1
|
Hirakawa H, Terao T. The genetic association between bipolar disorder and dementia: a qualitative review. Front Psychiatry 2024; 15:1414776. [PMID: 39228919 PMCID: PMC11368786 DOI: 10.3389/fpsyt.2024.1414776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and energy and recurrent episodes of mania/hypomania and depression. Bipolar disorder may be regarded as a neuro-progressive disorder in which repeated mood episodes may lead to cognitive decline and dementia development. In the current review, we employed genome-wide association studies to comprehensively investigate the genetic variants associated with bipolar disorder and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar disorder and 19 on dementia. The results showed that the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A may be associated with the neuro-progression of bipolar disorder to dementia. Further genetic studies are needed to comprehensively clarify the role of genes in cognitive decline and the development of dementia in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | |
Collapse
|
2
|
Turovsky EA, Baryshev AS, Plotnikov EY. Selenium Nanoparticles in Protecting the Brain from Stroke: Possible Signaling and Metabolic Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:160. [PMID: 38251125 PMCID: PMC10818530 DOI: 10.3390/nano14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Strokes rank as the second most common cause of mortality and disability in the human population across the world. Currently, available methods of treating or preventing strokes have significant limitations, primarily the need to use high doses of drugs due to the presence of the blood-brain barrier. In the last decade, increasing attention has been paid to the capabilities of nanotechnology. However, the vast majority of research in this area is focused on the mechanisms of anticancer and antiviral effects of nanoparticles. In our opinion, not enough attention is paid to the neuroprotective mechanisms of nanomaterials. In this review, we attempted to summarize the key molecular mechanisms of brain cell damage during ischemia. We discussed the current literature regarding the use of various nanomaterials for the treatment of strokes. In this review, we examined the features of all known nanomaterials, the possibility of which are currently being studied for the treatment of strokes. In this regard, the positive and negative properties of nanomaterials for the treatment of strokes have been identified. Particular attention in the review was paid to nanoselenium since selenium is a vital microelement and is part of very important and little-studied proteins, e.g., selenoproteins and selenium-containing proteins. An analysis of modern studies of the cytoprotective effects of nanoselenium made it possible to establish the mechanisms of acute and chronic protective effects of selenium nanoparticles. In this review, we aimed to combine all the available information regarding the neuroprotective properties and mechanisms of action of nanoparticles in neurodegenerative processes, especially in cerebral ischemia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
3
|
Chandran S, Binninger D. Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer's Disease. Antioxidants (Basel) 2023; 13:21. [PMID: 38275641 PMCID: PMC10812627 DOI: 10.3390/antiox13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
A major contributor to dementia seen in aging is Alzheimer's disease (AD). Amyloid beta (Aβ), a main component of senile plaques (SPs) in AD, induces neuronal death through damage to cellular organelles and structures, caused by oxidation of important molecules such as proteins by reactive oxygen species (ROS). Hyperphosphorylation and accumulation of the protein tau in the microtubules within the brain also promote ROS production. Methionine, a residue of proteins, is particularly sensitive to oxidation by ROS. One of the enzyme systems that reverses the oxidative damage in mammalian cells is the enzyme system known as Methionine Sulfoxide Reductases (MSRs). The components of the MSR system, namely MSRA and MSRB, reduce oxidized forms of methionine (Met-(o)) in proteins back to methionine (Met). Furthermore, the MSRs scavenge ROS by allowing methionine residues in proteins to utilize their antioxidant properties. This review aims to improve the understanding of the role of the MSR system of enzymes in reducing cellular oxidative damage and AD pathogenesis, which may contribute to effective therapeutic approaches for AD by targeting the MSR system.
Collapse
Affiliation(s)
- Sanjana Chandran
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David Binninger
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
4
|
Selenium and human nervous system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Tarrago L, Kaya A, Kim HY, Manta B, Lee BC, Gladyshev VN. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med 2022; 191:228-240. [PMID: 36084791 DOI: 10.1016/j.freeradbiomed.2022.08.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.
Collapse
Affiliation(s)
- Lionel Tarrago
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bruno Manta
- Laboratorio de Genomica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, 11440, Montevideo, Uruguay; Catedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Las Heras 1925, 11600, Montevideo, Uruguay
| | - Byung-Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
6
|
Zheng Y, Wang Z, Xue D, Tao M, Jiang F, Jia B, Li Y, Huang G, Hu Z. Characterization of a new selenoprotein methionine sulfoxide reductase from Haematococcus pluvialis and its antioxidant activity in response to high light intensity, hydrogen peroxide, glyphosate, and cadmium exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113903. [PMID: 35870349 DOI: 10.1016/j.ecoenv.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Selenium incorporates into selenocysteine (Sec) which is a key component of selenoproteins implicated in antioxidant defense and redox homeostasis. Methionine sulfoxide reductases (Msr) play crucial roles in cellular defense against environmental stress. Whereas mammals have the MsrB selenoprotein form, unicellular organisms have MsrA. The Sec residue at the conserved catalytic sites of selenoprotein MsrA confers a metabolic advantage over the non-selenoprotein type MsrA. In the present study, the novel selenoprotein HpMsrA from Haematococcus pluvialis was cloned by the rapid amplification of cDNA ends and transformed into the model green alga Chlamydomonas reinhardtii. Alignment of homologs revealed the presence of the conserved catalytic domain GUFW and showed that the HpMsrA protein comprises Sec (U) at the N-terminus but no recycled Cys at the C-terminus. We studied the response of HpMsrA expression to selenite, high light intensity, hydrogen peroxide, cadmium nitrate, and glyphosate exposure via real-time quantitative PCR and enzyme activity analysis. The results demonstrated that HpMsrA protects cellular proteins against oxidative and environmental stressors. Compared with wild type C. reinhardtii, the transformant exhibited a superior antioxidant ability. The discoveries made herein shed light on the antioxidant physiology and environmental stress resistance mechanisms of the selenoproteins in microalgae. This information may aid in conducting environmental risk assessments of aquatic ecosystems involving microalgae known to respond rapidly and quantitatively to abiotic stress factors promoting excessive reactive oxygen species generation.
Collapse
Affiliation(s)
- Yihong Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ziyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Dengfeng Xue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ming Tao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Jia
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Youhao Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
7
|
Protective Effects against the Development of Alzheimer’s Disease in an Animal Model through Active Immunization with Methionine-Sulfoxide Rich Protein Antigen. Antioxidants (Basel) 2022; 11:antiox11040775. [PMID: 35453459 PMCID: PMC9029927 DOI: 10.3390/antiox11040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
The brain during Alzheimer’s disease (AD) is under severe oxidative attack by reactive oxygen species that may lead to methionine oxidation. Oxidation of the sole methionine (Met35) of beta-amyloid (Aβ), and possibly methionine residues of other extracellular proteins, may be one of the earliest events contributing to the toxicity of Aβ and other proteins in vivo. In the current study, we immunized transgenic AD (APP/PS1) mice at 4 months of age with a recombinant methionine sulfoxide (MetO)-rich protein from Zea mays (antigen). This treatment induced the production of anti-MetO antibody in blood-plasma that exhibits a significant titer up to at least 10 months of age. Compared to the control mice, the antigen-injected mice exhibited the following significant phenotypes at 10 months of age: better short and long memory capabilities; reduced Aβ levels in both blood-plasma and brain; reduced Aβ burden and MetO accumulations in astrocytes in hippocampal and cortical regions; reduced levels of activated microglia; and elevated antioxidant capabilities (through enhanced nuclear localization of the transcription factor Nrf2) in the same brain regions. These data collected in a preclinical AD model are likely translational, showing that active immunization could give a possibility of delaying or preventing AD onset. This study represents a first step toward the complex way of starting clinical trials in humans and conducting the further confirmations that are needed to go in this direction.
Collapse
|
8
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
9
|
Bettinger J, Ghaemmaghami S. Methionine oxidation within the prion protein. Prion 2020; 14:193-205. [PMID: 32744136 PMCID: PMC7518762 DOI: 10.1080/19336896.2020.1796898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/01/2022] Open
Abstract
Prion diseases are characterized by the self-templated misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc). The detailed molecular basis of the misfolding and aggregation of PrPC remains incompletely understood. It is believed that the transient misfolding of PrPC into partially structured intermediates precedes the formation of insoluble protein aggregates and is a critical component of the prion misfolding pathway. A number of environmental factors have been shown to induce the destabilization of PrPC and promote its initial misfolding. Recently, oxidative stress and reactive oxygen species (ROS) have emerged as one possible mechanism by which the destabilization of PrPC can be induced under physiological conditions. Methionine residues are uniquely vulnerable to oxidation by ROS and the formation of methionine sulfoxides leads to the misfolding and subsequent aggregation of PrPC. Here, we provide a review of the evidence for the oxidation of methionine residues in PrPC and its potential role in the formation of pathogenic prion aggregates.
Collapse
Affiliation(s)
- John Bettinger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
10
|
The Antioxidant Enzyme Methionine Sulfoxide Reductase A (MsrA) Interacts with Jab1/CSN5 and Regulates Its Function. Antioxidants (Basel) 2020; 9:antiox9050452. [PMID: 32456285 PMCID: PMC7278660 DOI: 10.3390/antiox9050452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
Methionine sulfoxide (MetO) is an oxidative posttranslational modification that primarily occurs under oxidative stress conditions, leading to alteration of protein structure and function. This modification is regulated by MetO reduction through the evolutionarily conserved methionine sulfoxide reductase (Msr) system. The Msr type A enzyme (MsrA) plays an important role as a cellular antioxidant and promotes cell survival. The ubiquitin- (Ub) like neddylation pathway, which is controlled by the c-Jun activation domain-binding protein-1 (Jab1), also affects cell survival. Jab1 negatively regulates expression of the cell cycle inhibitor cyclin-dependent kinase inhibitor 1B (P27) through binding and targeting P27 for ubiquitination and degradation. Here we report the finding that MsrA interacts with Jab1 and enhances Jab1′s deneddylase activity (removal of Nedd8). In turn, an increase is observed in the level of deneddylated Cullin-1 (Cul-1, a component of E3 Ub ligase complexes). Furthermore, the action of MsrA increases the binding affinity of Jab1 to P27, while MsrA ablation causes a dramatic increase in P27 expression. Thus, an interaction between MsrA and Jab1 is proposed to have a positive effect on the function of Jab1 and to serve as a means to regulate cellular resistance to oxidative stress and to enhance cell survival.
Collapse
|
11
|
Fan H, Li D, Guan X, Yang Y, Yan J, Shi J, Ma R, Shu Q. MsrA Suppresses Inflammatory Activation of Microglia and Oxidative Stress to Prevent Demyelination via Inhibition of the NOX2-MAPKs/NF-κB Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1377-1389. [PMID: 32308370 PMCID: PMC7147623 DOI: 10.2147/dddt.s223218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Introduction Demyelination causes neurological deficits involving visual, motor, sensory symptoms. Deregulation of several enzymes has been identified in demyelination, which holds potential for the development of treatment strategies for demyelination. However, the specific effect of methionine sulfoxide reductase A (MsrA) on demyelination remains unclear. Hence, this study aims to explore the effect of MsrA on oxidative stress and inflammatory response of microglia in demyelination. Methods Initially, we established a mouse model with demyelination induced by cuprizone and a cell model provoked by lipopolysaccharide (LPS). The expression of MsrA in wild-type (WT) and MsrA-knockout (MsrA-/-) mice were determined by RT-qPCR and Western blot analysis. In order to further explore the function of MsrA on inflammatory response, and oxidative stress in demyelination, we detected the expression of microglia marker Iba1, inflammatory factors TNF-α and IL-1β and intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) activity, as well as expression of the NOX2-MAPKs/NF-κB signaling pathway-related genes in MsrA-/- mice and LPS-induced microglia following different treatments. Results MsrA expression was downregulated in MsrA-/- mice. MsrA silencing was shown to produce severely injured motor coordination, increased expressions of Iba1, TNF-α, IL-1β, ROS and NOX2, and extent of ERK, p38, IκBα, and p65 phosphorylation, but reduced SOD activity. Conjointly, our study suggests that Tat-MsrA fusion protein can prevent the cellular inflammatory response and subsequent demyelination through negative regulation of the NOX2-MAPKs/NF-κB signaling pathway. Conclusion Our data provide a profound insight on the role of endogenous antioxidative defense systems such as MsrA in controlling microglial function.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Damiao Li
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Xinlei Guan
- Department of Pharmacy, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanhui Yang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Jian Shi
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Ranran Ma
- Department of Pharmacy, Ninth Hospital of Xi'an, Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, People's Republic of China
| | - Qing Shu
- Department of Pharmacy, Ninth Hospital of Xi'an, Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, People's Republic of China
| |
Collapse
|
12
|
Broc M, Hachemane M, Novelli M, Sourice M, Aussel L. Les bactéries, organismes de choix pour comprendre les mécanismes de réparation des protéines oxydées. Med Sci (Paris) 2020; 36:404-407. [DOI: 10.1051/medsci/2020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dans le cadre de l’unité d’enseignement « Rédiger en sciences » proposée par l’université d’Aix-Marseille, les étudiants du Master 2 de microbiologie se sont confrontés aux exigences de l’écriture scientifique.
Quatre thématiques leur ont été proposées : les virus géants, les systèmes de sécrétion, la motilité bactérienne et la réparation des protéines oxydées. Après un travail préparatoire effectué avec l’équipe pédagogique et les auteurs des publications originales, les étudiants, organisés en groupes de trois ou quatre, ont rédigé une Nouvelle soulignant les résultats majeurs et l’originalité des quatre articles étudiés. Complété par un entretien avec les chercheurs auteurs de ces articles, l’ensemble offre un éclairage original sur la compréhension du vivant dans le domaine de la microbiologie.
Collapse
|
13
|
Reiterer M, Schmidt-Kastner R, Milton SL. Methionine sulfoxide reductase (Msr) dysfunction in human brain disease. Free Radic Res 2019; 53:1144-1154. [PMID: 31775527 DOI: 10.1080/10715762.2019.1662899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research has shown that oxidative stress is strongly associated with aging, senescence and several diseases, including neurodegenerative and psychiatric disorders. Oxidative stress is caused by the overproduction of reactive oxygen species (ROS) that can be counteracted by both enzymatic and nonenzymatic antioxidants. One of these antioxidant mechanisms is the widely studied methionine sulfoxide reductase system (Msr). Methionine is one of the most easily oxidized amino acids and Msr can reverse this oxidation and restore protein function, with MsrA and MsrB reducing different stereoisomers. This article focuses on experimental and genetic research performed on Msr and its link to brain diseases. Studies on several model systems as well as genome-wide association studies are compiled to highlight the role of MSRA in schizophrenia, Alzheimer's disease, and Parkinson's disease. Genetic variation of MSRA may also contribute to the risk of psychosis, personality traits, and metabolic factors.
Collapse
Affiliation(s)
- Melissa Reiterer
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Sarah L Milton
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
14
|
Loss of MsrB1 perturbs spatial learning and long-term potentiation/long-term depression in mice. Neurobiol Learn Mem 2019; 166:107104. [PMID: 31672630 DOI: 10.1016/j.nlm.2019.107104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022]
Abstract
MsrB1 belongs to the methionine sulfoxide reductase family, it is also known as selenoprotein R for the sake of possessing a selenocysteine residue. It has been reported that MsrB1 could interact with actin, TRPM6, clusterin, and amyloid-beta in vitro. Thus, we presumed that MsrB1 may play an important role in central nervous system. To examine whether MsrB1 knockout has any effects on brain development or learning behavior, we carried out histological study on brains of MsrB1 deficient mice, and further tested spatial learning ability and long-term synaptic plasticity of these mice by using Morris water maze and electrophysiological methods. It was observed that loss of MsrB1 did not perturb the overall development of central nervous system except for the astrogliosis in hippocampus, however, it led mice to be incapable in spatial learning and severe impairments in LTP/LTD expression in CA1 of brain slices, along with the down-regulation of the synaptic proteins including PSD95, SYP, GluN2A and GluN2B, as well as the dramatic decrease of CaMKIIs phosphorylation at 286(287) compared with wild type mice. Taken together, these results suggest that MsrB1 is essential for mice spatial learning and LTP/LTD induction, and the MsrB1 related redox homeostasis may be involved in regulating the phosphorylation of CaMKIIs.
Collapse
|
15
|
Xiang XJ, Song L, Deng XJ, Tang Y, Min Z, Luo B, Wen QX, Li KY, Chen J, Ma YL, Zhu BL, Yan Z, Chen GJ. Mitochondrial methionine sulfoxide reductase B2 links oxidative stress to Alzheimer's disease-like pathology. Exp Neurol 2019; 318:145-156. [DOI: 10.1016/j.expneurol.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023]
|
16
|
The Oxidized Protein Repair Enzymes Methionine Sulfoxide Reductases and Their Roles in Protecting against Oxidative Stress, in Ageing and in Regulating Protein Function. Antioxidants (Basel) 2018; 7:antiox7120191. [PMID: 30545068 PMCID: PMC6316033 DOI: 10.3390/antiox7120191] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022] Open
Abstract
Cysteine and methionine residues are the amino acids most sensitive to oxidation by reactive oxygen species. However, in contrast to other amino acids, certain cysteine and methionine oxidation products can be reduced within proteins by dedicated enzymatic repair systems. Oxidation of cysteine first results in either the formation of a disulfide bridge or a sulfenic acid. Sulfenic acid can be converted to disulfide or sulfenamide or further oxidized to sulfinic acid. Disulfide can be easily reversed by different enzymatic systems such as the thioredoxin/thioredoxin reductase and the glutaredoxin/glutathione/glutathione reductase systems. Methionine side chains can also be oxidized by reactive oxygen species. Methionine oxidation, by the addition of an extra oxygen atom, leads to the generation of methionine sulfoxide. Enzymatically catalyzed reduction of methionine sulfoxide is achieved by either methionine sulfoxide reductase A or methionine sulfoxide reductase B, also referred as to the methionine sulfoxide reductases system. This oxidized protein repair system is further described in this review article in terms of its discovery and biologically relevant characteristics, and its important physiological roles in protecting against oxidative stress, in ageing and in regulating protein function.
Collapse
|
17
|
Deng Y, Jiang B, Rankin CL, Toyo-Oka K, Richter ML, Maupin-Furlow JA, Moskovitz J. Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radic Biol Med 2018; 129:600-607. [PMID: 30096435 PMCID: PMC6249068 DOI: 10.1016/j.freeradbiomed.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
The methionine sulfoxide reductase (Msr) system is known for its function in reducing protein-methionine sulfoxide to methionine. Recently, we showed that one member of the Msr system, MsrA, is involved in the ubiquitination-like process in Archaea. Here, the mammalian MsrA is demonstrated to mediate the ubiquitination of the 14-3-3 zeta protein and to promote the binding of 14-3-3 proteins to alpha synuclein in brain. MsrA was also found to enhance the ubiquitination and phosphorylation of Ser129 of alpha synuclein in brain. Furthermore, we demonstrate that, similarly to the archaeal MsrA, the mammalian MsrA can compete for capturing ubiquitin using the same active site it contains for methionine sulfoxide binding. Based on our previous observations showing that MsrA knockout mice have elevated expression levels of dopamine and 14-3-3 zeta and our current data, we propose that MsrA-dependent 14-3-3 zeta ubiquitination affects the regulation of alpha synuclein degradation and dopamine synthesis in the brain.
Collapse
Affiliation(s)
- Yue Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Beichen Jiang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Carolyn L Rankin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 186, Philadelphia, PA 19129, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Mark L Richter
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Julie A Maupin-Furlow
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 186, Philadelphia, PA 19129, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA.
| |
Collapse
|
18
|
Genetic regulation of longevity and age-associated diseases through the methionine sulfoxide reductase system. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1756-1762. [PMID: 30481589 DOI: 10.1016/j.bbadis.2018.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
Methionine sulfoxide reductase enzymes are a protective system against biological oxidative stress in aerobic organisms. Modifications to this antioxidant system have been shown to impact the lifespan of several model system organisms. In humans, methionine oxidation of critical proteins and deficiencies in the methionine sulfoxide reductase system have been linked to age-related diseases, including cancer and neurodegenerative disease. Substrates for methionine sulfoxide reductases have been reviewed multiple times, and are still an active area of discovery. In contrast, less is known about the genetic regulation of methionine sulfoxide reductases. In this review, we discuss studies on the genetic regulation of the methionine sulfoxide reductase system with relevance to longevity and age-related diseases. A better understanding of genetic regulation for methionine sulfoxide reductases may lead to new therapeutic approaches for age-related diseases in the future.
Collapse
|
19
|
The Functions of the Mammalian Methionine Sulfoxide Reductase System and Related Diseases. Antioxidants (Basel) 2018; 7:antiox7090122. [PMID: 30231496 PMCID: PMC6162418 DOI: 10.3390/antiox7090122] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/15/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
This review article describes and discusses the current knowledge on the general role of the methionine sulfoxide reductase (MSR) system and the particular role of MSR type A (MSRA) in mammals. A powerful tool to investigate the contribution of MSRA to molecular processes within a mammalian system/organism is the MSRA knockout. The deficiency of MSRA in this mouse model provides hints and evidence for this enzyme function in health and disease. Accordingly, the potential involvement of MSRA in the processes leading to neurodegenerative diseases, neurological disorders, cystic fibrosis, cancer, and hearing loss will be deliberated and evaluated.
Collapse
|
20
|
Oien DB, Garay T, Eckstein S, Chien J. Cisplatin and Pemetrexed Activate AXL and AXL Inhibitor BGB324 Enhances Mesothelioma Cell Death from Chemotherapy. Front Pharmacol 2018; 8:970. [PMID: 29375377 PMCID: PMC5768913 DOI: 10.3389/fphar.2017.00970] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) can promote or inhibit tumorigenesis. In mesothelioma, asbestos exposure to serous membranes induces ROS through iron content and chronic inflammation, and ROS promote cell survival signaling in mesothelioma. Moreover, a current chemotherapy regimen for mesothelioma consisting of a platinum and antifolate agent combination also induce ROS. Mesothelioma is notoriously chemotherapy-resistant, and we propose that ROS induced by cisplatin and pemetrexed may promote cell survival signaling pathways, which ultimately may contribute to chemotherapy resistance. In The Cancer Genome Atlas datasets, we found AXL kinase expression is relatively high in mesothelioma compared to other cancer samples. We showed that ROS induce the phosphorylation of AXL, which was blocked by the selective inhibitor BGB324 in VMC40 and P31 mesothelioma cells. We also showed that cisplatin and pemetrexed induce the phosphorylation of AXL and Akt, which was also blocked by BGB324 as well as by N-acetylcysteine antioxidant. AXL knockdown in these cells enhances sensitivity to cisplatin and pemetrexed. Similarly, AXL inhibitor BGB324 also enhances sensitivity to cisplatin and pemetrexed. Finally, higher synergy was observed when cells were pretreated with BGB324 before adding chemotherapy. These results demonstrate cisplatin and pemetrexed induce ROS that activate AXL, and blocking AXL activation enhances the efficacy of cisplatin and pemetrexed. These results suggest AXL inhibition combined with the current chemotherapy regimen may represent an effective strategy to enhance the efficacy of chemotherapy in mesothelioma. This is the first study, to our knowledge, on chemotherapy-induced activation of AXL and cell survival pathways associated with ROS signaling.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Molecular Medicine, Department of Internal Medicine, UNMHSC School of Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Tamás Garay
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Sarah Eckstein
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeremy Chien
- Division of Molecular Medicine, Department of Internal Medicine, UNMHSC School of Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, United States
| |
Collapse
|
21
|
Kecel-Gunduz S, Bicak B, Celik S, Akyuz S, Ozel AE. Structural and spectroscopic investigation on antioxidant dipeptide, l -Methionyl- l -Serine: A combined experimental and DFT study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Guan XL, Wu PF, Wang S, Zhang JJ, Shen ZC, Luo H, Chen H, Long LH, Chen JG, Wang F. Dimethyl sulfide protects against oxidative stress and extends lifespan via a methionine sulfoxide reductase A-dependent catalytic mechanism. Aging Cell 2017; 16:226-236. [PMID: 27790859 PMCID: PMC5334523 DOI: 10.1111/acel.12546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 02/06/2023] Open
Abstract
Methionine (Met) sulfoxide reductase A (MsrA) is a key endogenous antioxidative enzyme with longevity benefits in animals. Only very few approaches have been reported to enhance MsrA function. Recent reports have indicated that the antioxidant capability of MsrA may involve a Met oxidase activity that facilities the reaction of Met with reactive oxygen species (ROS). Herein, we used a homology modeling approach to search the substrates for the oxidase activity of MsrA. We found that dimethyl sulfide (DMS), a main metabolite that produced by marine algae, emerged as a good substrate for MsrA‐catalytic antioxidation. MsrA bounds to DMS and promoted its antioxidant capacity via facilitating the reaction of DMS with ROS through a sulfonium intermediate at residues Cys72, Tyr103, and Glu115, followed by the release of dimethyl sulfoxide (DMSO). DMS reduced the antimycin A‐induced ROS generation in cultured PC12 cells and alleviated oxidative stress. Supplement of DMS exhibited cytoprotection and extended longevity in both Caenorhabditis elegans and Drosophila. MsrA knockdown abolished the cytoprotective effect and the longevity benefits of DMS. Furthermore, we found that the level of physiologic DMS was at the low micromolar range in different tissues of mammals and its level decreased after aging. This study opened a new window to elucidate the biological role of DMS and other low‐molecular sulfides in the cytoprotection and aging.
Collapse
Affiliation(s)
- Xin-Lei Guan
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Department of Pharmacy; Wuhan Puai Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430033 China
| | - Peng-Fei Wu
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Sheng Wang
- School of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Juan-Juan Zhang
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Zu-Cheng Shen
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Han Luo
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Hao Chen
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Li-Hong Long
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Jian-Guo Chen
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
- The Collaborative Innovation Center for Brain Science; Wuhan 430030 China
| | - Fang Wang
- Department of Pharmacology; School of Basic Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST); Ministry of Education of China; Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province; Wuhan 430030 China
- Laboratory of Neuropsychiatric Diseases; The Institute of Brain Research; Huazhong University of Science and Technology; Wuhan 430030 China
- The Collaborative Innovation Center for Brain Science; Wuhan 430030 China
| |
Collapse
|
23
|
Zhang L, Peng S, Sun J, Yao J, Kang J, Hu Y, Fang J. A specific fluorescent probe reveals compromised activity of methionine sulfoxide reductases in Parkinson's disease. Chem Sci 2017; 8:2966-2972. [PMID: 28451363 PMCID: PMC5382841 DOI: 10.1039/c6sc04708d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
A general strategy for designing probes of methionine sulfoxide reductases was reported and a first turn on probe was disclosed.
Oxidation of methionine residues to methionine sulfoxide (MetSO) may cause changes in protein structure and function, and may eventually lead to cell damage. Methionine sulfoxide reductases (Msrs) are the only known enzymes that catalyze the reduction of MetSO back to methionine by taking reducing equivalents from the thioredoxin system, and thus protect cells from oxidative damage. Nonetheless, a lack of convenient assays for the enzymes hampers the exploration of their functions. We report the discovery of Msr-blue, the first turn-on fluorescent probe for Msr with a >100-fold fluorescence increment from screening a rationally-designed small library. Intensive studies demonstrated the specific reduction of Msr-blue by the enzymes. Msr-blue is ready to determine Msr activity in biological samples and live cells. Importantly, we disclosed a decline of Msr activity in a Parkinson's model, thus providing a mechanistic linkage between the loss of function of Msrs and the development of neurodegeneration. The strategy for the discovery of Msr-blue would also provide guidance for developing novel probes with longer excitation/emission wavelengths and specific probes for Msr isoforms.
Collapse
Affiliation(s)
- Liangwei Zhang
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Jinyu Sun
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Jie Kang
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Yuesong Hu
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| |
Collapse
|
24
|
Salmon AB, Kim G, Liu C, Wren JD, Georgescu C, Richardson A, Levine RL. Effects of transgenic methionine sulfoxide reductase A (MsrA) expression on lifespan and age-dependent changes in metabolic function in mice. Redox Biol 2016; 10:251-256. [PMID: 27821326 PMCID: PMC5099276 DOI: 10.1016/j.redox.2016.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/17/2022] Open
Abstract
Mechanisms that preserve and maintain the cellular proteome are associated with long life and healthy aging. Oxidative damage is a significant contributor to perturbation of proteostasis and is dealt with by the cell through regulation of antioxidants, protein degradation, and repair of oxidized amino acids. Methionine sulfoxide reductase A (MsrA) repairs oxidation of free- and protein-bound methionine residues through enzymatic reduction and is found in both the cytosol and the mitochondria. Previous studies in Drosophila have shown that increasing expression of MsrA can extend longevity. Here we test the effects of increasing MsrA on longevity and healthy aging in two transgenic mouse models. We show that elevated expression of MsrA targeted specifically to the cytosol reduces the rate of age-related death in female mice when assessed by Gompertz analysis. However, neither cytosolic nor mitochondrial MsrA overexpression extends lifespan when measured by log-rank analysis. In mice with MsrA overexpression targeted to the mitochondria, we see evidence for improved insulin sensitivity in aged female mice. With these and our previous data, we conclude that the increasing MsrA expression in mice has differential effects on aging and healthy aging that are dependent on the target of its subcellular localization.
Collapse
Affiliation(s)
- Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA; The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center and Oklahoma City VA Medical Center, Oklahoma, OK, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
25
|
Nayak G, Prentice HM, Milton SL. Lessons from nature: signalling cascades associated with vertebrate brain anoxic survival. Exp Physiol 2016; 101:1185-1190. [PMID: 26990582 DOI: 10.1113/ep085673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/14/2016] [Indexed: 01/25/2023]
Abstract
NEW FINDINGS What is the topic of this review? Although the mammalian brain is exquisitely sensitive to hypoxia, some turtles survive complete anoxia by decreasing metabolic demand to match reduced energy supply. These animal models may help to elucidate neuroprotective mechanisms and reveal novel therapeutic targets for diseases of oxygen deprivation. What advances does it highlight? The mitogen-activated protein kinases (MAPKs) are part of the suite of adaptive responses to anoxia that are modulated by adenosine, a 'retaliatory metabolite' released in early anoxia. In anoxic turtle neurons, upregulation of pro-survival Akt and extracellular signal-regulated kinase 1/2 and suppression of the p38MAPK and JNK pathways promote cell survival, as does the anoxic- and post-anoxic upregulation of the antioxidant methionine sulfoxide reductase. Mammalian neurons undergo rapid degeneration when oxygen supply is curtailed. Neuroprotective pathways are induced during hypoxia/ischaemia, but their analysis is complicated by concurrent pathological events. Survival mechanisms can be investigated in anoxia-tolerant freshwater turtle species, which survive oxygen deprivation and post-anoxic reoxygenation by entrance into a state of reversible hypometabolism. Many energy-demanding processes are suppressed, including ion flux and neurotransmitter release, whereas cellular protective mechanisms, including certain mitogen-activated protein kinases (MAPKs), are upregulated. This superfamily of serine/threonine kinases plays a significant role in vital cellular processes, including cell proliferation, differentiation, stress adaptation and apoptosis in response to external stimuli. Here, we report that neuronal survival relies on robust co-ordination between the major signalling cascades, with upregulation of the pro-survival Akt and extracellular signal-regulated kinase 1/2 and suppression of the p38MAPK and JNK pathways. Other protective responses, including the upregulation of heat shock proteins and antioxidants, allow the turtle brain to abrogate potential oxidative stress upon reoxygenation.
Collapse
Affiliation(s)
- Gauri Nayak
- College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Howard M Prentice
- College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Sarah L Milton
- Department of Biological Sciences, College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
26
|
Kim MA, Cho HJ, Bae SH, Lee B, Oh SK, Kwon TJ, Ryoo ZY, Kim HY, Cho JH, Kim UK, Lee KY. Methionine Sulfoxide Reductase B3-Targeted In Utero Gene Therapy Rescues Hearing Function in a Mouse Model of Congenital Sensorineural Hearing Loss. Antioxid Redox Signal 2016; 24:590-602. [PMID: 26649646 PMCID: PMC4840920 DOI: 10.1089/ars.2015.6442] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 11/12/2022]
Abstract
AIMS Methionine sulfoxide reductase B3 (MsrB3), which stereospecifically repairs methionine-R-sulfoxide, is an important Msr protein that is associated with auditory function in mammals. MsrB3 deficiency leads to profound congenital hearing loss due to the degeneration of stereociliary bundles and the apoptotic death of cochlear hair cells. In this study, we investigated a fundamental treatment strategy in an MsrB3 deficiency mouse model and confirmed the biological significance of MsrB3 in the inner ear using MsrB3 knockout (MsrB3(-/-)) mice. RESULTS We delivered a recombinant adeno-associated virus encoding the MsrB3 gene directly into the otocyst at embryonic day 12.5 using a transuterine approach. We observed hearing recovery in the treated ears of MsrB3(-/-) mice at postnatal day 28, and we confirmed MsrB3 mRNA and protein expression in cochlear extracts. Additionally, we demonstrated that the morphology of the stereociliary bundles in the rescued ears of MsrB3(-/-) mice was similar to those in MsrB3(+/+) mice. INNOVATION To our knowledge, this is the first study to demonstrate functional and morphological rescue of the hair cells of the inner ear in the MsrB3 deficiency mouse model of congenital genetic sensorineural hearing loss using an in utero, virus-mediated gene therapy approach. CONCLUSION Our results provide insight into the role of MsrB3 in hearing function and bring us one step closer to hearing restoration as a fundamental therapy.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Ju Cho
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hyun Bae
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Se-Kyung Oh
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, Republic of Korea
| | - Tae-Jun Kwon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Zae-Young Ryoo
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jin-Ho Cho
- Department of Electronic Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
27
|
Moskovitz J, Du F, Bowman CF, Yan SS. Methionine sulfoxide reductase A affects β-amyloid solubility and mitochondrial function in a mouse model of Alzheimer's disease. Am J Physiol Endocrinol Metab 2016; 310:E388-93. [PMID: 26786779 PMCID: PMC4796266 DOI: 10.1152/ajpendo.00453.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
Accumulation of oxidized proteins, and especially β-amyloid (Aβ), is thought to be one of the common causes of Alzheimer's disease (AD). The current studies determine the effect of an in vivo methionine sulfoxidation of Aβ through ablation of the methionine sulfoxide reductase A (MsrA) in a mouse model of AD, a mouse that overexpresses amyloid precursor protein (APP) and Aβ in neurons. Lack of MsrA fosters the formation of methionine sulfoxide in proteins, and thus its ablation in the AD-mouse model will increase the formation of methionine sulfoxide in Aβ. Indeed, the novel MsrA-deficient APP mice (APP(+)/MsrAKO) exhibited higher levels of soluble Aβ in brain compared with APP(+) mice. Furthermore, mitochondrial respiration and the activity of cytochrome c oxidase were compromised in the APP(+)/MsrAKO compared with control mice. These results suggest that lower MsrA activity modifies Aβ solubility properties and causes mitochondrial dysfunction, and augmenting its activity may be beneficial in delaying AD progression.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Fang Du
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Connor F Bowman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Shirley S Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| |
Collapse
|
28
|
Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites. Nat Commun 2016; 7:10251. [PMID: 26807843 PMCID: PMC4737712 DOI: 10.1038/ncomms10251] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal α-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of α-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered α-Syn in cells. α-synuclein is a protein linked to the occurrence of Parkinson's disease. Here, the authors use time-resolved in-cell NMR spectroscopy to study the repair of methionine-oxidized α-synuclein by endogenous cellular enzymes.
Collapse
|
29
|
Moskovitz J, Walss-Bass C, Cruz DA, Thompson PM, Hairston J, Bortolato M. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion. Neuropathol Appl Neurobiol 2015; 41:941-51. [PMID: 25640985 DOI: 10.1111/nan.12219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 01/05/2023]
Abstract
AIMS The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. METHODS COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. RESULTS Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. CONCLUSION These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Science, School of Medicine, University of Texas Health Science Center, Houston, USA
| | - Dianne A Cruz
- Southwest Brain Bank, Department of Psychiatry, School of Medicine, University of Texas Health Science Center, San Antonio, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, School of Medicine, University of Texas Health Science Center, San Antonio, USA
| | - Jenaqua Hairston
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| |
Collapse
|
30
|
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014; 71:368-378. [PMID: 24704971 PMCID: PMC4049226 DOI: 10.1016/j.freeradbiomed.2014.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is probably the most well studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alterations in the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse life span. However, the incidence of many age-related diseases and pathologies is altered in these models, suggesting that oxidative stress does significantly influence some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under various environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations of their support of the OSTA.
Collapse
Affiliation(s)
- Yael H Edrey
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA; The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
31
|
A specific and rapid colorimetric method to monitor the activity of methionine sulfoxide reductase A. Enzyme Microb Technol 2013; 53:391-7. [DOI: 10.1016/j.enzmictec.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/17/2013] [Accepted: 08/25/2013] [Indexed: 12/16/2022]
|
32
|
Kwon TJ, Cho HJ, Kim UK, Lee E, Oh SK, Bok J, Bae YC, Yi JK, Lee JW, Ryoo ZY, Lee SH, Lee KY, Kim HY. Methionine sulfoxide reductase B3 deficiency causes hearing loss due to stereocilia degeneration and apoptotic cell death in cochlear hair cells. Hum Mol Genet 2013; 23:1591-601. [PMID: 24191262 DOI: 10.1093/hmg/ddt549] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methionine sulfoxide reductase B3 (MsrB3) is a protein repair enzyme that specifically reduces methionine-R-sulfoxide to methionine. A recent genetic study showed that the MSRB3 gene is associated with autosomal recessive hearing loss in human deafness DFNB74. However, the precise role of MSRB3 in the auditory system and the pathogenesis of hearing loss have not yet been determined. This work is the first to generate MsrB3 knockout mice to elucidate the possible pathological mechanisms of hearing loss observed in DFNB74 patients. We found that homozygous MsrB3(-/-) mice were profoundly deaf and had largely unaffected vestibular function, whereas heterozygous MsrB3(+/-) mice exhibited normal hearing similar to that of wild-type mice. The MsrB3 protein is expressed in the sensory epithelia of the cochlear and vestibular tissues, beginning at E15.5 and E13.5, respectively. Interestingly, MsrB3 is densely localized at the base of stereocilia on the apical surface of auditory hair cells. MsrB3 deficiency led to progressive degeneration of stereociliary bundles starting at P8, followed by a loss of hair cells, resulting in profound deafness in MsrB3(-/-) mice. The hair cell loss appeared to be mediated by apoptotic cell death, which was measured using TUNEL and caspase 3 immunocytochemistry. Taken together, our data suggest that MsrB3 plays an essential role in maintaining the integrity of hair cells, possibly explaining the pathogenesis of DFNB74 deafness in humans caused by MSRB3 deficiency.
Collapse
Affiliation(s)
- Tae-Jun Kwon
- Department of Biology, College of Natural Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu B, El Haj AJ. Methionine sulfoxide reductase A as a marker for isolating subpopulations of stem and progenitor cells used in regenerative medicine. Med Hypotheses 2013; 80:663-5. [DOI: 10.1016/j.mehy.2013.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
|
34
|
Franklin JM, Carrasco GA, Moskovitz J. Induction of methionine sulfoxide reductase activity by pergolide, pergolide sulfoxide, and S-adenosyl-methionine in neuronal cells. Neurosci Lett 2012. [PMID: 23178192 DOI: 10.1016/j.neulet.2012.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reduction of methionine sulfoxide in proteins is facilitated by the methionine sulfoxide reductase (Msr) system. The Msr reduction activity is important for protecting cells from oxidative stress related damages. Indeed, we have recently shown that treatment of cells with N-acetyl-methionine sulfoxide can increase Msr activity and protect neuronal cells from amyloid beta toxicity. Thus, in search of other similar Msr-inducing molecules, we examined the effects of pergolide, pergolide sulfoxide, and S-adenosyl-methionine on Msr activity in neuronal cells. Treatment of neuronal cells with a physiological range of pergolide and pergolide sulfoxide (0.5-1.0 μM) caused an increase of about 40% in total Msr activity compared with non-treated control cells. This increase in activity correlated with similar increases in methionine sulfoxide reductase A protein expression levels. Similarly, treatment of cells with S-adenosyl methionine also increased cellular Msr activity, which was milder compared to increases induced by pergolide and pergolide sulfoxide. We found that all the examined compounds are able to increase cellular Msr activity to levels comparable to N-acetyl-methionine sulfoxide treatment. Pergolide, pergolide sulfoxide, and S-adenosyl methionine can cross the blood-brain barrier. Therefore, we hypothesize that they can be useful in the treatment of symptoms/pathologies that are associated with reduced Msr activity.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
35
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
36
|
Cui ZJ, Han ZQ, Li ZY. Modulating protein activity and cellular function by methionine residue oxidation. Amino Acids 2012; 43:505-17. [PMID: 22146868 DOI: 10.1007/s00726-011-1175-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
The sulfur-containing amino acid residue methionine (Met) in a peptide/protein is readily oxidized to methionine sulfoxide [Met(O)] by reactive oxygen species both in vitro and in vivo. Methionine residue oxidation by oxidants is found in an accumulating number of important proteins. Met sulfoxidation activates calcium/calmodulin-dependent protein kinase II and the large conductance calcium-activated potassium channels, delays inactivation of the Shaker potassium channel ShC/B and L-type voltage-dependent calcium channels. Sulfoxidation at critical Met residues inhibits fibrillation of atherosclerosis-related apolipoproteins and multiple neurodegenerative disease-related proteins, such as amyloid beta, α-synuclein, prion, and others. Methionine residue oxidation is also correlated with marked changes in cellular activities. Controlled key methionine residue oxidation may be used as an oxi-genetics tool to dissect specific protein function in situ.
Collapse
Affiliation(s)
- Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| | | | | |
Collapse
|
37
|
Characterization and functional analysis of methionine sulfoxide reductase A gene family in tomato. Mol Biol Rep 2012; 39:6297-308. [DOI: 10.1007/s11033-012-1451-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/23/2012] [Indexed: 11/26/2022]
|
38
|
Moskovitz J, Malik A, Hernandez A, Band M, Avivi A. Methionine sulfoxide reductases and methionine sulfoxide in the subterranean mole rat (Spalax): characterization of expression under various oxygen conditions. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:406-14. [PMID: 22230185 DOI: 10.1016/j.cbpa.2011.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 02/02/2023]
Abstract
The blind subterranean mole rat (Spalax ehrenbergi) exhibits a relatively long life span, which is attributed to an efficient antioxidant defense affording protection against accumulation of oxidative modifications of proteins. Methionine residues can be oxidized to methionine sulfoxide (MetO) and then enzymatically reduced by the methionine sulfoxide reductase (Msr) system. In the current study we have isolated the cDNA sequences of the Spalax Msr genes as well as 23 additional selenoproteins and monitored the activities of Msr enzymes in liver and brain of rat (Rattus norvegicus), Spalax galili, and Spalax judaei under normoxia, hypoxia, and hyperoxia. Under normoxia, the Msr activity was lower in S. galili in comparison to S. judaei and R. norvegicus especially in the brain. The pattern of Msr activity of the three species was similar throughout the tested conditions. However, exposure of the animals to hypoxia caused a significant enhancement of Msr activity, especially in S. galili. Hyperoxic exposure showed a highly significant induction of Msr activity compared with normoxic conditions for R. norvegicus and S. galili brain. It was concluded that among all species examined, S. galili appears to be more responsive to oxygen tension changes and that the Msr system is upregulated mainly by severe hypoxia.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | |
Collapse
|
39
|
Moskovitz J, Maiti P, Lopes DHJ, Oien DB, Attar A, Liu T, Mittal S, Hayes J, Bitan G. Induction of methionine-sulfoxide reductases protects neurons from amyloid β-protein insults in vitro and in vivo. Biochemistry 2011; 50:10687-97. [PMID: 22059533 PMCID: PMC3235361 DOI: 10.1021/bi201426b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Self-assembly of amyloid β-protein (Aβ) into toxic oligomers and fibrillar polymers is believed to cause Alzheimer's disease (AD). In the AD brain, a high percentage of Aβ contains Met-sulfoxide at position 35, though the role this modification plays in AD is not clear. Oxidation of Met(35) to sulfoxide has been reported to decrease the extent of Aβ assembly and neurotoxicity, whereas surprisingly, oxidation of Met(35) to sulfone yields a toxicity similar to that of unoxidized Aβ. We hypothesized that the lower toxicity of Aβ-sulfoxide might result not only from structural alteration of the C-terminal region but also from activation of methionine-sulfoxide reductase (Msr), an important component of the cellular antioxidant system. Supporting this hypothesis, we found that the low toxicity of Aβ-sulfoxide correlated with induction of Msr activity. In agreement with these observations, in MsrA(-/-) mice the difference in toxicity between native Aβ and Aβ-sulfoxide was essentially eliminated. Subsequently, we found that treatment with N-acetyl-Met-sulfoxide could induce Msr activity and protect neuronal cells from Aβ toxicity. In addition, we measured Msr activity in a double-transgenic mouse model of AD and found that it was increased significantly relative to that of nontransgenic mice. Immunization with a novel Met-sulfoxide-rich antigen for 6 months led to antibody production, decreased Msr activity, and lowered hippocampal plaque burden. The data suggest an important neuroprotective role for the Msr system in the AD brain, which may lead to development of new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - Panchanan Maiti
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Dahabada H. J. Lopes
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Derek B. Oien
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - Aida Attar
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Tingyu Liu
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Shivina Mittal
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Jane Hayes
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California at Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol 2011; 52:550-8. [PMID: 21945521 DOI: 10.1016/j.yjmcc.2011.09.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 12/22/2022]
Abstract
Oxidative stress is presumed to be involved in the pathogenesis of many diseases, including cardiovascular disease. However, oxidants are also generated in healthy cells, and increasing evidence suggests that they can act as signaling molecules. The intracellular reduction-oxidation (redox) status is tightly regulated by oxidant and antioxidant systems. Imbalance between them causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, leading to dysregulation. In this review, we will briefly summarize the aspects of ROS generation and neutralization mechanisms in the cardiovascular system. ROS can regulate cell signaling through oxidation and reduction of specific amino acids within proteins. Structural changes during post-translational modification allow modification of protein activity which can result in altered cellular function. We will focus on the molecular basis of redox protein modification and how this regulatory mechanism affects signal transduction in the cardiovascular system. Finally, we will discuss some techniques applied to monitoring redox status and identifying redox-sensitive proteins in the heart. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
|
41
|
Zhang C, Jia P, Jia Y, Li Y, Webster KA, Huang X, Achary M, Lemanski SL, Lemanski LF. Anoxia, acidosis, and intergenic interactions selectively regulate methionine sulfoxide reductase transcriptions in mouse embryonic stem cells. J Cell Biochem 2011; 112:98-106. [PMID: 20872796 DOI: 10.1002/jcb.22876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Methionine sulfoxide reductases (Msr) belong to a gene family that contains one MsrA and three MsrBs (MsrB1, MsrB2, and MsrB3). We have identified all four of the genes that are expressed in mouse embryonic stem cell cultures. The vital cellular functions of the Msr family of genes are to protect cells from oxidative damage by enzymatically reducing the oxidized sulfide groups of methionine residues in proteins from the sulfoxide form (--SO) back to sulfide thus restoring normal protein functions as well as reducing intracellular reactive oxygen species (ROS). We have performed studies on the Msr family genes to examine the regulation of gene expression. Our studies using real-time RT-PCR and Western blotting have shown that expression levels of the four Msr family genes are under differential regulation by anoxia/reoxygenation treatment, acidic culture conditions and interactions between MsrA and MsrB. Results from these in vitro experiments suggest that although these genes function as a whole in oxidative stress protection, each one of the Msr genes could be responsive to environmental stimulants differently at the tissue level.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Murakami K, Shimizu T, Irie K. Formation of the 42-mer Amyloid β Radical and the Therapeutic Role of Superoxide Dismutase in Alzheimer's Disease. JOURNAL OF AMINO ACIDS 2011; 2011:654207. [PMID: 22332002 PMCID: PMC3276080 DOI: 10.4061/2011/654207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
Oxidative stress is closely involved in age-related diseases and ageing itself. There is evidence of the leading contribution of oxidative damage to neurodegenerative disease, in contrast to other diseases where oxidative stress plays a secondary role. The 42-mer amyloid β (Aβ42) peptide is thought to be a culprit in the pathogenesis of Alzheimer's disease (AD). Aβ42 aggregates form the oligomeric assembly and show neurotoxicity, causing synaptic dysfunction. Aβ42 also induces tissue oxidation (DNA/RNA, proteins, and lipids) through trace metals (Cu, Zn, and Fe), which can be protected by antioxidant enzymes, vitamin C, and vitamin E. Superoxide dismutase catalyzes the conversion of toxic superoxide radical to less reactive hydrogen peroxide, contributing to protection from AD. Here we review the involvement of oxidative stress in AD progression induced from an imbalance between the radical formation of Aβ42 itself together with unique turn structure at positions Glu22 and Asp23 and several defense systems.
Collapse
Affiliation(s)
- Kazuma Murakami
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiko Shimizu
- Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kazuhiro Irie
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
43
|
Oien DB, Carrasco GA, Moskovitz J. Decreased Phosphorylation and Increased Methionine Oxidation of α-Synuclein in the Methionine Sulfoxide Reductase A Knockout Mouse. JOURNAL OF AMINO ACIDS 2011; 2011:721094. [PMID: 22332004 PMCID: PMC3275937 DOI: 10.4061/2011/721094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 12/11/2010] [Indexed: 11/20/2022]
Abstract
Previously, we have showed that overexpression of methionine-oxidized α-synuclein in methionine sulfoxide reductase A (MsrA) null mutant yeast cells inhibits α-synuclein phosphorylation and increases protein fibrillation. The current studies show that ablation of mouse MsrA gene caused enhanced methionine oxidation of α-synuclein while reducing its own phophorylation levels, especially in the hydrophobic cell-extracted fraction. These data provide supportive evidence that a compromised MsrA function in mammalian brain may cause enhanced pathologies associated with altered α-synuclein oxidation and phosphorylation levels.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology and Toxicology, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
44
|
Ortiz AN, Oien DB, Moskovitz J, Johnson MA. Quantification of reserve pool dopamine in methionine sulfoxide reductase A null mice. Neuroscience 2011; 177:223-9. [PMID: 21219974 DOI: 10.1016/j.neuroscience.2011.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022]
Abstract
Methionine sulfoxide reductase A knockout (MsrA-/-) mice, which serve as a potential model for neurodegeneration, suffer from increased oxidative stress and have previously been found to have chronically elevated brain dopamine (DA) content levels relative to control mice. Additionally, these high levels parallel the increased presynaptic DA release. In this study, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to quantify striatal reserve pool DA in knockout mice and wild-type control mice. Reserve pool DA efflux, induced by amphetamine (AMPH), was measured in brain slices from knockout and wild type (WT) mice in the presence of α-methyl-p-tyrosine, a DA synthesis inhibitor. Additionally, the stimulated release of reserve pool DA, mobilized by cocaine (COC), was measured. Both efflux and stimulated release measurements were enhanced in slices from knockout mice, suggesting that these mice have greater reserve pool DA stores than wild-type and that these stores are effectively mobilized. Moreover, dopamine transporter (DAT) labeling data indicate that the difference in measured DA efflux was likely not caused by altered DAT protein expression. Additionally, slices from MsrA-/- and wild-type mice were equally responsive to increasing extracellular calcium concentrations, suggesting that potential differences in either calcium entry or intracellular calcium handling are not responsible for increased reserve pool DA release. Collectively, these results demonstrate that MsrA-/- knockout mice maintain a larger DA reserve pool than wild-type control mice, and that this pool is readily mobilized.
Collapse
Affiliation(s)
- A N Ortiz
- Department of Chemistry and R. N. Adams Institute of Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
45
|
Oien DB, Carrasco GA, Moskovitz J. Decreased Phosphorylation and Increased Methionine Oxidation of α-Synuclein in the Methionine Sulfoxide Reductase A Knockout Mouse. JOURNAL OF AMINO ACIDS 2011. [PMID: 22332004 DOI: 10.4061/2011/721094 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Previously, we have showed that overexpression of methionine-oxidized α-synuclein in methionine sulfoxide reductase A (MsrA) null mutant yeast cells inhibits α-synuclein phosphorylation and increases protein fibrillation. The current studies show that ablation of mouse MsrA gene caused enhanced methionine oxidation of α-synuclein while reducing its own phophorylation levels, especially in the hydrophobic cell-extracted fraction. These data provide supportive evidence that a compromised MsrA function in mammalian brain may cause enhanced pathologies associated with altered α-synuclein oxidation and phosphorylation levels.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology and Toxicology, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
46
|
Ugarte N, Petropoulos I, Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 2010; 13:539-49. [PMID: 19958171 DOI: 10.1089/ars.2009.2998] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteins are main targets for oxidative damage that occurs during aging and in oxidative stress situations. Since the mitochondria is a major source of reactive oxygen species, mitochondrial proteins are especially exposed to oxidative modification, and elimination of oxidized proteins is crucial for maintaining the integrity of this organelle. Hence, enzymatic reversal of protein oxidation and protein degradation is critical for protein homeostasis while protein maintenance failure has been implicated in the age-related accumulation of oxidized proteins. Within the mitochondrial matrix, the ATP-stimulated mitochondrial Lon protease is believed to play an important role in the degradation of oxidized protein, and age-associated impairment of Lon-like protease activity has been suggested to contribute to oxidized protein buildup in the mitochondria. Oxidized protein repair is limited to certain oxidation products of the sulfur-containing amino acids cysteine and methionine. Oxidized protein repair systems, thioredoxin/thioredoxin reductase or glutaredoxin/glutathione/glutathione reductase that catalytically reduce disulfide bridges or sulfenic acids, and methionine sulfoxide reductase that reverses methionine sulfoxide back to methionine within proteins, are present in the mitochondrial matrix. Thus, the role of the mitochondrial Lon protease and the oxidized protein repair system methionine sulfoxide reductase is further addressed in the context of oxidative stress and aging.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, Université Pierre et Marie Paris, France
| | | | | |
Collapse
|
47
|
Binger KJ, Griffin MDW, Heinemann SH, Howlett GJ. Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2. Biochemistry 2010; 49:2981-3. [PMID: 20218727 DOI: 10.1021/bi902203m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A common feature of many amyloid diseases is the appearance of oxidized, aggregated proteins. Methionine is one of the most readily oxidized amino acids, and its oxidative state is regulated in vivo by the methionine sulfoxide reductases (Msr). Here, we have explored the basis by which methionine oxidation is linked to amyloid disease by comparing the reduction of oxidized amyloid fibrils and monomer. We show that oxidized amyloid fibrils are not as effectively reduced by the Msr enzymes as the monomer. This work suggests a mechanism by which oxidized proteins and aggregates can accumulate as a part of degenerative disease.
Collapse
Affiliation(s)
- Katrina J Binger
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
48
|
Oien DB, Ortiz AN, Rittel AG, Dobrowsky RT, Johnson MA, Levant B, Fowler SC, Moskovitz J. Dopamine D(2) receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse. J Neurochem 2010; 114:51-61. [PMID: 20374422 DOI: 10.1111/j.1471-4159.2010.06721.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D(2)-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed, protein expression levels of dopamine D(2)-receptor were higher in knockout mice compared with wild-type. However, the binding of dopamine D(2)-receptor agonist was compromised in the same fractions of knockout mice. Coupling efficiency of dopamine D(2)-receptors to G-proteins was also significantly reduced in knockout mice, supporting the compromised agonist binding. Furthermore, pre-synaptic dopamine release in knockout striatal sections was less responsive than control sections to dopamine D(2)-receptor ligands. Behaviorally, the locomotor activity of knockout mice was less responsive to the inhibitory effect of quinpirole than wild-type mice. Involvement of specific methionine residue oxidation in the dopamine D(2)-receptor third intracellular loop is suggested by in vitro studies. We conclude that ablation of methionine sulfoxide reductase can affect dopamine signaling through altering dopamine D(2)-receptor physiology and may be related to symptoms associated with neurological disorders and diseases.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The formation and accumulation of protein-carbonyl by reactive oxygen species may serve as a marker of oxidative stress, aging, and age-related diseases. Enzymatic reversal of the protein-carbonyl modification has not yet been detected. However, an enzymatic reversal of protein-methionine sulfoxide modification exists and is mediated by the methionine sulfoxide reductase (Msr) system. Methionine sulfoxide modifications to proteins may precede the formation of protein-carbonyl adducts because of consequent structural changes that increase the vulnerability of amino acid residues to carbonylation. Supportive evidence for this possibility arises from the elevated protein-carbonyl accumulations observed in organisms, such as yeast and mice, lacking the methionine sulfoxide reductase A (MsrA) enzyme. In addition, advanced age or enhanced oxidative-stress conditions foster the accumulations of protein-carbonyls. This review discusses the possible involvement of methionine sulfoxide formation in the occurrence of protein-carbonyl adducts and their relevance to the aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, University of Kansas , Lawrence, KS, USA.
| | | |
Collapse
|
50
|
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010; 48:642-55. [PMID: 20036736 PMCID: PMC2819595 DOI: 10.1016/j.freeradbiomed.2009.12.015] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 12/22/2022]
Abstract
The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.
Collapse
Affiliation(s)
- Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|