1
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
2
|
Li L, Ebner FF. Cortex dynamically modulates responses of thalamic relay neurons through prolonged circuit-level disinhibition in rat thalamus in vivo. J Neurophysiol 2016; 116:2368-2382. [PMID: 27582292 DOI: 10.1152/jn.00424.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022] Open
Abstract
Cortex actively modulates the responses of thalamic relay neurons through corticothalamic (CT) projections. Here we investigated the temporal precision of CT modulation on sensory responses of relay neurons in rat ventral posterior medial thalamus (VPM) to direction-specific whisker stimuli. CT feedback levels were either augmented by cortical electrical microstimulation or depressed by cortical application of muscimol, a potent agonist of γ-aminobutyric acid A-type (GABAA) receptors. To evaluate the temporal specificity of CT influence, we compared the early (3-10 ms after stimulus onset) and late (10-100 ms) response components of VPM single units to whisker deflections in preferred or nonpreferred directions before and after altering CT feedback levels under urethane anesthesia. The data showed that cortical feedback most strongly affected the late responses of single VPM units to whisker stimulation. That is, cortical stimulation consistently increased the late responses of VPM units in the corresponding (homologous) barreloids to the stimulus direction preferred by neurons in the cortical locus stimulated. However, cortical stimulation could either increase or decrease the early response, depending on whether or not cortical and thalamic loci were tuned to the same direction. Such bidirectional regulation of the early and late VPM responses is consistent with a mechanism of circuit-level disinhibition in vivo. The results support the theory that CT feedback on thalamic sensory responses is mediated by a time-dependent shift of the excitation-inhibition balance in the thalamo-cortico-thalamic loop, such as would occur during sensory feature integration, plasticity, and learning in the awake state.
Collapse
Affiliation(s)
- Lu Li
- Allen Institute for Brain Science, Seattle, Washington; and
| | - Ford F Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
3
|
Pais-Vieira M, Kunicki C, Tseng PH, Martin J, Lebedev M, Nicolelis MAL. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination. J Neurophysiol 2015; 114:1652-76. [PMID: 26180115 PMCID: PMC4567613 DOI: 10.1152/jn.00108.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/12/2015] [Indexed: 11/22/2022] Open
Abstract
Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1.
Collapse
Affiliation(s)
- Miguel Pais-Vieira
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and
| | - Carolina Kunicki
- Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| | - Po-He Tseng
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Joel Martin
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Mikhail Lebedev
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and
| | - Miguel A L Nicolelis
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
4
|
Comer JD, Pan FC, Willet SG, Haldipur P, Millen KJ, Wright CVE, Kaltschmidt JA. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3. Front Neural Circuits 2015; 9:36. [PMID: 26257608 PMCID: PMC4511845 DOI: 10.3389/fncir.2015.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022] Open
Abstract
Commissural neurons project across the midline at all levels of the central nervous system (CNS), providing bilateral communication critical for the coordination of motor activity and sensory perception. Midline crossing at the spinal ventral midline has been extensively studied and has revealed that multiple developmental lineages contribute to this commissural neuron population. Ventral midline crossing occurs in a manner dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal cord is not limited to the ventral midline, however. While prior anatomical studies provide evidence that commissural axons also cross the midline dorsally, little is known of the genetic and molecular properties of dorsally-crossing neurons or of the mechanisms that regulate dorsal midline crossing. In this study, we describe a commissural neuron population that crosses the spinal dorsal midline during the last quarter of embryogenesis in discrete fiber bundles present throughout the rostrocaudal extent of the spinal cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that this commissural neuron population includes spinal inhibitory neurons and sensory nociceptors. While the floor plate and roof plate are dispensable for dorsal midline crossing, we show that this population depends on Robo/Slit signaling yet crosses the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural neuron population we describe suggests a substrate circuitry for pain processing in the dorsal spinal cord.
Collapse
Affiliation(s)
- John D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences New York, NY, USA ; Developmental Biology Program, Sloan-Kettering Institute New York, NY, USA ; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program New York, NY, USA
| | - Fong Cheng Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Spencer G Willet
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research Seattle, WA, USA
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research Seattle, WA, USA ; Department of Pediatrics, Genetics Division, University of Washington Seattle, WA, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Julia A Kaltschmidt
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences New York, NY, USA ; Developmental Biology Program, Sloan-Kettering Institute New York, NY, USA
| |
Collapse
|
5
|
Dehmel S, Löwel S. Cortico-cortical interactions influence binocularity of the primary visual cortex of adult mice. PLoS One 2014; 9:e105745. [PMID: 25157503 PMCID: PMC4144898 DOI: 10.1371/journal.pone.0105745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Electrophysiological studies have revealed that a large proportion of the mouse primary visual cortex (V1) receives input also from the ipsilateral eye. This is surprising as most optic nerve fibers cross at the optic chiasm in mice. Inactivating V1 of one hemisphere has recently demonstrated a strong contribution of one hemisphere's activity on binocularity of single units and visually evoked potentials of V1 in the other hemisphere of young rats and of single units in young adult mice. Here we used intrinsic signal optical imaging to quantitatively study the influence of cortico-cortical connections on the magnitude of neuronal activation in the entire binocular zone of adult mouse V1. We simultaneously measured V1-activity of both hemispheres in adult C57BL/6J mice before and after blocking sensory-driven activity in one hemisphere with muscimol. In V1 contralateral to the inactivation, ipsilateral eye evoked activity was reduced by on average 18% while contralateral eye evoked activity did not change. Our results clearly show that cortico-cortical interactions exert a global amplification of ipsilateral eye evoked activity in adult mouse V1.
Collapse
Affiliation(s)
- Susanne Dehmel
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
- Sensory Collaborative Research Center 889, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| | - Siegrid Löwel
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
- Sensory Collaborative Research Center 889, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Wilkinson N, Metta G. Bilateral gain control; an "innate predisposition" for all sorts of things. Front Neurorobot 2014; 8:9. [PMID: 24611045 PMCID: PMC3933809 DOI: 10.3389/fnbot.2014.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/05/2014] [Indexed: 12/02/2022] Open
Abstract
Empirical studies have revealed remarkable perceptual organization in neonates. Newborn behavioral distinctions have often been interpreted as implying functionally specific modular adaptations, and are widely cited as evidence supporting the nativist agenda. In this theoretical paper, we approach newborn perception and attention from an embodied, developmental perspective. At the mechanistic level, we argue that a generative mechanism based on mutual gain control between bilaterally corresponding points may underly a number of functionally defined “innate predispositions” related to spatial-configural perception. At the computational level, bilateral gain control implements beamforming, which enables spatial-configural tuning at the front end sampling stage. At the psychophysical level, we predict that selective attention in newborns will favor contrast energy which projects to bilaterally corresponding points on the neonate subject's sensor array. The current work extends and generalizes previous work to formalize the bilateral correlation model of newborn attention at a high level, and demonstrate in minimal agent-based simulations how bilateral gain control can enable a simple, robust and “social” attentional bias.
Collapse
Affiliation(s)
| | - Giorgio Metta
- iCub Facility, Istituto Italiano di Tecnologia Genova, Italy ; Centre for Robotics and Neural Systems, University of Plymouth Plymouth, UK
| |
Collapse
|
7
|
Acupuncture-evoked response in somatosensory and prefrontal cortices predicts immediate pain reduction in carpal tunnel syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:795906. [PMID: 23843881 PMCID: PMC3703406 DOI: 10.1155/2013/795906] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022]
Abstract
The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS). Brain response to electroacupuncture (EA) was evaluated with functional MRI. Subjects were randomized to 3 groups: (1) EA applied at local acupoints on the affected wrist (PC-7 to TW-5), (2) EA at distal acupoints (contralateral ankle, SP-6 to LV-4), and (3) sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC) and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.
Collapse
|
8
|
Sehara K, Wakimoto M, Ako R, Kawasaki H. Distinct developmental principles underlie the formation of ipsilateral and contralateral whisker-related axonal patterns of layer 2/3 neurons in the barrel cortex. Neuroscience 2012; 226:289-304. [PMID: 23000626 DOI: 10.1016/j.neuroscience.2012.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/02/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Axonal organizations with specific patterns underlie the functioning of local intracortical circuitry, but their precise anatomy and development still remain elusive. Here, we selectively visualized layer 2/3 neurons using in utero electroporation and examined their axonal organization in the barrel cortex contralateral to the electroporated side. We found that callosal axons run preferentially in septal regions of layer 4 and showed a whisker-related pattern in the contralateral barrel cortex in rats and mice. In addition, presynaptic marker proteins were found in this whisker-related axonal organization. Although the whisker-related patterns were observed in both the ipsilateral and contralateral barrel cortex, we found a difference in their developmental processes. While the formation of the whisker-related pattern in the ipsilateral cortex consisted of two distinct steps, that in the contralateral cortex did not have the 1st step, in which the axons were diffusely distributed without preference to septal or barrel regions. We also found that these more diffuse axons ran close to radial glial fibers. Together, our results uncovered a whisker-related axonal pattern of callosal axons and two independent developmental processes involved in the formation of the axonal trajectories of layer 2/3 neurons.
Collapse
Affiliation(s)
- K Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
9
|
Bilateral plasticity of Vibrissae SII representation induced by classical conditioning in mice. J Neurosci 2011; 31:5447-53. [PMID: 21471380 DOI: 10.1523/jneurosci.5989-10.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The somatosensory cortex in mice contains primary (SI) and secondary (SII) areas, differing in somatotopic precision, topographic organization, and function. The role of SII in somatosensory processing is still poorly understood. SII is activated bilaterally during attentional tasks and is considered to play a role in tactile memory and sensorimotor integration. We measured the plasticity of SII activation after associative learning based on classical conditioning, in which unilateral stimulation of one row of vibrissae was paired with a tail shock. The training consisted of three daily 10 min sessions, during which 40 pairings were delivered. Cortical activation driven by stimulation of vibrissae was mapped with 2-[(14)C]deoxyglucose (2DG) autoradiography 1 d after the end of conditioning. We reported previously that the conditioning procedure resulted in unilateral enlargement of 2DG-labeled cortical representation of the "trained" row of vibrissae in SI. Here, we measured the width and intensity of the labeled region in SII. We found that both measured parameters in SII increased bilaterally. The increase was observed in cortical layers II/III and IV. Apparently, plasticity in SII is not a simple reflection of changes in SI. It may be attributable to bilateral integrative role of SII, its lesser topographical specificity, and strong involvement in attentional processing.
Collapse
|
10
|
de Greck M, Scheidt L, Bölter AF, Frommer J, Ulrich C, Stockum E, Enzi B, Tempelmann C, Hoffmann T, Northoff G. Multimodal psychodynamic psychotherapy induces normalization of reward related activity in somatoform disorder. World J Biol Psychiatry 2011; 12:296-308. [PMID: 21198419 DOI: 10.3109/15622975.2010.539269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Somatoform disorder patients demonstrate a disturbance in the balance between internal and external information processing, with a decreased focus on external stimulus processing. We investigated brain activity of somatoform disorder patients, during the processing of rewarding external events, paying particular attention to the effects of inpatient multimodal psychodynamic psychotherapy. METHODS Using fMRI, we applied a reward task that required fast reactions to a target stimulus in order to obtain monetary rewards; a control condition contained responses without the opportunity to gain rewards. Twenty acute somatoform disorder patients were compared with twenty age-matched healthy controls. In addition, 15 patients underwent a second scanning session after participation in multimodal psychodynamic psychotherapy. RESULTS Acute patients showed diminished hemodynamic differentiation between rewarding and non rewarding events in four regions, including the left postcentral gyrus and the right ventroposterior thalamus. After multimodal psychodynamic psychotherapy, both regions showed a significant normalization of neuronal differentiation. CONCLUSION Our results suggest that diminished responsiveness of brain regions involved in the processing of external stimuli underlies the disturbed balance of internal and external processing of somatoform disorder patients. By providing new approaches to cope with distressing events, multimodal psychodynamic psychotherapy led to decreased symptoms and normalization of neuronal activity.
Collapse
Affiliation(s)
- Moritz de Greck
- Department of Psychology, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A 2011; 108:E183-91. [PMID: 21576480 DOI: 10.1073/pnas.1101914108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.
Collapse
|
12
|
Vallès A, Boender AJ, Gijsbers S, Haast RAM, Martens GJM, de Weerd P. Genomewide analysis of rat barrel cortex reveals time- and layer-specific mRNA expression changes related to experience-dependent plasticity. J Neurosci 2011; 31:6140-58. [PMID: 21508239 PMCID: PMC6632955 DOI: 10.1523/jneurosci.6514-10.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/26/2011] [Accepted: 02/26/2011] [Indexed: 12/12/2022] Open
Abstract
Because of its anatomical organization, the rodent whisker-to-barrel system is an ideal model to study experience-dependent plasticity. Manipulation of sensory input causes changes in the properties of the barrels at the physiological, structural, and functional levels. However, much less is known about the molecular events underlying these changes. To explore such molecular events, we have used a genomewide approach to identify key genes and molecular pathways involved in experience-induced plasticity in the barrel cortex of adult rats. Given the natural tendency of rats to explore novel objects, exposure to an enriched environment (EE) was used to stimulate the activity of the whisker-to-barrel cortex in vivo. Microarray analysis at two different time points after EE revealed differential expression of genes encoding transcription factors, including nuclear receptors, as well as of genes involved in the regulation of synaptic plasticity, cell differentiation, metabolism, and, surprisingly, blood vessel morphogenesis. These expression differences reflect changes in somatosensory information processing because unilateral whisker clipping showed EE-induced differential expression patterns in the spared versus deprived barrel cortex. Finally, in situ hybridization revealed cortical layer patterns specific for each selected gene. Together, the present study offers the first genomewide exploration of the key genes regulated by somatosensory stimulation in the barrel cortex and thus provides a solid experimental framework for future in-depth analysis of the mechanisms underlying experience-dependent plasticity.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands, and
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Arjen J. Boender
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Steef Gijsbers
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Roy A. M. Haast
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Peter de Weerd
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands, and
| |
Collapse
|
13
|
Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J Neurosci 2010; 30:11114-27. [PMID: 20720119 DOI: 10.1523/jneurosci.0689-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.
Collapse
|
14
|
Popescu MV, Ebner FF. Neonatal sensory deprivation and the development of cortical function: unilateral and bilateral sensory deprivation result in different functional outcomes. J Neurophysiol 2010; 104:98-107. [PMID: 20427621 DOI: 10.1152/jn.00120.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The normal development of sensory perception in mammals depends on appropriate sensory experience between birth and maturity. Numerous reports have shown that trimming some or all of the large mystacial vibrissa (whiskers) on one side of the face after birth has a detrimental effect on the maturation of cortical function. The objective of the present study was to understand the differences that occur after unilateral whisker trimming compared with those that occur after bilateral deprivation. Physiological deficits produced by bilateral trimming (BD) of all whiskers for 2 mo after birth were compared with the deficits produced by unilateral trimming (UD) for the same period of time using extracellular recording under urethan anesthesia from single cells in rat barrel cortex. Fast spiking (FSUs) and regular spiking (RSUs) units were separated and their properties compared in four subregions identified by histological reconstructions of the electrode penetrations, namely: layer IV barrel and septum, and layers II/III above a barrel and above a septum. UD upregulated responses in layer IV septa and in layers II/III above septa and perturbed the timing of responses to whisker stimuli. After BD, nearly all responses were decreased, and poststimulus latencies were increased. Circuit changes are proposed as an argument for how inputs arising from the spared whiskers project to the undeprived cortex and, via commissural fibers, could upregulate septal responses after UD. Following BD, more global neural deficits create a signature difference in the outcome of UD and BD in rat barrel cortex.
Collapse
Affiliation(s)
- Maria V Popescu
- Department of Psychology, Vanderbilt University, Nashville Tennessee 37240, USA
| | | |
Collapse
|
15
|
Schmidt KE, Lomber SG, Innocenti GM. Specificity of neuronal responses in primary visual cortex is modulated by interhemispheric corticocortical input. ACTA ACUST UNITED AC 2010; 20:2776-86. [PMID: 20211943 PMCID: PMC2978237 DOI: 10.1093/cercor/bhq024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Within the visual cortex, it has been proposed that interhemispheric interactions serve to re-establish the continuity of the visual field across its vertical meridian (VM) by mechanisms similar to those used by intrinsic connections within a hemisphere. However, other specific functions of transcallosal projections have also been proposed, including contributing to disparity tuning and depth perception. Here, we consider whether interhemispheric connections modulate specific response properties, orientation and direction selectivity, of neurons in areas 17 and 18 of the ferret by combining reversible thermal deactivation in one hemisphere with optical imaging of intrinsic signals and single-cell electrophysiology in the other hemisphere. We found interhemispheric influences on both the strength and specificity of the responses to stimulus orientation and direction of motion, predominantly at the VM. However, neurons and domains preferring cardinal contours, in particular vertical contours, seem to receive stronger interhemispheric input than others. This finding is compatible with interhemispheric connections being involved in horizontal disparity tuning. In conclusion, our results support the view that interhemispheric interactions mainly perform integrative functions similar to those of connections intrinsic to one hemisphere.
Collapse
Affiliation(s)
- Kerstin E Schmidt
- Max-Planck Research Group: Cortical Function and Dynamics, Max Planck Institute for Brain Research, Deutschordenstraße 46, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
16
|
Blomquist P, Devor A, Indahl UG, Ulbert I, Einevoll GT, Dale AM. Estimation of thalamocortical and intracortical network models from joint thalamic single-electrode and cortical laminar-electrode recordings in the rat barrel system. PLoS Comput Biol 2009; 5:e1000328. [PMID: 19325875 PMCID: PMC2653726 DOI: 10.1371/journal.pcbi.1000328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/10/2009] [Indexed: 11/19/2022] Open
Abstract
A new method is presented for extraction of population firing-rate models for both thalamocortical and intracortical signal transfer based on stimulus-evoked data from simultaneous thalamic single-electrode and cortical recordings using linear (laminar) multielectrodes in the rat barrel system. Time-dependent population firing rates for granular (layer 4), supragranular (layer 2/3), and infragranular (layer 5) populations in a barrel column and the thalamic population in the homologous barreloid are extracted from the high-frequency portion (multi-unit activity; MUA) of the recorded extracellular signals. These extracted firing rates are in turn used to identify population firing-rate models formulated as integral equations with exponentially decaying coupling kernels, allowing for straightforward transformation to the more common firing-rate formulation in terms of differential equations. Optimal model structures and model parameters are identified by minimizing the deviation between model firing rates and the experimentally extracted population firing rates. For the thalamocortical transfer, the experimental data favor a model with fast feedforward excitation from thalamus to the layer-4 laminar population combined with a slower inhibitory process due to feedforward and/or recurrent connections and mixed linear-parabolic activation functions. The extracted firing rates of the various cortical laminar populations are found to exhibit strong temporal correlations for the present experimental paradigm, and simple feedforward population firing-rate models combined with linear or mixed linear-parabolic activation function are found to provide excellent fits to the data. The identified thalamocortical and intracortical network models are thus found to be qualitatively very different. While the thalamocortical circuit is optimally stimulated by rapid changes in the thalamic firing rate, the intracortical circuits are low-pass and respond most strongly to slowly varying inputs from the cortical layer-4 population.
Collapse
Affiliation(s)
- Patrick Blomquist
- Department of Mathematical Sciences and Technology and Center for
Integrative Genetics, Norwegian University of Life Sciences, Ås,
Norway
| | - Anna Devor
- Athinoula A. Martinos Center, Massachusetts General Hospital,
Charlestown, Massachusetts, United States of America
- Departments of Radiology and Neurosciences, University of California San
Diego, La Jolla, California, United States of America
| | - Ulf G. Indahl
- Department of Mathematical Sciences and Technology and Center for
Integrative Genetics, Norwegian University of Life Sciences, Ås,
Norway
| | - Istvan Ulbert
- Institute for Psychology of the Hungarian Academy of Sciences, Budapest,
Hungary
- Peter Pazmany Catholic University, Department of Information Technology,
Budapest, Hungary
| | - Gaute T. Einevoll
- Department of Mathematical Sciences and Technology and Center for
Integrative Genetics, Norwegian University of Life Sciences, Ås,
Norway
| | - Anders M. Dale
- Departments of Radiology and Neurosciences, University of California San
Diego, La Jolla, California, United States of America
| |
Collapse
|
17
|
Carmeli C, Lopez-Aguado L, Schmidt KE, De Feo O, Innocenti GM. A novel interhemispheric interaction: modulation of neuronal cooperativity in the visual areas. PLoS One 2007; 2:e1287. [PMID: 18074012 PMCID: PMC2110896 DOI: 10.1371/journal.pone.0001287] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 11/05/2007] [Indexed: 11/25/2022] Open
Abstract
Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization.
Collapse
Affiliation(s)
- Cristian Carmeli
- Laboratory of Nonlinear Systems (LANOS), I & C Schools of Computer and Communication Sciences (IC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Lopez-Aguado
- Department of Applied Mathematics, School of Optics, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Oscar De Feo
- Laboratory of Nonlinear Systems (LANOS), I & C Schools of Computer and Communication Sciences (IC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Department of Microelectronics, University College Cork, Cork, Ireland
| | - Giorgio M. Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Makarov VA, Schmidt KE, Castellanos NP, Lopez-Aguado L, Innocenti GM. Stimulus-Dependent Interaction between the Visual Areas 17 and 18 of the 2 Hemispheres of the Ferret (Mustela putorius). Cereb Cortex 2007; 18:1951-60. [DOI: 10.1093/cercor/bhm222] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Blatow M, Nennig E, Durst A, Sartor K, Stippich C. fMRI reflects functional connectivity of human somatosensory cortex. Neuroimage 2007; 37:927-36. [PMID: 17629500 DOI: 10.1016/j.neuroimage.2007.05.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/24/2007] [Accepted: 05/17/2007] [Indexed: 02/08/2023] Open
Abstract
Unilateral sensory stimulation reliably elicits contralateral somatotopic activation of primary (SI) and secondary (SII) somatosensory cortex. There is an ongoing debate about the occurrence and nature of concomitant ipsilateral SI and SII activation. Here we used functional magnetic resonance imaging (fMRI) in healthy human subjects with unilateral tactile stimulation of fingers and lips, to compare somatosensory activation patterns from distal and proximal body parts. We hypothesized that fMRI in humans should reflect the functional connectivity of somatosensory cortex as predicted by animal studies. We show that both unilateral finger and lip stimulations activate contra- and ipsilateral SI and SII cortices with high detection frequency. Correlations of BOLD-signals to the applied hemodynamic reference function were significantly higher in contralateral as compared to ipsilateral SI and SII cortices for both finger and lip stimulation, reflecting strong contribution of contralateral thalamocortical input. Furthermore, BOLD-signal correlations were higher in SI than in SII activations on the contralateral but not on the ipsilateral side. While these asymmetries within and across hemispheres were consistent for finger and lip stimulations, indicating analogous underlying organizing principles, they were less prominent for lip stimulation. Somatotopic organization was detected in SI but not in SII representations of fingers and lips. These results qualitatively and quantitatively support the prevalent concepts of anatomical and functional connectivity in the somatosensory system and therefore may allow interpretation of sensory evoked fMRI signals in terms of normal human brain function. Thus, the assessment of human somatosensory function with fMRI may permit in the future investigations of pathological conditions.
Collapse
Affiliation(s)
- Maria Blatow
- Division of Neuroradiology, Department of Neurology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Li L, Ebner FF. Cortical modulation of spatial and angular tuning maps in the rat thalamus. J Neurosci 2007; 27:167-79. [PMID: 17202484 PMCID: PMC6672283 DOI: 10.1523/jneurosci.4165-06.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/20/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022] Open
Abstract
The massive feedback projections from cortex to the thalamus modulate sensory information transmission in many ways. We investigated the role of corticothalamic feedback projections on the directional selectivity (angular tuning) of neurons in the rat ventral posterior medial (VPM) nucleus to stimulation of their principal whisker. The angular tuning properties of single VPM neurons were compared before and after epochs of electrical stimulation of layer VI feedback neurons in the ipsilateral cortex under urethane anesthesia. Microstimulation of layer VI in "matched" (homologous) barrel columns sharpens the angular tuning curves of single VPM neurons that are tuned to the same direction as the stimulation site in the cortex. Further, microstimulation rotates the angular preference of VPM neurons initially tuned to a different direction toward the direction that cortical neurons prefer. Stimulation in "mismatched" (nonhomologous) barrel columns suppresses responses without consistent effects on angular tuning. We conclude that the primary sensory cortex exerts a significant influence on both spatial and angular tuning maps in the relay nuclei that project to it. The results suggest that the tuning properties of VPM cells in the behaving animal are continually modified to optimize perception of the most salient incoming messages.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Ford F. Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
21
|
Rema V, Armstrong-James M, Jenkinson N, Ebner FF. Short exposure to an enriched environment accelerates plasticity in the barrel cortex of adult rats. Neuroscience 2006; 140:659-72. [PMID: 16616426 PMCID: PMC2860223 DOI: 10.1016/j.neuroscience.2006.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 01/11/2006] [Accepted: 02/22/2006] [Indexed: 12/02/2022]
Abstract
Cortical sensory neurons adapt their response properties to use and disuse of peripheral receptors in their receptive field. Changes in synaptic strength can be generated in cortex by simply altering the balance of input activity, so that a persistent bias in activity levels modifies cortical receptive field properties. Such activity-dependent plasticity in cortical cell responses occurs in rat cortex when all but two whiskers are trimmed for a period of time at any age. The up-regulation of evoked responses to the intact whiskers is first seen within 24 h in the supragranular layers [Laminar comparison of somatosensory cortical plasticity. Science 265(5180):1885-1888] and continues until a new stable state is achieved [Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci U S A 90(5):2082-2086; Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rat modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978-6991]. These and many other results suggest that activity-dependent changes in cortical cell responses have an accumulation threshold that can be achieved more quickly by increasing the spike rate arising from the active region of the receptive field. Here we test the hypothesis that the rate of neuronal response change can be accelerated by placing the animals in a high activity environment after whisker trimming. Test stimuli reveal an highly significant receptive field bias in response to intact and trimmed whiskers in layer IV as well as in layers II-III neurons in only 15 h after whisker trimming. Layer IV barrel cells fail to show plasticity after 15-24 h in a standard cage environment, but produce a response bias when activity is elevated by the enriched environment. We conclude that elevated activity achieves the threshold for response modification more quickly, and this, in turn, accelerates the rate of receptive field plasticity.
Collapse
Key Words
- experience-dependent modifications
- use-dependent plasticity
- enriched environment
- whisker-pairing
- deprivation
- receptive field changes
- dc, d cut whisker
- dp, d paired whisker
- ee, enriched environment
- eewp, enriched environment whisker-paired
- ld, light/dark
- ltd, long-term depression
- ltp, long-term potentiation
- nmda, n-methyl-d-aspartate
- psths, post-stimulus time histograms
- sc, standard cage
- scwp, standard cage whisker-paired
- s.e.m., standard error of the mean
- sg, supragranular layer
- mwu, mann-whitney u
- wmpsr, wilcoxon matched pair sign rank
- wp, whisker-pairing
Collapse
Affiliation(s)
- V Rema
- National Brain Research Centre, Nainwal Mode, Manesar, Haryana 122050, India.
| | | | | | | |
Collapse
|