1
|
Maheshwar KV, Stuart AE, Kay LM. Sex differences in olfactory behavior and neurophysiology in Long Evans rats. J Neurophysiol 2025; 133:257-267. [PMID: 39698988 DOI: 10.1152/jn.00222.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
In many species, olfactory abilities in females are more acute than those in males. Studies in humans show that women have lower olfactory thresholds and are better able to discriminate and identify odors than men. In mice, odorants elicit faster activation from a larger number of olfactory bulb glomeruli in females than in males. Our study explores sex differences in olfaction in Long Evans rats from a behavioral and electrophysiological perspective. Local field potentials (LFPs) in the olfactory bulb (OB) represent the coordinated activity of bulbar neurons. Olfactory gamma (65-120 Hz) and beta (15-30 Hz) oscillations have been functionally linked to odor perception. Spontaneous and odor-evoked OB LFPs were recorded from awake rats at the same time for 12 days. Odors used included urine of both sexes and monomolecular odorants characterized previously for correlation of volatility with behavior and OB oscillations. Sampling duration in a habituation context, baseline gamma and beta power, and odor-elicited beta and gamma power were analyzed. We find that females sample odorants for a shorter duration than males (just over 1-s difference). Although baseline gamma and beta power do not show significant differences between the two sexes, odor-elicited gamma and beta power in females is significantly lower than in males. Neither sampling duration nor beta and gamma power in females varied systematically with day of estrus. We further verify that variance of these behavioral and physiological measures is not different across sexes, adding to growing evidence that researchers need not be concerned about often-claimed additional variance in female subjects.NEW & NOTEWORTHY Olfaction plays a large role in evolutionary processes. However, we know little about sex differences in olfactory bulb neurophysiology, and many scientists believe that females are more variable because of estrus. We show that female rats sniff odors for shorter durations than males and have lower power in neural oscillations related to cognition. Estrus was not related to variance in any measures. Finally, males and females show equal variance on these behavioral and physiological processes.
Collapse
Affiliation(s)
- Kruthika V Maheshwar
- Master of Arts Program in the Social Sciences, The University of Chicago, Chicago, Illinois, United States
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois, United States
| | - Abigail E Stuart
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois, United States
| | - Leslie M Kay
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois, United States
- Department of Psychology, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Kosel F, Hartley MR, Franklin TB. Aberrant Cortical Activity in 5xFAD Mice in Response to Social and Non-Social Olfactory Stimuli. J Alzheimers Dis 2024; 97:659-677. [PMID: 38143360 DOI: 10.3233/jad-230858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Neuroimaging studies investigating the behavioral and psychological symptoms of dementia (BPSD)- such as apathy, anxiety, and depression- have linked some of these symptoms with altered neural activity. However, inconsistencies in operational definitions and rating scales, limited scope of assessments, and poor temporal resolution of imaging techniques have hampered human studies. Many transgenic (Tg) mouse models of Alzheimer's disease (AD) exhibit BPSD-like behaviors concomitant with AD-related neuropathology, allowing examination of how neural activity may relate to BPSD-like behaviors with high temporal and spatial resolution. OBJECTIVE To examine task-dependent neural activity in the medial prefrontal cortex (mPFC) of AD-model mice in response to social and non-social olfactory stimuli. METHODS We previously demonstrated age-related decreases in social investigation in Tg 5xFAD females, and this reduced social investigation is evident in Tg 5xFAD females and males by 6 months of age. In the present study, we examine local field potential (LFP) in the mPFC of awake, behaving 5xFAD females and males at 6 months of age during exposure to social and non-social odor stimuli in a novel olfactometer. RESULTS Our results indicate that Tg 5xFAD mice exhibit aberrant baseline and task-dependent LFP activity in the mPFC- including higher relative delta (1-4 Hz) band power and lower relative power in higher bands, and overall stronger phase-amplitude coupling- compared to wild-type controls. CONCLUSIONS These results are consistent with previous human and animal studies examining emotional processing, anxiety, fear behaviors, and stress responses, and suggest that Tg 5xFAD mice may exhibit altered arousal or anxiety.
Collapse
Affiliation(s)
- Filip Kosel
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Mackenzie Rae Hartley
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Tamara Brook Franklin
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Kudithipudi D, Aguilar-Simon M, Babb J, Bazhenov M, Blackiston D, Bongard J, Brna AP, Chakravarthi Raja S, Cheney N, Clune J, Daram A, Fusi S, Helfer P, Kay L, Ketz N, Kira Z, Kolouri S, Krichmar JL, Kriegman S, Levin M, Madireddy S, Manicka S, Marjaninejad A, McNaughton B, Miikkulainen R, Navratilova Z, Pandit T, Parker A, Pilly PK, Risi S, Sejnowski TJ, Soltoggio A, Soures N, Tolias AS, Urbina-Meléndez D, Valero-Cuevas FJ, van de Ven GM, Vogelstein JT, Wang F, Weiss R, Yanguas-Gil A, Zou X, Siegelmann H. Biological underpinnings for lifelong learning machines. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00452-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Symanski CA, Bladon JH, Kullberg ET, Miller P, Jadhav SP. Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making. eLife 2022; 11:79545. [PMID: 36480255 PMCID: PMC9799972 DOI: 10.7554/elife.79545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Memory-guided decision making involves long-range coordination across sensory and cognitive brain networks, with key roles for the hippocampus and prefrontal cortex (PFC). In order to investigate the mechanisms of such coordination, we monitored activity in hippocampus (CA1), PFC, and olfactory bulb (OB) in rats performing an odor-place associative memory guided decision task on a T-maze. During odor sampling, the beta (20-30 Hz) and respiratory (7-8 Hz) rhythms (RR) were prominent across the three regions, with beta and RR coherence between all pairs of regions enhanced during the odor-cued decision making period. Beta phase modulation of phase-locked CA1 and PFC neurons during this period was linked to accurate decisions, with a key role of CA1 interneurons in temporal coordination. Single neurons and ensembles in both CA1 and PFC encoded and predicted animals' upcoming choices, with different cell ensembles engaged during decision-making and decision execution on the maze. Our findings indicate that rhythmic coordination within the hippocampal-prefrontal-olfactory bulb network supports utilization of odor cues for memory-guided decision making.
Collapse
Affiliation(s)
| | - John H Bladon
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Emi T Kullberg
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Paul Miller
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
5
|
Long-Range Respiratory and Theta Oscillation Networks Depend on Spatial Sensory Context. J Neurosci 2021; 41:9957-9970. [PMID: 34667070 DOI: 10.1523/jneurosci.0719-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Neural oscillations can couple networks of brain regions, especially at lower frequencies. The nasal respiratory rhythm, which elicits robust olfactory bulb oscillations, has been linked to episodic memory, locomotion, and exploration, along with widespread oscillatory coherence. The piriform cortex is implicated in propagating the olfactory-bulb-driven respiratory rhythm, but this has not been tested explicitly in the context of both hippocampal theta and nasal respiratory rhythm during exploratory behaviors. We investigated systemwide interactions during foraging behavior, which engages respiratory and theta rhythms. Local field potentials from the olfactory bulb, piriform cortex, dentate gyrus, and CA1 of hippocampus, primary visual cortex, and nasal respiration were recorded simultaneously from male rats. We compared interactions among these areas while rats foraged using either visual or olfactory spatial cues. We found high coherence during foraging compared with home cage activity in two frequency bands that matched slow and fast respiratory rates. Piriform cortex and hippocampus maintained strong coupling at theta frequency during periods of slow respiration, whereas other pairs showed coupling only at the fast respiratory frequency. Directional analysis shows that the modality of spatial cues was matched to larger influences in the network by the respective primary sensory area. Respiratory and theta rhythms also coupled to faster oscillations in primary sensory and hippocampal areas. These data provide the first evidence of widespread interactions among nasal respiration, olfactory bulb, piriform cortex, and hippocampus in awake freely moving rats, and support the piriform cortex as an integrator of respiratory and theta activity.SIGNIFICANCE STATEMENT Recent studies have shown widespread interactions between the nasally driven respiratory rhythm and neural oscillations in hippocampus and neocortex. With this study, we address how the respiratory rhythm interacts with ongoing slow brain rhythms across olfactory, hippocampal, and visual systems in freely moving rats. Patterns of network connectivity change with behavioral state, with stronger interactions at fast and slow respiratory frequencies during foraging as compared with home cage activity. Routing of interactions between sensory cortices depends on the modality of spatial cues present during foraging. Functional connectivity and cross-frequency coupling analyses suggest strong bidirectional interactions between olfactory and hippocampal systems related to respiration and point to the piriform cortex as a key area for mediating respiratory and theta rhythms.
Collapse
|
6
|
The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proc Natl Acad Sci U S A 2021; 118:2101209118. [PMID: 34645711 PMCID: PMC8545486 DOI: 10.1073/pnas.2101209118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the valence of an odor to guide rapid approach-avoidance behavior is thought to be one of the core tasks of the olfactory system, and yet little is known of the initial neural mechanisms supporting this process or of its subsequent behavioral manifestation in humans. In two experiments, we measured the functional processing of odor valence perception in the human olfactory bulb (OB)-the first processing stage of the olfactory system-using a noninvasive method as well as assessed the subsequent motor avoidance response. We demonstrate that odor valence perception is associated with both gamma and beta activity in the human OB. Moreover, we show that negative, but not positive, odors initiate an early beta response in the OB, a response that is linked to a preparatory neural motor response in the motor cortex. Finally, in a separate experiment, we show that negative odors trigger a full-body motor avoidance response, manifested as a rapid leaning away from the odor, within the time period predicted by the OB results. Taken together, these results demonstrate that the human OB processes odor valence in a sequential manner in both the gamma and beta frequency bands and suggest that rapid processing of unpleasant odors in the OB might underlie rapid approach-avoidance decisions.
Collapse
|
7
|
Hernández-Soto R, Villasana-Salazar B, Pinedo-Vargas L, Peña-Ortega F. Chronic intermittent hypoxia alters main olfactory bulb activity and olfaction. Exp Neurol 2021; 340:113653. [PMID: 33607078 DOI: 10.1016/j.expneurol.2021.113653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is commonly observed in patients with obstructive sleep apnea (OSA), which is related to chronic intermittent hypoxia (CIH). OSA patients exhibit alterations in discrimination, identification and odor detection threshold. These olfactory functions strongly rely on neuronal processing within the main olfactory bulb (MOB). However, a direct evaluation of the effects of controlled CIH on olfaction and MOB network activity has not been performed. Here, we used electrophysiological field recordings in vivo to evaluate the effects of 21-day-long CIH on MOB network activity and its response to odors. In addition, we assessed animals´ olfaction with the buried food and habituation/dishabituation tests. We found that mice exposed to CIH show alterations in MOB spontaneous activity in vivo, consisting of a reduction in beta and gamma frequency bands power along with an increase in the theta band power. Likewise, the MOB was less responsive to odor stimulation, since the proportional increase of the power of its population activity in response to four different odorants was smaller than the one observed in control animals. These CIH-induced MOB functional alterations correlate with a reduction in the ability to detect, habituate and discriminate olfactory stimuli. Our findings indicate that CIH generates alterations in the MOB neural network, which could be involved in the olfactory deterioration in patients with OSA.
Collapse
Affiliation(s)
- Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico.
| |
Collapse
|
8
|
Parmiani P, Lucchetti C, Franchi G. The effects of olfactory bulb removal on single-pellet skilled reaching task in rats. Eur J Neurosci 2020; 53:827-840. [PMID: 33249662 DOI: 10.1111/ejn.15066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
We focused on how the rat uses olfactory cues in a single-pellet reaching task, which is composed of three successive learned responses, Orient, Transport, and Withdrawal. Orient comprised: front wall detection, slot localisation, and nose poke until reach start. High-speed video-recording enabled us to describe the temporal features of this sequence in controls vs. 3-5 and 12-14 days after bilateral bulbectomy in trials with (P trial) vs. without (no-P trial) pellet. In controls, the full sequence was complete in P trials, while it was interrupted after Orient in no P-trials. After bulbectomy, the full sequence was seen in both P and no-P trials at days 3-5 and 12-14 and there was an increase in Orient duration due to the increased time in slot/shelf localisation. Unlike in controls, in anosmic rats, the first nose contact with the front wall took place below the slot/shelf level, and the number of nose touches together with the number of whisker cycles was significantly higher at 3-5 but not at 12-14 days. The relationship between nose touches and whisker cycles was linear in all experimental conditions. Bulbectomy resulted in no changes in the Transport duration or the time the paw spent out of the slot. These findings suggest that olfaction allows the animal to orient itself in pellet localisation, and offers insight into the contribution of olfaction during different stages of natural behaviour in skilled reaching task.
Collapse
Affiliation(s)
- Pierantonio Parmiani
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy.,Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Cristina Lucchetti
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Fourcaud-Trocmé N, Lefèvre L, Garcia S, Messaoudi B, Buonviso N. High beta rhythm amplitude in olfactory learning signs a well-consolidated and non-flexible behavioral state. Sci Rep 2019; 9:20259. [PMID: 31889074 PMCID: PMC6937317 DOI: 10.1038/s41598-019-56340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/07/2019] [Indexed: 02/04/2023] Open
Abstract
Beta rhythm (15-30 Hz) is a major candidate underlying long-range communication in the brain. In olfactory tasks, beta activity is strongly modulated by learning but its condition of expression and the network(s) responsible for its generation are unclear. Here we analyzed the emergence of beta activity in local field potentials recorded from olfactory, sensorimotor and limbic structures of rats performing an olfactory task. Rats performed successively simple discrimination, rule transfer, memory recall tests and contingency reversal. Beta rhythm amplitude progressively increased over learning in most recorded areas. Beta amplitude reduced to baseline when new odors were introduced, but remained high during memory recall. Intra-session analysis showed that even expert rats required several trials to reach a good performance level, with beta rhythm amplitude increasing in parallel. Notably, at the beginning of the reversal task, beta amplitude remained high while performance was low and, in all tested animals, beta amplitude decreased before rats were able to learn the new contingencies. Connectivity analysis showed that beta activity was highly coherent between all structures where it was expressed. Overall, our results suggest that beta rhythm is expressed in a highly coherent network when context learning - including both odors and reward - is consolidated and signals behavioral inflexibility.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France.
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Samuel Garcia
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Belkacem Messaoudi
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| |
Collapse
|
10
|
Courtiol E, Buonviso N, Litaudon P. Odorant features differentially modulate beta/gamma oscillatory patterns in anterior versus posterior piriform cortex. Neuroscience 2019; 409:26-34. [PMID: 31022464 DOI: 10.1016/j.neuroscience.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/01/2022]
Abstract
Oscillatory activity is a prominent characteristic of the olfactory system. We previously demonstrated that beta and gamma oscillations occurrence in the olfactory bulb (OB) is modulated by the physical properties of the odorant. However, it remains unknown whether such odor-related modulation of oscillatory patterns is maintained in the piriform cortex (PC) and whether those patterns are similar between the anterior PC (aPC) and posterior PC (pPC). The present study was designed to analyze how different odorant molecular features can affect the local field potential (LFP) oscillatory signals in both the aPC and the pPC in anesthetized rats. As reported in the OB, three oscillatory patterns were observed: standard pattern (gamma + beta), gamma-only and beta-only patterns. These patterns occurred with significantly different probabilities in the two PC areas. We observed that odor identity has a strong influence on the probability of occurrence of LFP beta and gamma oscillatory activity in the aPC. Thus, some odor coding mechanisms observed in the OB are retained in the aPC. By contrast, probability of occurrence of different oscillatory patterns is homogeneous in the pPC with beta-only pattern being the most prevalent one for all the different odor families. Overall, our results confirmed the functional heterogeneity of the PC with its anterior part tightly coupled with the OB and mainly encoding odorant features whereas its posterior part activity is not correlated with odorant features but probably more involved in associative and multi-sensory encoding functions.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
11
|
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing. J Neurosci 2017; 36:7750-67. [PMID: 27445151 DOI: 10.1523/jneurosci.0569-16.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Olfactory system beta (15-35 Hz) and gamma (40-110 Hz) oscillations of the local field potential in mammals have both been linked to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with gamma dominating the early odor sampling period (2-4 sniffs) and beta dominating later. The relative power and coherence of both oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across tasks. SIGNIFICANCE STATEMENT Olfactory system gamma (40-110 Hz) and beta (15-35 Hz) oscillations of the local field potential indicate different neural firing statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning, showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every ∼250 ms. Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli.
Collapse
|
12
|
Loris ZB, Danzi M, Sick J, Dietrich WD, Bramlett HM, Sick T. Automated approach to detecting behavioral states using EEG-DABS. Heliyon 2017; 3:e00344. [PMID: 28725869 PMCID: PMC5507012 DOI: 10.1016/j.heliyon.2017.e00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022] Open
Abstract
Electrocorticographic (ECoG) signals represent cortical electrical dipoles generated by synchronous local field potentials that result from simultaneous firing of neurons at distinct frequencies (brain waves). Since different brain waves correlate to different behavioral states, ECoG signals presents a novel strategy to detect complex behaviors. We developed a program, EEG Detection Analysis for Behavioral States (EEG-DABS) that advances Fast Fourier Transforms through ECoG signals time series, separating it into (user defined) frequency bands and normalizes them to reduce variability. EEG-DABS determines events if segments of an experimental ECoG record have significantly different power bands than a selected control pattern of EEG. Events are identified at every epoch and frequency band and then are displayed as output graphs by the program. Certain patterns of events correspond to specific behaviors. Once a predetermined pattern was selected for a behavioral state, EEG-DABS correctly identified the desired behavioral event. The selection of frequency band combinations for detection of the behavior affects accuracy of the method. All instances of certain behaviors, such as freezing, were correctly identified from the event patterns generated with EEG-DABS. Detecting behaviors is typically achieved by visually discerning unique animal phenotypes, a process that is time consuming, unreliable, and subjective. EEG-DABS removes variability by using defined parameters of EEG/ECoG for a desired behavior over chronic recordings. EEG-DABS presents a simple and automated approach to quantify different behavioral states from ECoG signals.
Collapse
Affiliation(s)
- Zachary B Loris
- Department of Neurological Surgery, 1095 NW 14th Terrace, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.,Neuroscience Program, 1120 NW 14th Street, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Mathew Danzi
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.,Neuroscience Program, 1120 NW 14th Street, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,Center for Computational Science, University of Miami, Miami, Florida, 33146, USA
| | - Justin Sick
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, 1095 NW 14th Terrace, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.,Neuroscience Program, 1120 NW 14th Street, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, 1095 NW 14th Terrace, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.,Department of Neurology, 1150 NW 14th Street, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, 1201 NW 16th Street, Miami, Florida, 33125, USA
| | - Thomas Sick
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.,Department of Neurology, 1150 NW 14th Street, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.,Neuroscience Program, 1120 NW 14th Street, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| |
Collapse
|
13
|
Zou H, Liu M, Luan Y, Xie Q, Cheng Z, Zhao G, Jin M, Guo N, Jin GJ, Yu L. Pattern of novel object exploration in cynomolgus monkey Macaca fascicularis. J Med Primatol 2017; 46:19-24. [PMID: 28121006 DOI: 10.1111/jmp.12251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Primates exhibit substantial capacity for behavioral innovation, expanding the diversity of their behavioral repertoires, and benefiting both individual survival and species development in evolution. Novel object exploration is an integral part of behavioral innovation. Thus, qualitative and quantitative analysis of novel object exploration helps to better understand behavioral innovation. METHODS To study the pattern of novel object exploration, two different sized balls were sequentially introduced to singly caged cynomolgus monkeys. Two aspects of monkeys' behaviors were analyzed: the types of motor activities in toy playing and whether there is an orderly sequence of such motor activities during novelty exploration. RESULTS Four types of behavioral activities (oral contact, gross and fine forelimb motor, and hind limb motor) followed a pattern: first forelimb gross motor and oral contact, followed by forelimb fine motor and hind limb activities. Oral contact appeared to be an important behavior in monkeys' repertoire of novelty exploratory behaviors, both as an early appearing activity, and showing a consistent pattern of high cumulative time for two different novel objects. CONCLUSIONS These results provide a profile of novel object exploratory behaviors in cynomolgus monkeys, contributing to a better understanding of this aspect of behavioral innovation.
Collapse
Affiliation(s)
- Hong Zou
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming Liu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Luan
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinglian Xie
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiheng Cheng
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meilei Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,ShanghaiBio Corporation, Shanghai, China
| | | | - Lei Yu
- Department of Genetics and Center of Alcohol Studies, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
14
|
Kay LM. How brains create the world: The dynamical legacy of Walter J Freeman in olfactory system physiology. CHAOS AND COMPLEXITY LETTERS 2017; 11:41-47. [PMID: 30686946 PMCID: PMC6344053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Leslie M Kay
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, Chicago IL 60637
| |
Collapse
|
15
|
Wianda E, Ross B. Detecting neuromagnetic synchrony in the presence of noise. J Neurosci Methods 2016; 262:41-55. [PMID: 26777472 DOI: 10.1016/j.jneumeth.2016.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Synchrony between neuroelectric oscillations in distant brain areas is currently used as an indicator of functional connectivity between the involved neural substrates. Coherence measures, which quantify synchrony, are affected by concurrent brain activities, commonly subsumed as noise. NEW METHOD Using Monte-Carlo simulation, we analysed the properties of circular statistics and how those are affected by noise. We considered three different models of neuroelectric signal generation, which are an additive model, phase-reset, and reciprocal phase-interaction. Using the receiver-operating characteristic method, we compared the performances of currently implemented algorithms for coherence detection such as phase-coherence or phase-locking factor, magnitude-squared coherence, and phase-lagging index, all based on circular statistics, and a more general approach to synchrony, using measures of mutual information. We compared inter-trial coherence as a method for signal detection with coherence between multiple sources as measure of source interaction and connectivity. RESULTS Charts of performance characteristics showed that the choice of methods depend on the underlying signal generation model. Detection of coherence requires in general a higher signal-to-noise ratio than detection of the signal itself, and again, the difference in performance depends strongly on the underlying model of signal generation. COMPARISON WITH EXISTING METHODS Previous comparisons of the performances of different algorithms for signal detection and coherence have not considered systematically the underlying neural generation mechanisms. CONCLUSION Detection of coherence generated by additive signals or a phase-reset requires largely higher signal-to-noise ratio compared to signal detection. Only in case of true phase interaction, signal detection and coherence measures are similarly sensitive.
Collapse
Affiliation(s)
- Elvis Wianda
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada M6A 2E1; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9.
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada M6A 2E1; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9.
| |
Collapse
|
16
|
Kay LM. Olfactory system oscillations across phyla. Curr Opin Neurobiol 2014; 31:141-7. [PMID: 25460070 DOI: 10.1016/j.conb.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/14/2014] [Accepted: 10/06/2014] [Indexed: 11/30/2022]
Abstract
Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, 940 E 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Martin C, Ravel N. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks? Front Behav Neurosci 2014; 8:218. [PMID: 25002840 PMCID: PMC4066841 DOI: 10.3389/fnbeh.2014.00218] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.
Collapse
Affiliation(s)
- Claire Martin
- Laboratory Imagerie et Modélisation en Neurobiologie et Cancérologie, CNRS UMR 8165, Université Paris Sud, Université Paris Diderot Orsay, France
| | - Nadine Ravel
- Team "Olfaction: Du codage à la mémoire," Centre de Recherche en Neurosciences de Lyon CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| |
Collapse
|
18
|
Broberg M, Pope KJ, Olsson T, Shuttleworth CW, Willoughby JO. Spreading depression: Evidence of five electroencephalogram phases. J Neurosci Res 2014; 92:1384-94. [DOI: 10.1002/jnr.23412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Marita Broberg
- Center for Neuroscience and Department of Neurology; Flinders University; Adelaide South Australia Australia
| | - Kenneth J. Pope
- School of Informatics and Engineering; Flinders University; Adelaide South Australia Australia
| | - Torsten Olsson
- Department of Signals and Systems; Chalmers University of Technology; Göteborg Sweden
| | - C. William Shuttleworth
- Department of Neurosciences; University of New Mexico School of Medicine; Albuquerque New Mexico
| | - John O. Willoughby
- Center for Neuroscience and Department of Neurology; Flinders University; Adelaide South Australia Australia
| |
Collapse
|
19
|
Abstract
Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, Musienko P, Minev IR, Lacour SP, Millán JDR, Micera S, Courtine G. Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res 2013; 78:21-9. [PMID: 24135130 DOI: 10.1016/j.neures.2013.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 01/20/2023]
Abstract
In this conceptual review, we highlight our strategy for, and progress in the development of corticospinal neuroprostheses for restoring locomotor functions and promoting neural repair after thoracic spinal cord injury in experimental animal models. We specifically focus on recent developments in recording and stimulating neural interfaces, decoding algorithms, extraction of real-time feedback information, and closed-loop control systems. Each of these complex neurotechnologies plays a significant role for the design of corticospinal neuroprostheses. Even more challenging is the coordinated integration of such multifaceted technologies into effective and practical neuroprosthetic systems to improve movement execution, and augment neural plasticity after injury. In this review we address our progress in rodent animal models to explore the viability of a technology-intensive strategy for recovery and repair of the damaged nervous system. The technical, practical, and regulatory hurdles that lie ahead along the path toward clinical applications are enormous - and their resolution is uncertain at this stage. However, it is imperative that the discoveries and technological developments being made across the field of neuroprosthetics do not stay in the lab, but instead reach clinical fruition at the fastest pace possible.
Collapse
Affiliation(s)
- David Borton
- Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Bonizzato
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Janine Beauparlant
- Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jack DiGiovanna
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eduardo M Moraud
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Nikolaus Wenger
- Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pavel Musienko
- Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ivan R Minev
- Laboratory for Soft Bioelectronic Interfaces, Center for Neuroprosthetics, IMT/IBI, EPFL, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Center for Neuroprosthetics, IMT/IBI, EPFL, Switzerland
| | - José del R Millán
- Laboratory for Non-Invasive Brain-Machine Interface, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
21
|
Tahon K, Wijnants M, De Schutter E. The RAT-ROTADRUM: a reaction time task depending on a continuous stream of tactile sensory information to the rat. J Neurosci Methods 2011; 200:153-63. [PMID: 21767567 DOI: 10.1016/j.jneumeth.2011.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 11/24/2022]
Abstract
Rats running in their natural habitat monitor the immediate environment with their micro- and macrovibrissae as if reading Braille. These sensory inputs can serve as a cue to change their ongoing motor patterns, for instance to avoid obstacles. To mimic this behavior in a laboratory setting we present a novel behavioral test design. It includes a self-controlled stimulus presentation with sensory discrimination acting as a cue to redirect motor behavior. To acquire the final paradigm, rats undergo a sequenced training protocol. Extracellular neuronal activity was recorded during task performance in the final paradigm. Together with this behavioral test box we present a flexible, easy to build and affordable modular stimulus control system.
Collapse
Affiliation(s)
- Koen Tahon
- Laboratory for Theoretical Neurobiology, University of Antwerp, Belgium.
| | | | | |
Collapse
|
22
|
Wilson DA, Yan X. Sleep-like states modulate functional connectivity in the rat olfactory system. J Neurophysiol 2010; 104:3231-9. [PMID: 20861440 DOI: 10.1152/jn.00711.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was an examination of state-dependent functional connectivity during spontaneous activity between the piriform cortex and its upstream and downstream connections. Rats were anesthetized with urethan and allowed to spontaneously cycle between fast- and slow-wave states similar to fast- and slow-wave sleep states. Local field potential recordings were made from the olfactory bulb, piriform cortex, dorsal hippocampus, amygdala, and primary visual cortex. The results demonstrate that during slow-wave sleep-like states, when the piriform cortex shows reduced sensitivity to odor input via the olfactory bulb, there is enhanced coherence with other forebrain structures. Granger causality analyses suggest that the link between piriform cortical and hippocampal activity during slow-wave state is in the direction of the hippocampus to the piriform cortex rather than the reverse. The results suggest that slow-wave sleep-like states may provide an opportunity for the transfer and/or consolidation of information related to odor memories, specifically at a time when the piriform cortex is less sensitive to sensory input.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | | |
Collapse
|
23
|
Abstract
Previous studies in waking animals have shown that the frequency structure of olfactory bulb (OB) local field potential oscillations is very similar across the OB, but large low-impedance surface electrodes may have favored highly coherent events, averaging out local inhomogeneities. We tested the hypothesis that OB oscillations represent spatially homogeneous phenomena at all scales. We used pairs of concentric electrodes (200 μm outer shaft surrounding an inner 2-3 μm recording site) beginning on the dorsal OB at anterior and medial locations in urethane-anesthetized rats and measured local field potential responses at successive 200 μm depths before and during odor stimulation. Within locations (outer vs. inner lead on a single probe), on the time scale of 0.5 s, coherence in all frequency bands was significant, but on larger time scales (10 s), only respiratory (1-4 Hz) and beta (15-30 Hz) oscillations showed prominent peaks. Across locations, coherence in all frequency bands was significantly lower for both sizes of electrodes at all depths but the most superficial 600 μm. Near the pial surface, coherence across outer (larger) electrodes at different sites was equal to coherence across outer and inner (small) electrodes within a single site and larger than coherence across inner electrodes at different sites. Overall, the beta band showed the largest coherence across bulbar sites and electrodes. Therefore larger electrodes at the surface of the OB favor globally coherent events, and at all depths, coherence depends on the type of oscillation (beta or gamma) and duration of the analysis window.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
24
|
Adhikari A, Sigurdsson T, Topiwala MA, Gordon JA. Cross-correlation of instantaneous amplitudes of field potential oscillations: a straightforward method to estimate the directionality and lag between brain areas. J Neurosci Methods 2010; 191:191-200. [PMID: 20600317 DOI: 10.1016/j.jneumeth.2010.06.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 11/28/2022]
Abstract
Researchers performing multi-site recordings are often interested in identifying the directionality of functional connectivity and estimating lags between sites. Current techniques for determining directionality require spike trains or involve multivariate autoregressive modeling. However, it is often difficult to sample large numbers of spikes from multiple areas simultaneously, and modeling can be sensitive to noise. A simple, model-independent method to estimate directionality and lag using local field potentials (LFPs) would be of general interest. Here we describe such a method using the cross-correlation of the instantaneous amplitudes of filtered LFPs. The method involves four steps. First, LFPs are band-pass filtered; second, the instantaneous amplitude of the filtered signals is calculated; third, these amplitudes are cross-correlated and the lag at which the cross-correlation peak occurs is determined; fourth, the distribution of lags obtained is tested to determine if it differs from zero. This method was applied to LFPs recorded from the ventral hippocampus and the medial prefrontal cortex in awake behaving mice. The results demonstrate that the hippocampus leads the mPFC, in good agreement with the time lag calculated from the phase locking of mPFC spikes to vHPC LFP oscillations in the same dataset. We also compare the amplitude cross-correlation method to partial directed coherence, a commonly used multivariate autoregressive model-dependent method, and find that the former is more robust to the effects of noise. These data suggest that the cross-correlation of instantaneous amplitude of filtered LFPs is a valid method to study the direction of flow of information across brain areas.
Collapse
Affiliation(s)
- Avishek Adhikari
- Department of Biological Sciences, Columbia University, New York, NY 10032, United States
| | | | | | | |
Collapse
|
25
|
Kay LM, Beshel J. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol 2010; 104:829-39. [PMID: 20538778 DOI: 10.1152/jn.00166.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (approximately 70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15-35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
26
|
Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 2010; 14:277-90. [PMID: 20493761 DOI: 10.1016/j.tics.2010.04.004] [Citation(s) in RCA: 1449] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/04/2023]
Abstract
An understanding of how the human brain produces cognition ultimately depends on knowledge of large-scale brain organization. Although it has long been assumed that cognitive functions are attributable to the isolated operations of single brain areas, we demonstrate that the weight of evidence has now shifted in support of the view that cognition results from the dynamic interactions of distributed brain areas operating in large-scale networks. We review current research on structural and functional brain organization, and argue that the emerging science of large-scale brain networks provides a coherent framework for understanding of cognition. Critically, this framework allows a principled exploration of how cognitive functions emerge from, and are constrained by, core structural and functional networks of the brain.
Collapse
|
27
|
Robson J, Mehta N, Polcz JE, Hermer L. Toward the development of a sensitive, pre-clinical screen for neurological diseases from spontaneous neural coordination in juvenile and young–adult C57BK6 mice. Neurosci Lett 2010; 471:74-8. [DOI: 10.1016/j.neulet.2010.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/31/2009] [Accepted: 01/10/2010] [Indexed: 11/28/2022]
|
28
|
Gourévitch B, Kay LM, Martin C. Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task. J Neurophysiol 2010; 103:2633-41. [PMID: 20164392 DOI: 10.1152/jn.01075.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.
Collapse
Affiliation(s)
- Boris Gourévitch
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8195, Centre de Neurosciences Paris-Sud, Orsay, France
| | | | | |
Collapse
|
29
|
Hermer-Vazquez L, Moshtagh N. Rats' learning of a new motor skill: insight into the evolution of motor sequence learning. Behav Processes 2009; 81:50-9. [PMID: 19429196 DOI: 10.1016/j.beproc.2008.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/19/2022]
Abstract
Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Linda Hermer-Vazquez
- Psychology Department, University of Florida, Gainesville, FL 32611, United States.
| | | |
Collapse
|
30
|
Hermer-Vazquez R, Hermer-Vazquez L, Srinivasan S. A putatively novel form of spontaneous coordination in neural activity. Brain Res Bull 2009; 79:6-14. [PMID: 19167468 DOI: 10.1016/j.brainresbull.2008.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
We simultaneously recorded local field potentials from three sites along the olfactory-entorhinal axis in rats lightly anesthetized with isoflurane, as part of another experiment. While analyzing the initial data from that experiment with spectrograms, we discovered a potentially novel form of correlated neural activity, with near-simultaneous occurrence across the three widely separated brain sites. After validating their existence further, we named these events Synchronous Frequency Bursts (SFBs). Here we report our initial investigations into their properties and their potential functional significance. In Experiment 1, we found that SFBs have highly regular properties, consisting of brief (approximately 250 ms), high amplitude bursts of LFP energy spanning frequency ranges from the delta band (1-4 Hz) to at least the low gamma band (30-50 Hz). SFBs occurred almost simultaneously across recording sites, usually with onsets <25 ms apart, and there was no clear pattern of temporal leading or lagging among the sites. While the SFBs had fairly typical, exponentially decaying power spectral density plots, their coherence structure was unusual, with high peaks in several narrow frequency ranges and little coherence in other bands. In Experiment 2, we found that SFBs occurred far more often under light anesthesia than deeper anesthetic states, and were especially prevalent as the animals regained consciousness. Finally, in Experiment 3 we showed that SFBs occur simultaneously at a significant rate across brain sites from putatively different functional subsystems--olfactory versus motor pathways. We suggest that SFBs do not carry information per se, but rather, play a role in coordinating activity in different frequency bands, potentially brain-wide, as animals progress from sleep or anesthesia toward full consciousness.
Collapse
Affiliation(s)
- Raymond Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
31
|
Kay LM, Beshel J, Brea J, Martin C, Rojas-Líbano D, Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci 2009; 32:207-14. [PMID: 19243843 DOI: 10.1016/j.tins.2008.11.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/01/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Olfactory system oscillations play out with beautiful temporal and behavioral regularity on the oscilloscope and seem to scream 'meaning'. Always there is the fear that, although attractive, these symbols of dynamic regularity might be just seductive epiphenomena. There are now many studies that have isolated some of the neural mechanisms involved in these oscillations, and recent work argues that they are functional and even necessary at the physiological and cognitive levels. However, much remains to be done for a full understanding of their functions.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|