disorders Research Center, Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hosseini Dastgerdi
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence Zahra Hosseini Dastgerdi, PhD Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran Tel +98-09132947800 Fax +98-(311)5145-668 E-mail
| | - Nematollah Rouhbakhsh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Afshar
- Hearing Disorders Research Center, Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Mobini
- Hearing Disorders Research Center, Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Souffi S, Nodal FR, Bajo VM, Edeline JM. When and How Does the Auditory Cortex Influence Subcortical Auditory Structures? New Insights About the Roles of Descending Cortical Projections. Front Neurosci 2021; 15:690223. [PMID: 34413722 PMCID: PMC8369261 DOI: 10.3389/fnins.2021.690223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
For decades, the corticofugal descending projections have been anatomically well described but their functional role remains a puzzling question. In this review, we will first describe the contributions of neuronal networks in representing communication sounds in various types of degraded acoustic conditions from the cochlear nucleus to the primary and secondary auditory cortex. In such situations, the discrimination abilities of collicular and thalamic neurons are clearly better than those of cortical neurons although the latter remain very little affected by degraded acoustic conditions. Second, we will report the functional effects resulting from activating or inactivating corticofugal projections on functional properties of subcortical neurons. In general, modest effects have been observed in anesthetized and in awake, passively listening, animals. In contrast, in behavioral tasks including challenging conditions, behavioral performance was severely reduced by removing or transiently silencing the corticofugal descending projections. This suggests that the discriminative abilities of subcortical neurons may be sufficient in many acoustic situations. It is only in particularly challenging situations, either due to the task difficulties and/or to the degraded acoustic conditions that the corticofugal descending connections bring additional abilities. Here, we propose that it is both the top-down influences from the prefrontal cortex, and those from the neuromodulatory systems, which allow the cortical descending projections to impact behavioral performance in reshaping the functional circuitry of subcortical structures. We aim at proposing potential scenarios to explain how, and under which circumstances, these projections impact on subcortical processing and on behavioral responses.
Collapse
Affiliation(s)
- Samira Souffi
- Department of Integrative and Computational Neurosciences, Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR CNRS 9197, Paris-Saclay University, Orsay, France
| | - Fernando R. Nodal
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Jean-Marc Edeline
- Department of Integrative and Computational Neurosciences, Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR CNRS 9197, Paris-Saclay University, Orsay, France
| |
Collapse
|
5
|
Polli FS, Kohlmeier KA. Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology 2019; 158:107744. [DOI: 10.1016/j.neuropharm.2019.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022]
|
6
|
Chen C, Song S. Differential cell-type dependent brain state modulations of sensory representations in the non-lemniscal mouse inferior colliculus. Commun Biol 2019; 2:356. [PMID: 31583287 PMCID: PMC6769006 DOI: 10.1038/s42003-019-0602-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2019] [Indexed: 02/01/2023] Open
Abstract
Sensory responses of the neocortex are strongly influenced by brain state changes. However, it remains unclear whether and how the sensory responses of the midbrain are affected. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the spontaneous and sound-evoked activities in the mouse inferior colliculus (IC). We developed a method enabling us to image the first layer of non-lemniscal IC (IC shell L1) in awake behaving mice. Compared with the awake state, spectral tuning selectivity of excitatory neurons was decreased during isoflurane anesthesia. Calcium imaging in behaving animals revealed that activities of inhibitory neurons were highly correlated with locomotion. Compared with stationary periods, spectral tuning selectivity of excitatory neurons was increased during locomotion. Taken together, our studies reveal that neuronal activities in the IC shell L1 are brain state dependent, whereas the brain state modulates the excitatory and inhibitory neurons differentially.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
7
|
Abstract
OBJECTIVE This study investigated whether childhood adversity would be associated with hypersensitivity on two measures of central pain facilitation: area of secondary allodynia and temporal summation of second pain (TSSP), and whether pain facilitation would be explained by adult posttraumatic stress disorder (PTSD) symptoms. METHOD Participants endorsing high (n = 31) and low (n = 31) childhood adversity underwent capsaicin-induced secondary allodynia and TSSP testing. The tests were conducted a week apart with test order counterbalanced. RESULTS Larger areas of secondary allodynia were observed in the high adversity group compared with the low adversity group (F(1,60) = 4.81, p = .032). This group difference was largely (62%) explained by greater PTSD symptoms in the high adversity group. Although no overall difference was found in TSSP slopes (p = .886), this was attributed to an order by group interaction (F(1,58) = 5.07, p = .028) and low power. Subsequent analyses revealed positive TSSP slopes in the high adversity group when TSSP testing was performed first, and this order effect was associated with blunted sympathetic responses to TSSP on the first visit. The two facilitation measures were unrelated (p = .631). CONCLUSIONS Larger areas of secondary allodynia were observed in the high adversity group, which was explained largely by PTSD symptoms. This suggests that adversity-related changes in pain facilitation may underlie the association between childhood adversity and generalized widespread pain. Although TSSP was affected by previous testing, adversity-related pain facilitation was observed when TSSP testing occurred first. Finally, adversity was not associated with a consistent pattern of hypersensitivity across the two measures of central pain facilitation.
Collapse
|
8
|
Hackett TA. Adenosine A 1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain. Anat Rec (Hoboken) 2018; 301:1882-1905. [PMID: 30315630 PMCID: PMC6282551 DOI: 10.1002/ar.23907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co‐transmitters, or serve as signals in neuron–glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1R). In the auditory forebrain, restriction of A1R‐adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1R‐mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1R transcripts (Adora1), based on co‐expression with cell‐specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1R‐mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1R‐adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882–1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
David SV. Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding. Hear Res 2018; 360:107-123. [PMID: 29331232 PMCID: PMC6292525 DOI: 10.1016/j.heares.2017.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023]
Abstract
For several decades, auditory neuroscientists have used spectro-temporal encoding models to understand how neurons in the auditory system represent sound. Derived from early applications of systems identification tools to the auditory periphery, the spectro-temporal receptive field (STRF) and more sophisticated variants have emerged as an efficient means of characterizing representation throughout the auditory system. Most of these encoding models describe neurons as static sensory filters. However, auditory neural coding is not static. Sensory context, reflecting the acoustic environment, and behavioral context, reflecting the internal state of the listener, can both influence sound-evoked activity, particularly in central auditory areas. This review explores recent efforts to integrate context into spectro-temporal encoding models. It begins with a brief tutorial on the basics of estimating and interpreting STRFs. Then it describes three recent studies that have characterized contextual effects on STRFs, emerging over a range of timescales, from many minutes to tens of milliseconds. An important theme of this work is not simply that context influences auditory coding, but also that contextual effects span a large continuum of internal states. The added complexity of these context-dependent models introduces new experimental and theoretical challenges that must be addressed in order to be used effectively. Several new methodological advances promise to address these limitations and allow the development of more comprehensive context-dependent models in the future.
Collapse
Affiliation(s)
- Stephen V David
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, MC L335A, Portland, OR 97239, United States.
| |
Collapse
|
10
|
Plasticité développementale dans le cortex auditif : La résultante de l’état de maturation cortical et des caractéristiques sonores de l’environnement. ENFANCE 2017. [DOI: 10.4074/s0013754517003044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
12
|
Caspary DM, Llano DA. Auditory thalamic circuits and GABA A receptor function: Putative mechanisms in tinnitus pathology. Hear Res 2017; 349:197-207. [PMID: 27553899 PMCID: PMC5319923 DOI: 10.1016/j.heares.2016.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predict tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing de-inactivation of T-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Carpenter-Hyland EP, Griffeth J, Bunting K, Terry A, Vazdarjanova A, Blake DT. Tone identification behavior in Rattus norvegicus: muscarinic receptor blockage lowers responsiveness in nontarget selective neurons, while nicotinic receptor blockage selectively lowers target responses. Eur J Neurosci 2017; 46:1779-1789. [PMID: 28544049 DOI: 10.1111/ejn.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/24/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022]
Abstract
Learning to associate a stimulus with reinforcement causes plasticity in primary sensory cortex. Neural activity caused by the associated stimulus is paired with reinforcement, but population analyses have not found a selective increase in response to that stimulus. Responses to other stimuli increase as much as, or more than, responses to the associated stimulus. Here, we applied population analysis at a new time point and additionally evaluated whether cholinergic receptor blockers interacted with the plastic changes in cortex. Three days of tone identification behavior caused responsiveness to increase broadly across primary auditory cortex, and target responses strengthened less than overall responsiveness. In pharmacology studies, behaviorally impairing doses of selective acetylcholine receptor blockers were administered during behavior. Neural responses were evaluated on the following day, while the blockers were absent. The muscarinic group, blocked by scopolamine, showed lower responsiveness and an increased response to the tone identification target that exceeded both the 3-day control group and task-naïve controls. Also, a selective increase in the late phase of the response to the tone identification stimulus emerged. Nicotinic receptor antagonism, with mecamylamine, more modestly lowered responses the following day and lowered target responses more than overall responses. Control acute studies demonstrated the muscarinic block did not acutely alter response rates, but the nicotinic block did. These results lead to the hypothesis that the decrease in the proportion of the population spiking response that is selective for the target may be explained by the balance between effects modulated by muscarinic and nicotinic receptors.
Collapse
Affiliation(s)
| | - Jackson Griffeth
- Department of Neurology, Brain and Behavior Discovery Institute, Augusta University, 1120 15th St CL-3031, Augusta, GA, 30912, USA
| | - Kristopher Bunting
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Alvin Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - David T Blake
- Department of Neurology, Brain and Behavior Discovery Institute, Augusta University, 1120 15th St CL-3031, Augusta, GA, 30912, USA
| |
Collapse
|
14
|
Sakata S. State-dependent and cell type-specific temporal processing in auditory thalamocortical circuit. Sci Rep 2016; 6:18873. [PMID: 26728584 PMCID: PMC4700423 DOI: 10.1038/srep18873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/30/2015] [Indexed: 12/04/2022] Open
Abstract
Ongoing spontaneous activity in cortical circuits defines cortical states, but it still remains unclear how cortical states shape sensory processing across cortical laminae and what type of response properties emerge in the cortex. Recording neural activity from the auditory cortex (AC) and medial geniculate body (MGB) simultaneously with electrical stimulations of the basal forebrain (BF) in urethane-anesthetized rats, we investigated state-dependent spontaneous and auditory-evoked activities in the auditory thalamocortical circuit. BF stimulation induced a short-lasting desynchronized state, with sparser firing and increased power at gamma frequency in superficial layers. In this desynchronized state, the reduction in onset response variability in both AC and MGB was accompanied by cell type-specific firing, with decreased responses of cortical broad spiking cells, but increased responses of cortical narrow spiking cells. This onset response was followed by distinct temporal evolution in AC, with quicker rebound firing in infragranular layers. This temporal profile was associated with improved processing of temporally structured stimuli across AC layers to varying degrees, but not in MGB. Thus, the reduction in response variability during the desynchronized state can be seen subcortically whereas the improvement of temporal tuning emerges across AC layers, emphasizing the importance of state-dependent intracortical processing in hearing.
Collapse
Affiliation(s)
- Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
15
|
Takahashi H, Tokushige H, Shiramatsu T, Noda T, Kanzaki R. Covariation of pupillary and auditory cortical activity in rats under isoflurane anesthesia. Neuroscience 2015; 300:29-38. [DOI: 10.1016/j.neuroscience.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
|
16
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Weinberger NM. New perspectives on the auditory cortex: learning and memory. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:117-47. [PMID: 25726266 DOI: 10.1016/b978-0-444-62630-1.00007-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Nelken I. Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. BIOLOGICAL CYBERNETICS 2014; 108:655-663. [PMID: 24477619 DOI: 10.1007/s00422-014-0585-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Stimulus-specific adaptation (SSA) is the reduction in the response to a common stimulus that does not generalize, or only partially generalizes, to other, rare stimuli. SSA has been proposed to be a correlate of 'deviance detection', an important computational task of sensory systems. SSA is ubiquitous in the auditory system: It is found both in cortex and in subcortical stations, and it has been demonstrated in many mammalian species as well as in birds. A number of models have been suggested in the literature to account for SSA in the auditory domain. In this review, the experimental literature is critically examined in relationship to these models. While current models can all account for auditory SSA to some degree, none is fully compatible with the available findings.
Collapse
Affiliation(s)
- Israel Nelken
- Department of Neurobiology, The Silberman Institute of Life Sciences, Hebrew University, Edmond J. Safra Campus, Givat Ram, 91904 , Jerusalem, Israel,
| |
Collapse
|
19
|
A new and fast characterization of multiple encoding properties of auditory neurons. Brain Topogr 2014; 28:379-400. [PMID: 24869676 DOI: 10.1007/s10548-014-0375-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
The functional properties of auditory cortex neurons are most often investigated separately, through spectrotemporal receptive fields (STRFs) for the frequency tuning and the use of frequency sweeps sounds for selectivity to velocity and direction. In fact, auditory neurons are sensitive to a multidimensional space of acoustic parameters where spectral, temporal and spatial dimensions interact. We designed a multi-parameter stimulus, the random double sweep (RDS), composed of two uncorrelated random sweeps, which gives an easy, fast and simultaneous access to frequency tuning as well as frequency modulation sweep direction and velocity selectivity, frequency interactions and temporal properties of neurons. Reverse correlation techniques applied to recordings from the primary auditory cortex of guinea pigs and rats in response to RDS stimulation revealed the variety of temporal dynamics of acoustic patterns evoking an enhanced or suppressed firing rate. Group results on these two species revealed less frequent suppression areas in frequency tuning STRFs, the absence of downward sweep selectivity, and lower phase locking abilities in the auditory cortex of rats compared to guinea pigs.
Collapse
|
20
|
Huetz C, Guedin M, Edeline JM. Neural correlates of moderate hearing loss: time course of response changes in the primary auditory cortex of awake guinea-pigs. Front Syst Neurosci 2014; 8:65. [PMID: 24808831 PMCID: PMC4009414 DOI: 10.3389/fnsys.2014.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/07/2014] [Indexed: 11/21/2022] Open
Abstract
Over the last decade, the consequences of acoustic trauma on the functional properties of auditory cortex neurons have received growing attention. Changes in spontaneous and evoked activity, shifts of characteristic frequency (CF), and map reorganizations have extensively been described in anesthetized animals (e.g., Noreña and Eggermont, 2003, 2005). Here, we examined how the functional properties of cortical cells are modified after partial hearing loss in awake guinea pigs. Single unit activity was chronically recorded in awake, restrained, guinea pigs from 3 days before up to 15 days after an acoustic trauma induced by a 5 kHz 110 dB tone delivered for 1 h. Auditory brainstem responses (ABRs) audiograms indicated that these parameters produced a mean ABR threshold shift of 20 dB SPL at, and one octave above, the trauma frequency. When tested with pure tones, cortical cells showed on average a 25 dB increase in threshold at CF the day following the trauma. Over days, this increase progressively stabilized at only 10 dB above control value indicating a progressive recovery of cortical thresholds, probably reflecting a progressive shift from temporary threshold shift (TTS) to permanent threshold shift (PTS). There was an increase in response latency and in response variability the day following the trauma but these parameters returned to control values within 3 days. When tested with conspecific vocalizations, cortical neurons also displayed an increase in response latency and in response duration the day after the acoustic trauma, but there was no effect on the average firing rate elicited by the vocalization. These findings suggest that, in cases of moderate hearing loss, the temporal precision of neuronal responses to natural stimuli is impaired despite the fact the firing rate showed little or no changes.
Collapse
Affiliation(s)
- Chloé Huetz
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| | - Maud Guedin
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| | - Jean-Marc Edeline
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| |
Collapse
|
21
|
Goebrecht GKE, Kowtoniuk RA, Kelly BG, Kittelberger JM. Sexually-dimorphic expression of tyrosine hydroxylase immunoreactivity in the brain of a vocal teleost fish (Porichthys notatus). J Chem Neuroanat 2014; 56:13-34. [PMID: 24418093 DOI: 10.1016/j.jchemneu.2014.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Abstract
Vocal communication has emerged as a powerful model for the study of neural mechanisms of social behavior. Modulatory neurochemicals postulated to play a central role in social behavior, related to motivation, arousal, incentive and reward, include the catecholamines, particularly dopamine and noradrenaline. Many questions remain regarding the functional mechanisms by which these modulators interact with sensory and motor systems. Here, we begin to address these questions in a model system for vocal and social behavior, the plainfin midshipman fish (Porichthys notatus). We mapped the distribution of immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) in the midshipman brain. The general pattern of TH(+) cell groups in midshipman appears to be highly conserved with other teleost fish, with a few exceptions, including the apparent absence of pretectal catecholamine cells. Many components of the midshipman vocal and auditory systems were innervated by TH(+) fibers and terminals, including portions of the subpallial area ventralis, the preoptic complex, and the anterior hypothalamus, the midbrain periaqueductal gray and torus semicircularis, several hindbrain auditory nuclei, and parts of the hindbrain vocal pattern generator. These areas thus represent potential sites for catecholamine modulation of vocal and/or auditory behavior. To begin to test functionally whether catecholamines modulate vocal social behaviors, we hypothesized that male and female midshipman, which are sexually dimorphic in both their vocal-motor repertoires and in their responses to hearing conspecific vocalizations, should exhibit sexually dimorphic expression of TH immunoreactivity in their vocal and/or auditory systems. We used quantitative immunohistochemical techniques to test this hypothesis across a number of brain areas. We found significantly higher levels of TH expression in male midshipman relative to females in the TH cell population in the paraventricular organ of the diencephalon and in the TH-innervated torus semicircularis, the main teleost midbrain auditory structure. The torus semicircularis has been implicated in sexually dimorphic behavioral responses to conspecific vocalizations. Our data thus support the general idea that catecholamines modulate vocal and auditory processing in midshipman, and the specific hypothesis that they shape sexually dimorphic auditory responses in the auditory midbrain.
Collapse
Affiliation(s)
- Geraldine K E Goebrecht
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| | - Robert A Kowtoniuk
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| | - Brenda G Kelly
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| | - J Matthew Kittelberger
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| |
Collapse
|
22
|
Role of attention in the generation and modulation of tinnitus. Neurosci Biobehav Rev 2013; 37:1754-73. [DOI: 10.1016/j.neubiorev.2013.07.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 01/23/2023]
|
23
|
Jarosiewicz B, Masse NY, Bacher D, Cash SS, Eskandar E, Friehs G, Donoghue JP, Hochberg LR. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia. J Neural Eng 2013; 10:046012. [PMID: 23838067 DOI: 10.1088/1741-2560/10/4/046012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain-computer interfaces (BCIs) aim to provide a means for people with severe motor disabilities to control their environment directly with neural activity. In intracortical BCIs for people with tetraplegia, the decoder that maps neural activity to desired movements has typically been calibrated using 'open-loop' (OL) imagination of control while a cursor automatically moves to targets on a computer screen. However, because neural activity can vary across contexts, a decoder calibrated using OL data may not be optimal for 'closed-loop' (CL) neural control. Here, we tested whether CL calibration creates a better decoder than OL calibration even when all other factors that might influence performance are held constant, including the amount of data used for calibration and the amount of elapsed time between calibration and testing. APPROACH Two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial performed a center-out-back task using an intracortical BCI, switching between decoders that had been calibrated on OL versus CL data. MAIN RESULTS Even when all other variables were held constant, CL calibration improved neural control as well as the accuracy and strength of the tuning model. Updating the CL decoder using additional and more recent data resulted in further improvements. SIGNIFICANCE Differences in neural activity between OL and CL contexts contribute to the superiority of CL decoders, even prior to their additional 'adaptive' advantage. In the near future, CL decoder calibration may enable robust neural control without needing to pause ongoing, practical use of BCIs, an important step toward clinical utility.
Collapse
Affiliation(s)
- Beata Jarosiewicz
- Department of Neuroscience, Brown University, 2 Stimson Ave., Box 1994, Providence, RI 02912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gaucher Q, Huetz C, Gourévitch B, Laudanski J, Occelli F, Edeline JM. How do auditory cortex neurons represent communication sounds? Hear Res 2013; 305:102-12. [PMID: 23603138 DOI: 10.1016/j.heares.2013.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 11/30/2022]
Abstract
A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Quentin Gaucher
- Centre de Neurosciences Paris-Sud (CNPS), CNRS UMR 8195, Université Paris-Sud, Bâtiment 446, 91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Massoudi R, Van Wanrooij MM, Van Wetter SMCI, Versnel H, Van Opstal AJ. Stable bottom-up processing during dynamic top-down modulations in monkey auditory cortex. Eur J Neurosci 2013; 37:1830-42. [PMID: 23510187 DOI: 10.1111/ejn.12180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 11/26/2022]
Abstract
It is unclear whether top-down processing in the auditory cortex (AC) interferes with its bottom-up analysis of sound. Recent studies indicated non-acoustic modulations of AC responses, and that attention changes a neuron's spectrotemporal tuning. As a result, the AC would seem ill-suited to represent a stable acoustic environment, which is deemed crucial for auditory perception. To assess whether top-down signals influence acoustic tuning in tasks without directed attention, we compared monkey single-unit AC responses to dynamic spectrotemporal sounds under different behavioral conditions. Recordings were mostly made from neurons located in primary fields (primary AC and area R of the AC) that were well tuned to pure tones, with short onset latencies. We demonstrated that responses in the AC were substantially modulated during an auditory detection task and that these modulations were systematically related to top-down processes. Importantly, despite these significant modulations, the spectrotemporal receptive fields of all neurons remained remarkably stable. Our results suggest multiplexed encoding of bottom-up acoustic and top-down task-related signals at single AC neurons. This mechanism preserves a stable representation of the acoustic environment despite strong non-acoustic modulations.
Collapse
Affiliation(s)
- Roohollah Massoudi
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Chipaux M, Vercueil L, Kaminska A, Mahon S, Charpier S. Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings. PLoS One 2013; 8:e58180. [PMID: 23483991 PMCID: PMC3587418 DOI: 10.1371/journal.pone.0058180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.
Collapse
Affiliation(s)
- Mathilde Chipaux
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Pediatric Neurosurgery Unit, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Laurent Vercueil
- Grenoble Institute of Neurosciences, Centre de Recherche INSERM U 836-UJF-CEA-CHU, Equipe 9, Grenoble, France
| | - Anna Kaminska
- AP-HP, Service d'explorations fonctionnelles, laboratoire de neurophysiologie clinique, Hôpital Necker Enfants Malades, Paris, France
| | - Séverine Mahon
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Charpier
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- UPMC University Paris 06, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Guo F, Intskirveli I, Blake DT, Metherate R. Tone-detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex. Neurobiol Learn Mem 2013; 101:75-84. [PMID: 23357284 DOI: 10.1016/j.nlm.2013.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Auditory-cued behavioral training can alter neural circuits in primary auditory cortex (A1), but the mechanisms and consequences of experience-dependent cortical plasticity are not fully understood. To address this issue, we trained adult rats to detect a 5 kHz target in order to receive a food reward. After 14 days training we identified three locations within A1: (i) the region representing the characteristic frequency (CF) 5 kHz, (ii) a nearby region with CF ∼10 kHz, and (iii) a more distant region with CF ∼20 kHz. In order to compare functional connectivity in A1 near to, vs. far from, the representation of the target frequency, we placed a 16-channel multiprobe in middle- (∼10 kHz) and high- (∼20 kHz) CF regions and obtained current-source density (CSD) profiles evoked by a range of tone stimuli (CF±1-3 octaves in quarter-octave steps). Our aim was to construct "CSD receptive fields" (CSD RFs) in order to determine the laminar and spectral profile of tone-evoked current sinks, and infer changes to thalamocortical and intracortical inputs. Behavioral training altered CSD RFs at the 10 kHz, but not 20 kHz, site relative to CSD RFs in untrained control animals. At the 10 kHz site, current sinks evoked by the target frequency were enhanced in layer 2/3, but the initial current sink in layer 4 was not altered. The results imply training-induced plasticity along intracortical pathways connecting the target representation with nearby cortical regions. Finally, we related behavioral performance (sensitivity index, d') to CSD responses in individual animals, and found a significant correlation between the development of d' over training and the amplitude of the target-evoked current sink in layer 2/3. The results suggest that plasticity along intracortical pathways is important for auditory learning.
Collapse
Affiliation(s)
- Fei Guo
- Department of Neurobiology and Behavior and Center for Hearing Research, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
28
|
Kryukov VI. Towards a unified model of pavlovian conditioning: short review of trace conditioning models. Cogn Neurodyn 2012; 6:377-98. [PMID: 24082960 PMCID: PMC3438324 DOI: 10.1007/s11571-012-9195-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/12/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
There are three basic paradigms of classical conditioning: delay, trace and context conditioning where presentation of a conditioned stimulus (CS) or a context typically predicts an unconditioned stimulus (US). In delay conditioning CS and US normally coterminate, whereas in trace conditioning an interval of time exists between CS termination and US onset. The modeling of trace conditioning is a rather difficult computational problem and is a challenge to the behavior and connectionist approaches mainly due to a time gap between CS and US. To account for trace conditioning, Pavlov (Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex, Oxford University Press, London, 1927) postulated the existence of a stimulus "trace" in the nervous system. Meanwhile, there exist many other options for solving this association problem. There are several excellent reviews of computational models of classical conditioning but none has thus far been devoted to trace conditioning. Eight representative models of trace conditioning aimed at building a prospective model are being reviewed below in a brief form. As a result, one of them, comprising the most important features of its predecessors, can be suggested as a real candidate for a unified model of trace conditioning.
Collapse
Affiliation(s)
- V. I. Kryukov
- St. Daniel Monastery, Danilovsky Val 22, 115191 Moscow, Russia
| |
Collapse
|
29
|
Knott V, Shah D, Millar A, McIntosh J, Fisher D, Blais C, Ilivitsky V. Nicotine, Auditory Sensory Memory, and sustained Attention in a Human Ketamine Model of Schizophrenia: Moderating Influence of a Hallucinatory Trait. Front Pharmacol 2012; 3:172. [PMID: 23060793 PMCID: PMC3460347 DOI: 10.3389/fphar.2012.00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The procognitive actions of the nicotinic acetylcholine receptor (nAChR) agonist nicotine are believed, in part, to motivate the excessive cigarette smoking in schizophrenia, a disorder associated with deficits in multiple cognitive domains, including low-level auditory sensory processes and higher-order attention-dependent operations. OBJECTIVES As N-methyl-d-aspartate receptor (NMDAR) hypofunction has been shown to contribute to these cognitive impairments, the primary aims of this healthy volunteer study were to: (a) to shed light on the separate and interactive roles of nAChR and NMDAR systems in the modulation of auditory sensory memory (and sustained attention), as indexed by the auditory event-related brain potential - mismatch negativity (MMN), and (b) to examine how these effects are moderated by a predisposition to auditory hallucinations/delusions (HD). METHODS In a randomized, double-blind, placebo-controlled design involving a low intravenous dose of ketamine (0.04 mg/kg) and a 4 mg dose of nicotine gum, MMN, and performance on a rapid visual information processing (RVIP) task of sustained attention were examined in 24 healthy controls psychometrically stratified as being lower (L-HD, n = 12) or higher (H-HD) for HD propensity. RESULTS Ketamine significantly slowed MMN, and reduced MMN in H-HD, with amplitude attenuation being blocked by the co-administration of nicotine. Nicotine significantly enhanced response speed [reaction time (RT)] and accuracy (increased % hits and d' and reduced false alarms) on the RVIP, with improved performance accuracy being prevented when nicotine was administered with ketamine. Both % hits and d', as well as RT were poorer in H-HD (vs. L-HD) and while hit rate and d' was increased by nicotine in H-HD, RT was slowed by ketamine in L-HD. CONCLUSIONS Nicotine alleviated ketamine-induced sensory memory impairment and improved attention, particularly in individuals prone to HD.
Collapse
Affiliation(s)
- Verner Knott
- Institute of Mental Health Research, University of OttawaOttawa, ON, Canada
- Neuroscience Program, Department of Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
- School of Psychology, University of OttawaOttawa, ON, Canada
- Institute of Cognitive Science, Carleton UniversityOttawa, ON, Canada
- Royal Ottawa Mental Health CentreOttawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, University of OttawaOttawa, ON, Canada
| | - Anne Millar
- Neuroscience Program, Department of Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
| | - Judy McIntosh
- Institute of Mental Health Research, University of OttawaOttawa, ON, Canada
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent UniversityHalifax, NS, Canada
| | - Crystal Blais
- Institute of Cognitive Science, Carleton UniversityOttawa, ON, Canada
| | | |
Collapse
|
30
|
Kilgard MP. Harnessing plasticity to understand learning and treat disease. Trends Neurosci 2012; 35:715-22. [PMID: 23021980 DOI: 10.1016/j.tins.2012.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 08/28/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022]
Abstract
A large body of evidence suggests that neural plasticity contributes to learning and disease. Recent studies suggest that cortical map plasticity is typically a transient phase that improves learning by increasing the pool of task-relevant responses. Here, I discuss a new perspective on neural plasticity and suggest how plasticity might be targeted to reset dysfunctional circuits. Specifically, a new model is proposed in which map expansion provides a form of replication with variation that supports a Darwinian mechanism to select the most behaviorally useful circuits. Precisely targeted neural plasticity provides a new avenue for the treatment of neurological and psychiatric disorders and is a powerful tool to test the neural mechanisms of learning and memory.
Collapse
Affiliation(s)
- Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, TX 75080, USA.
| |
Collapse
|
31
|
Edeline JM. Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Front Behav Neurosci 2012; 6:45. [PMID: 22866031 PMCID: PMC3407859 DOI: 10.3389/fnbeh.2012.00045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/03/2012] [Indexed: 02/01/2023] Open
Abstract
Over the last two decades, a vast literature has described the influence of neuromodulatory systems on the responses of sensory cortex neurons (review in Gu, 2002; Edeline, 2003; Weinberger, 2003; Metherate, 2004, 2011). At the single cell level, facilitation of evoked responses, increases in signal-to-noise ratio, and improved functional properties of sensory cortex neurons have been reported in the visual, auditory, and somatosensory modality. At the map level, massive cortical reorganizations have been described when repeated activation of a neuromodulatory system are associated with a particular sensory stimulus. In reviewing our knowledge concerning the way the noradrenergic and cholinergic system control sensory cortices, I will point out that the differences between the protocols used to reveal these effects most likely reflect different assumptions concerning the role of the neuromodulators. More importantly, a gap still exists between the descriptions of neuromodulatory effects and the concepts that are currently applied to decipher the neural code operating in sensory cortices. Key examples that bring this gap into focus are the concept of cell assemblies and the role played by the spike timing precision (i.e., by the temporal organization of spike trains at the millisecond time-scale) which are now recognized as essential in sensory physiology but are rarely considered in experiments describing the role of neuromodulators in sensory cortices. Thus, I will suggest that several lines of research, particularly in the field of computational neurosciences, should help us to go beyond traditional approaches and, ultimately, to understand how neuromodulators impact on the cortical mechanisms underlying our perceptual abilities.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Centre de Neurosciences Paris-Sud, CNRS UMR 8195, Université Paris-Sud, Bâtiment Orsay Cedex, France
| |
Collapse
|
32
|
Weinberger NM. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience. ACTA ACUST UNITED AC 2012; Suppl 3. [PMID: 25356375 DOI: 10.4172/2161-119x.s3-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, Center for Hearing Research, and Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
33
|
Hall IC, Sell GL, Hurley LM. Social regulation of serotonin in the auditory midbrain. Behav Neurosci 2011; 125:501-11. [PMID: 21787041 DOI: 10.1037/a0024426] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuromodulator serotonin regulates auditory processing and can increase within minutes in response to stimuli like broadband noise as well as nonauditory stressors. Little is known about the serotonergic response in the auditory system to more natural stimuli such as social interactions. Using carbon-fiber voltammetry, we measured extracellular serotonin in the auditory midbrain of resident male mice during encounters with a male intruder. Serotonin increased in the inferior colliculus (IC) over the course of a 15 minute interaction, but not when mice were separated with a perforated barrier. Several behaviors, including the amount of immobility and anogenital investigation performed by the resident, were correlated with the serotonergic response. Multiple intrinsic factors associated with individual mice also correlated with the serotonergic response. One of these was age: older mice had smaller serotonergic responses to the social interaction. In a second interaction, individual identity predicted serotonergic responses that were highly consistent with those in the first interaction, even when mice were paired with different intruders. Serotonin was also significantly elevated in the second social interaction relative to the first, suggesting a role for social experience. These findings show that during social interaction, serotonin in the IC is influenced by extrinsic factors such as the directness of social interaction and intrinsic factors including age, individual identity, and experience.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biological Sciences, Columbia University
| | | | | |
Collapse
|
34
|
Grienberger C, Adelsberger H, Stroh A, Milos RI, Garaschuk O, Schierloh A, Nelken I, Konnerth A. Sound-evoked network calcium transients in mouse auditory cortex in vivo. J Physiol 2011; 590:899-918. [PMID: 22106174 DOI: 10.1113/jphysiol.2011.222513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Population calcium signals generated by the action potential activity of local clusters of neurons have been recorded in the auditory cortex of mice using an optical fibre-based approach. These network calcium transients (NCaTs) occurred spontaneously as well as in response to sound stimulation. Two-photon calcium imaging experiments suggest that neurons and neuropil contribute about equally to the NCaT. Sound-evoked calcium signals had two components: an early, fast increase in calcium concentration, which corresponds to the short-latency spiking responses observed in electrophysiological experiments, and a late, slow calcium transient which lasted for at least 1 s. The slow calcium transients evoked by sound were essentially identical to spontaneous NCaTs. Their sizes were dependent on the spontaneous activity level at sound onset, suggesting that spontaneous and sensory-evoked NCaTs excluded each other. When using pure tones as stimulus, the early evoked calcium transients were more narrowly tuned than the slow NCaTs. The slow NCaTs were correlated with global ‘up states' recorded with epidural potentials, and sound presented during an epidural ‘down state' triggered a calcium transient that was associated with an epidural ‘up state'. Essentially indistinguishable calcium transients were evoked by optogenetic activation of local clusters of layer 5 pyramidal neurons in the auditory cortex, indicating that these neurons play an important role in the generation of the calcium signal. Taken together, our results identify sound-evoked slow NCaTs as an integral component of neuronal signalling in the mouse auditory cortex, reflecting the prolonged neuronal activity of local clusters of neurons that can be activated even by brief stimuli.
Collapse
Affiliation(s)
- Christine Grienberger
- Institute of Neuroscience, Technische Universität München, Biedersteinerstr. 29, 80802 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M, Degueldre C, Balteau E, Phillips C, Luxen A, Sejnowski TJ, Maquet P. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 2011; 108:15438-43. [PMID: 21896732 PMCID: PMC3174676 DOI: 10.1073/pnas.1112503108] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Humans are less responsive to the surrounding environment during sleep. However, the extent to which the human brain responds to external stimuli during sleep is uncertain. We used simultaneous EEG and functional MRI to characterize brain responses to tones during wakefulness and non-rapid eye movement (NREM) sleep. Sounds during wakefulness elicited responses in the thalamus and primary auditory cortex. These responses persisted in NREM sleep, except throughout spindles, during which they became less consistent. When sounds induced a K complex, activity in the auditory cortex was enhanced and responses in distant frontal areas were elicited, similar to the stereotypical pattern associated with slow oscillations. These data show that sound processing during NREM sleep is constrained by fundamental brain oscillatory modes (slow oscillations and spindles), which result in a complex interplay between spontaneous and induced brain activity. The distortion of sensory information at the thalamic level, especially during spindles, functionally isolates the cortex from the environment and might provide unique conditions favorable for off-line memory processing.
Collapse
Affiliation(s)
| | - Maxime Bonjean
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
- Howard Hughes Medical Institute
- The Salk Institute, and
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92037; and
| | - Manuel Schabus
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
- Laboratory for Sleep and Consciousness Research, Department of Psychology, University of Salzburg, A-5020 Salzburg, Austria
| | - Mélanie Boly
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
| | - Annabelle Darsaud
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
| | - Martin Desseilles
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
| | | | - Evelyne Balteau
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
| | | | - André Luxen
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute
- The Salk Institute, and
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92037; and
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
36
|
|
37
|
State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J Neurosci 2011; 31:6414-20. [PMID: 21525282 DOI: 10.1523/jneurosci.5773-10.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical responses can vary greatly between repeated presentations of an identical stimulus. Here we report that both trial-to-trial variability and faithfulness of auditory cortical stimulus representations depend critically on brain state. A frozen amplitude-modulated white noise stimulus was repeatedly presented while recording neuronal populations and local field potentials (LFPs) in auditory cortex of urethane-anesthetized rats. An information-theoretic measure was used to predict neuronal spiking activity from either the stimulus envelope or simultaneously recorded LFP. Evoked LFPs and spiking more faithfully followed high-frequency temporal modulations when the cortex was in a desynchronized state. In the synchronized state, neural activity was poorly predictable from the stimulus envelope, but the spiking of individual neurons could still be predicted from the ongoing LFP. Our results suggest that although auditory cortical activity remains coordinated as a population in the synchronized state, the ability of continuous auditory stimuli to control this activity is greatly diminished.
Collapse
|
38
|
Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 2011; 70:121-31. [PMID: 21482361 DOI: 10.1016/j.neuron.2011.02.038] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 11/21/2022]
Abstract
Cortical map plasticity is believed to be a key substrate of perceptual and skill learning. In the current study, we quantified changes in perceptual ability after pairing tones with stimulation of the cholinergic nucleus basalis to induce auditory cortex map plasticity outside of a behavioral context. Our results provide evidence that cortical map plasticity can enhance perceptual learning. However, auditory cortex map plasticity fades over weeks even though tone discrimination performance remains stable. This observation is consistent with recent reports that cortical map expansions associated with perceptual and motor learning are followed by a period of map renormalization without a decrement in performance. Our results indicate that cortical map plasticity enhances perceptual learning, but is not necessary to maintain improved discriminative ability.
Collapse
|
39
|
Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation. Neuroscience 2011; 174:200-15. [DOI: 10.1016/j.neuroscience.2010.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
|
40
|
Consolidation and long-term retention of an implanted behavioral memory. Neurobiol Learn Mem 2010; 95:286-95. [PMID: 21156212 DOI: 10.1016/j.nlm.2010.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/23/2022]
Abstract
Hypothesized circuitry enabling information storage can be tested by attempting to implant memory directly in the brain in the absence of normal experience. Previously, we found that tone paired with activation of the cholinergic nucleus basalis (NB) does induce behavioral memory that shares cardinal features with natural memory; it is associative, highly specific, rapidly formed, consolidates and shows intermediate retention. Here we determine if implanted memory also exhibits long-term consolidation and retention. Adult male rats were first tested for behavioral responses (disruption of ongoing respiration) to tones (1-15 kHz), yielding pre-training behavioral frequency generalization gradients. They next received 3 days of training with a conditioned stimulus (CS) tone (8.0 kHz, 70 dB, 2s) either paired (n=7) or unpaired (n=6) with moderate electrical stimulation of the nucleus basalis (∼ 65 μA, 100 Hz, 0.2s, co-terminating with CS offset). Testing for long-term retention was performed by obtaining post-training behavioral frequency generalization gradients 24h and 2 weeks after training. At 24h post-training, the Paired group exhibited specific associative behavioral memory, manifested by larger responses to the CS frequency band than the Unpaired group. This memory was retained 2 weeks post-training. Moreover, 2 weeks later, the specificity and magnitude of memory had become greater, indicating that the implanted memory had undergone consolidation. Overall, the results demonstrate the validity of NB-implanted memory for understanding natural memory and that activation of the cholinergic nucleus basalis is sufficient to form natural associative memory.
Collapse
|
41
|
Metherate R. Functional connectivity and cholinergic modulation in auditory cortex. Neurosci Biobehav Rev 2010; 35:2058-63. [PMID: 21144860 DOI: 10.1016/j.neubiorev.2010.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 11/26/2022]
Abstract
Although it is known that primary auditory cortex (A1) contributes to the processing and perception of sound, its precise functions and the underlying mechanisms are not well understood. Recent studies point to a remarkably broad spectral range of largely subthreshold inputs to individual neurons in A1--seemingly encompassing, in some cases, the entire audible spectrum--as evidence for potential, and potentially unique, cortical functions. We have proposed a general mechanism for spectral integration by which information converges on neurons in A1 via a combination of thalamocortical pathways and intracortical long-distance, "horizontal", pathways. Here, this proposal is briefly reviewed and updated with results from multiple laboratories. Since spectral integration in A1 is dynamically regulated, we also show how one regulatory mechanism--modulation by the neurotransmitter acetylcholine (ACh)--could act within the hypothesized framework to alter integration in single neurons. The results of these studies promote a cellular understanding of information processing in A1.
Collapse
Affiliation(s)
- Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California-Irvine, CA 92697-4550, United States.
| |
Collapse
|
42
|
Motts SD, Schofield BR. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in Guinea pigs. Front Neuroanat 2010; 4:137. [PMID: 21060717 PMCID: PMC2972721 DOI: 10.3389/fnana.2010.00137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/19/2010] [Indexed: 11/28/2022] Open
Abstract
The midbrain tegmentum is the source of cholinergic innervation of the thalamus and has been associated with arousal and control of the sleep/wake cycle. In general, the innervation arises bilaterally from the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT). While this pattern has been observed for many thalamic nuclei, a projection from the LDT to the medial geniculate body (MG) has been questioned in some species. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase (ChAT) to identify cholinergic projections from the brainstem to the MG in guinea pigs. Double-labeled cells (retrograde and immunoreactive for ChAT) were found in both the PPT (74%) and the LDT (26%). In both nuclei, double-labeled cells were more numerous on the ipsilateral side. About half of the retrogradely labeled cells were immunonegative, suggesting they are non-cholinergic. The distribution of these immunonegative cells was similar to that of the immunopositive ones: more were in the PPT than the LDT and more were on the ipsilateral than the contralateral side. The results indicate that both the PPT and the LDT project to the MG, and suggest that both cholinergic and non-cholinergic cells contribute substantially to these projections.
Collapse
Affiliation(s)
- Susan D Motts
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy Rootstown, OH, USA
| | | |
Collapse
|
43
|
Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J Neurosci 2010; 30:11114-27. [PMID: 20720119 DOI: 10.1523/jneurosci.0689-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.
Collapse
|
44
|
Edeline JM, Manunta Y, Hennevin E. Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear Res 2010; 274:75-84. [PMID: 20709165 DOI: 10.1016/j.heares.2010.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/15/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Neurons in primary sensory cortices display selective receptive field plasticity in behavioral situations ranging from classical conditioning to attentional tasks, and it is generally assumed that neuromodulators promote this plasticity. Studies have shown that pairing a pure-tone and a stimulation of the nucleus basalis magnocellularis mimics the selective receptive field facilitations described after classical conditioning. Here, we evaluated the consequences of repeated pairings between a particular sound frequency and a phasic stimulation of locus coeruleus (LC) on the frequency tuning of auditory thalamus and auditory cortex neurons. Selective alterations for the paired frequency were observed for more than 30% of the cells recorded both in cortex and in thalamus. There were as much selective increases as selective decreases at the cortical level, whereas selective increases were prevailing at the thalamic level. Selective changes usually persisted 15 min after pairing in cortex; they dissipated in thalamus, and so did the general increases in both structures. In animals with stimulation sites outside the LC, pairing induced either general changes or no effect. These results indicate that the selective plasticity induced in the frequency tuning of auditory cortex neurons by LC stimulation is bidirectional, thereby suggesting that noradrenergic activation can contribute to the different forms of plasticity observed after distinct behavioral paradigms.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Centre de Neurosciences de Paris-Sud, UMR 8195, CNRS and Paris-Sud Université, Bâtiment 446, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
45
|
Harris KD, Bartho P, Chadderton P, Curto C, de la Rocha J, Hollender L, Itskov V, Luczak A, Marguet SL, Renart A, Sakata S. How do neurons work together? Lessons from auditory cortex. Hear Res 2010; 271:37-53. [PMID: 20603208 DOI: 10.1016/j.heares.2010.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/10/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between "desynchronized" state characterized by low amplitude, high-frequency local field potentials and a "synchronized" state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information.
Collapse
Affiliation(s)
- Kenneth D Harris
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huetz C, Gourévitch B, Edeline JM. Neural codes in the thalamocortical auditory system: from artificial stimuli to communication sounds. Hear Res 2010; 271:147-58. [PMID: 20116422 DOI: 10.1016/j.heares.2010.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Over the last 15 years, an increasing number of studies have described the responsiveness of thalamic and cortical neurons to communication sounds. Whereas initial studies have simply looked for neurons exhibiting higher firing rate to conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determine the relative contribution of "rate coding" and "temporal coding" to the information transmitted by spike trains. In this article, we aim at reviewing the different strategies employed by thalamic and cortical neurons to encode information about acoustic stimuli, from artificial to natural sounds. Considering data obtained with simple stimuli, we first illustrate that different facets of temporal code, ranging from a strict correspondence between spike-timing and stimulus temporal features to more complex coding strategies, do already exist with artificial stimuli. We then review lines of evidence indicating that spike-timing provides an efficient code for discriminating communication sounds from thalamus, primary and non-primary auditory cortex up to frontal areas. As the neural code probably developed, and became specialized, over evolution to allow precise and reliable processing of sounds that are of survival value, we argue that spike-timing based coding strategies might set the foundations of our perceptive abilities.
Collapse
Affiliation(s)
- Chloé Huetz
- Centre de Neurosciences Paris Sud, UMR CNRS 8195, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
47
|
A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. J Neurosci 2009; 29:10600-12. [PMID: 19710313 DOI: 10.1523/jneurosci.2053-09.2009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses of neocortical cells to sensory stimuli are variable and state dependent. It has been hypothesized that intrinsic cortical dynamics play an important role in trial-to-trial variability; the precise nature of this dependence, however, is poorly understood. We show here that in auditory cortex of urethane-anesthetized rats, population responses to click stimuli can be quantitatively predicted on a trial-by-trial basis by a simple dynamical system model estimated from spontaneous activity immediately preceding stimulus presentation. Changes in cortical state correspond consistently to changes in model dynamics, reflecting a nonlinear, self-exciting system in synchronized states and an approximately linear system in desynchronized states. We propose that the complex and state-dependent pattern of trial-to-trial variability can be explained by a simple principle: sensory responses are shaped by the same intrinsic dynamics that govern ongoing spontaneous activity.
Collapse
|
48
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:791-805. [PMID: 19389457 DOI: 10.1016/j.pnpbp.2009.03.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
Abstract
We understand this review as an attempt to summarize recent advances in the understanding of cholinergic function in cognition. Such a role has been highlighted in the 1970s by the discovery that dementia patients have greatly reduced cholinergic activity in cortex and hippocampus. A brief anatomical description of the major cholinergic pathways focuses on the basal forebrain and its projections to cortex and hippocampus. From this distinction, compelling evidence suggests that the basal forebrain --> cortex projection regulates the excitability of principal cortical neurons and is thereby critically involved in attention, stimulus detection and memory function, although the biological conditions for these functions are still debated. Similar uncertainties remain for the septo-hippocampal cholinergic system. Although initial lesions of the septum caused memory deficits reminiscent of hippocampal ablations, recent and more refined neurotoxic lesion studies which spared non-cholinergic cells of the basal forebrain failed to confirm these memory impairments in experimental animals despite a near total loss of cholinergic labeling. Yet, a decline in cholinergic markers in aging and dementia still stands as the most central piece of evidence for a link between the cholinergic system and cognition and appear to provide valuable targets for therapeutic approaches.
Collapse
|
49
|
Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine. Neuroscience 2009; 163:430-41. [PMID: 19531370 DOI: 10.1016/j.neuroscience.2009.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/19/2009] [Accepted: 06/11/2009] [Indexed: 11/22/2022]
Abstract
Acetylcholine (ACh) plays important roles in the modulation of activity and plasticity of primary sensory cortices, thus influencing sensory detection and integration. We examined this in urethane-anesthetized rats, comparing cholinergic modulation of short latency, large amplitude field postsynaptic potentials (fPSPs) in the visual cortex (V1) evoked by stimulation of the ipsilateral lateral geniculate nucleus (LGN), reflecting direct thalamocortical inputs, with longer latency, smaller amplitude fPSPs elicited by contralateral LGN stimulation, reflecting indirect, polysynaptic inputs. Basal forebrain (BF) stimulation (100 Hz) produced a significant (approximately 45%), gradually developing potentiation of the smaller, contralateral fPSPs, while ipsilateral fPSPs showed less enhancement (approximately 15%), shifting the relative strength of dominant/ipsi- and weaker/contralateral inputs to V1. Systemic or local, cortical blockade of muscarinic receptors (scopolamine) reduced potentiation of contralateral fPSP without affecting ipsilateral enhancement, thus preventing the relative amplification of contralateral inputs following BF stimulation. Systemic nicotinic receptor blockade (mecamylamine) resulted in depression of ipsilateral, and reduced enhancement of contralateral fPSPs after BF stimulation. N-methyl-D-aspartate receptor blockade (systemic MK-801) abolished ipsilateral fPSP enhancement without affecting contralateral potentiation. Neither drug reduced the amplification of contralateral relative to ipsilateral signals in V1. In a second experiment in the barrel cortex, BF stimulation enhanced multiunit activity elicited by whisker deflection in a muscarinic-sensitive manner. Similar to the observations in V1, this effect was more pronounced for weaker multiunit activity driven by a surround whisker than activity following principal whisker deflection. These experiments demonstrate that ACh release following BF stimulation exerts surprisingly selective effects to amplify non-dominant inputs to sensory cortices. We suggest that, by diminishing the imbalance between different afferent signals, ACh release during states of behavioral activation acts to induce a long-lasting facilitation of the detection and/or integration of signals in primary sensory fields of the cortical mantle.
Collapse
|
50
|
Miranda JA, Liu RC. Dissecting natural sensory plasticity: hormones and experience in a maternal context. Hear Res 2009; 252:21-8. [PMID: 19401225 DOI: 10.1016/j.heares.2009.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 04/04/2009] [Accepted: 04/12/2009] [Indexed: 10/20/2022]
Abstract
There is a growing consensus that the auditory system is dynamic in its representation of behaviorally relevant sounds. The auditory cortex in particular seems to be an important locus for plasticity that may reflect the memory of such sounds, or functionally improve their processing. The mechanisms that underlie these changes may be either intrinsic because they depend on the receiver's physiological state, or extrinsic because they arise from the context in which behavioral relevance is gained. Research in a mouse model of acoustic communication between offspring and adult females offers the opportunity to explore both of these contributions to auditory cortical plasticity in a natural context. Recent works have found that after the vocalizations of infant mice become behaviorally relevant to mothers, auditory cortical activity is significantly changed in a way that may improve their processing. Here we consider the hypothesis that maternal hormones (intrinsic factor) and sensory experience (extrinsic factor) contribute together to drive these changes, focusing specifically on the evidence that well-known experience-dependent mechanisms of cortical plasticity can be modulated by hormones.
Collapse
Affiliation(s)
- Jason A Miranda
- Department of Biology, Emory University, 1510 Clifton Road, Room 2006, Atlanta, GA 30322, USA.
| | | |
Collapse
|