1
|
Moberg I, McCarthy SF, Bellaflor S, Finch MS, Hazell TJ, MacPherson REK. Lactate increases ADAM10 activity and reduces BACE1 activity in mouse brain. J Physiol 2024; 602:5217-5228. [PMID: 39298105 DOI: 10.1113/jp286962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
The accumulation and aggregation of beta-amyloid (Aβ) peptides contributes to neuronal dysfunction and death. These Aβ peptides originate from a transmembrane protein known as amyloid precursor protein (APP), which can be processed via two competing pathways. Alpha-secretase (ADAM10) cleavage is thought to be neuroprotective while beta-secretase (BACE1) cleavage results in the production of Aβ. Aerobic exercise reduces BACE1 activity, but the mechanisms involved are unknown though several exercise-induced mediators such as lactate may be involved. The current study examined whether systemic lactate can alter APP processing and BACE1 and ADAM10 activity. Mice were randomly assigned to one of four groups (n = 10 per group): (1) sedentary; (2) lactate-injection (1.0 g kg-1 body mass); (3) exercise; and (4) exercise and oxamate (lactate dehydrogenase inhibitor; 750 mg kg-1 body mass). Two hours following intervention, the hippocampus and prefrontal cortex (PFC) were collected. In the PFC lactate-injection and exercise resulted in higher ADAM10 activity compared to sedentary (exercise P = 0.0215, lactate P = 0.0038), in the hippocampus lactate-injection was higher compared to sedentary (lactate P = 0.011), and this was absent in the presence of oxamate. Hippocampal BACE1 activity was lower in the lactate group compared to the exercise group (P = 0.01). Oxamate resulted in higher BACE1 protein content compared to sedentary in the PFC (vs. sedentary P = 0.048). These findings suggest that lactate is important for regulating ADAM10 activity and thereby shifts APP processing away from Aβ production. KEY POINTS: Exercise is known to alter the processing of amyloid precursor protein by reducing the activity of the rate-limiting enzyme BACE1 and increasing the activity of ADAM10. It is thought that exercise-induced factors are responsible for these enzymatic changes. This study examined if lactate accumulation plays a role in this process. Mice were assigned to one of four groups: sedentary, lactate, exercise and exercise + lactate. The findings demonstrate that lactate accumulation alters brain BACE1 and ADAM10 and shifts amyloid precursor protein processing away from beta-amyloid production.
Collapse
Affiliation(s)
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sarah Bellaflor
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada
| | - Michael S Finch
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada
- Centre for Neuroscience, Brock University, St. Catherines, Ontario, Canada
| |
Collapse
|
2
|
He W, Shi X, Dong Z. The roles of RACK1 in the pathogenesis of Alzheimer's disease. J Biomed Res 2024; 38:137-148. [PMID: 38410996 PMCID: PMC11001590 DOI: 10.7555/jbr.37.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 02/28/2024] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease (AD), a prevalent neurodegenerative disease. RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD. Specifically, RACK1 is involved in regulation of the amyloid-β precursor protein processing through α- or β-secretase by binding to different protein kinase C isoforms. Additionally, RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors, thereby preventing neuronal excitotoxicity. RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways, such as nuclear factor-kappa B, tumor necrosis factor-alpha, and NOD-like receptor family pyrin domain-containing 3 pathways. The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy, in which RACK1 is a potential target. In this review, we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wenting He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
3
|
Wang C, Hou J, Zhang M, Zheng Y, Ye H, Qi Y, Guo L, Hu Y. Effects of HSYA on serum and brain cholesterol levels in AD rats based on quantitative proteomics. Int J Neurosci 2023; 133:1411-1423. [PMID: 35633062 DOI: 10.1080/00207454.2022.2082964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Backgroud: Hydroxysafflor yellow A (HSYA) has a certain improvement effect on Alzheimer's disease (AD) rats, but its specific mechanism is still unclear. The purpose of this study was to observe the regulatory effect of HSYA on learning and memory ability of AD rats induced by Aβ1-42.Materials and methods: Morris water maze test was used to evaluate the effect of HSYA on the learning and memory ability of AD model rats. To explore the effective targets and potential molecular mechanisms of HSYA in AD treatment based on quantitative proteomics.Results: Through the Morris water maze experiment, we found that after HSYA treatment, the learning ability of rats in the model group has been significantly improved. Quantitative proteomics results showed that among the 11 common differential proteins between the "model/sham operation" comparison group and the "HSYA treatment/model" comparison group, the cholesterol synthesis rate-limiting enzyme mevalonate decarboxylase (Mvd) Western Blot results are consistent with the results of quantitative proteomics analysis. We found that HSYA can inhibit the expression of BACE protein in hippocampus of AD rats and decrease the level of Aβ1-42. Besides, HSYA could also reduce cholesterol levels in serum and hippocampus.Conclusion: In summary, HSYA can effectively improve learning and memory disorders in AD rats, and exert neuroprotective effects by effectively controlling serum and brain cholesterol to down-regulate the expression of BACE and thus reduce the content of Aβ1-42.
Collapse
Affiliation(s)
- Chunhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
| | - Jiawei Hou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
| | - Yanjie Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
| | - Hongxia Ye
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
| | - Yanqiang Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, P.R. China
| |
Collapse
|
4
|
Cruchaga C, Western D, Timsina J, Wang L, Wang C, Yang C, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey A, Morris J, Perrin R, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson E, Guen YL, Alvarez I, Aguilar M, Greicius M, Pastor P, Pulford D, Ibanez L, Wyss-Coray T, Sung YJ, Phillips B. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2814616. [PMID: 37333337 PMCID: PMC10275048 DOI: 10.21203/rs.3.rs-2814616/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Washington University School of Medicine
| | | | | | | | | | | | - Patsy Kohlfeld
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | - Mercè Boada
- Memory Clinic of Fundaciò ACE, Catalan Institute of Applied Neurosciences
| | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua Terrassa, Terrassa, Barcelona, Spain
| | | | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | |
Collapse
|
5
|
Kosonen R, Chang JY, Lee S, Kim J, Kim JY, Lee JE. APP96-110 Elicits Neuroprotective Effects Following Ischemic Insult in Animal Models. Neurochem Res 2023:10.1007/s11064-023-03928-6. [PMID: 37069416 DOI: 10.1007/s11064-023-03928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
Competitive amyloidogenic pathways play an important role in many neurological diseases such as the onset of various degenerative diseases and ischemic stroke. Overexpression of amyloid precursor protein (APP) and amyloid-beta is modulated via the amyloidogenic pathway, which plays a crucial role in neuroinflammation. During ischemic conditions, the activity of the anti-inflammatory non-amyloidogenic pathway decreases, thus increasing the activity of amyloidogenic pathway. The soluble alpha form of APP (sAPPα), formed via the non-amyloidogenic pathway, exhibits neuroprotective effects against neurological diseases. sAPPα is thought to have a modulatory effect on several cell survival pathways, including its ability to inhibit the phosphoinositide 3-kinases (PI3K) pathway, thereby inhibiting the inflammatory response. The APP derivative, APP96-110, could act as a functional substitute for native sAPPα. Herein, we investigated whether APP96-110 has neuroprotective effects against neuroinflammation and damage following cerebral ischemic stroke. Treatment with diluted APP96-110 (0.005 mg/kg) in mice after 30 min of transient middle cerebral artery occlusion (tMCAO) showed improved motor function and reduced expression of the inflammatory marker CD86. APP96-110 decreased the infarct size and induced an anti-inflammatory response by inhibiting the PI3K pathway. These results suggest that the treatment of APP96-110 is efficacious in reducing neuroinflammation and infarct size in ischemic stroke.
Collapse
Affiliation(s)
- Renée Kosonen
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Seowoo Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
6
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Mercan D, Heneka MT. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer's Disease. BIOLOGY 2022; 11:1822. [PMID: 36552331 PMCID: PMC9775634 DOI: 10.3390/biology11121822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), which is characterized by extracellular accumulation of amyloid-beta peptide and intracellular aggregation of hyperphosphorylated tau, is the most common form of dementia. Memory loss, cognitive decline and disorientation are the ultimate consequences of neuronal death, synapse loss and neuroinflammation in AD. In general, there are many brain regions affected but neuronal loss in the locus coeruleus (LC) is one of the earliest indicators of neurodegeneration in AD. Since the LC is the main source of noradrenaline (NA) in the brain, degeneration of the LC in AD leads to decreased NA levels, causing increased neuroinflammation, enhanced amyloid and tau burden, decreased phagocytosis and impairment in cognition and long-term synaptic plasticity. In this review, we summarized current findings on the locus coeruleus-noradrenaline system and consequences of its dysfunction which is now recognized as an important contributor to AD progression.
Collapse
Affiliation(s)
- Dilek Mercan
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Thomas Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
8
|
Finnie JW, Jerrett IV, Manavis J. Red neurons in ovine polioencephalomalacia (cerebrocortical necrosis) are strongly amyloid precursor protein immunopositive. Vet Res Commun 2022; 46:289-293. [PMID: 35059960 PMCID: PMC8791906 DOI: 10.1007/s11259-022-09888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
AbstractThe signature pathological feature of the pseudolaminar cerebrocortical necrosis found in polioencephalomalacia (PEM) of ruminants is the development of red (eosinophilic) neurons. These neurons are generally considered to be irredeemably injured but we have shown, for the first time, in ovine PEM cases, that most strongly express amyloid precursor protein (APP), which has a neuroprotective role in the brain. By contrast, neurons in unaffected cerebral cortices from control sheep were APP immunonegative. This finding suggests that, rather than being inevitably destined to die, some of these APP immunoreactive cortical neurons may survive and regain structural and functional integrity.
Collapse
Affiliation(s)
- John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Ian V Jerrett
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, Australia
| | - Jim Manavis
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Ludewig S, Herrmann U, Michaelsen-Preusse K, Metzdorf K, Just J, Bold C, Müller UC, Korte M. APPsα rescues impaired Ca 2+ homeostasis in APP- and APLP2-deficient hippocampal neurons. Proc Natl Acad Sci U S A 2021; 118:e2011506118. [PMID: 34172567 PMCID: PMC8256088 DOI: 10.1073/pnas.2011506118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alterations in Ca2+ homeostasis have been reported in several in vitro and in vivo studies using mice expressing the Alzheimer's disease-associated transgenes, presenilin and the amyloid precursor protein (APP). While intense research focused on amyloid-β-mediated functions on neuronal Ca2+ handling, the physiological role of APP and its close homolog APLP2 is still not fully clarified. We now elucidate a mechanism to show how APP and its homolog APLP2 control neuronal Ca2+ handling and identify especially the ectodomain APPsα as an essential regulator of Ca2+ homeostasis. Importantly, we demonstrate that the loss of APP and APLP2, but not APLP2 alone, impairs Ca2+ handling, the refill of the endoplasmic reticulum Ca2+ stores, and synaptic plasticity due to altered function and expression of the SERCA-ATPase and expression of store-operated Ca2+ channel-associated proteins Stim1 and Stim2. Long-term AAV-mediated expression of APPsα, but not acute application of the recombinant protein, restored physiological Ca2+ homeostasis and synaptic plasticity in APP/APLP2 cDKO cultures. Overall, our analysis reveals an essential role of the APP family and especially of the ectodomain APPsα in Ca2+ homeostasis, thereby highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Susann Ludewig
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ulrike Herrmann
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Kristin Metzdorf
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jennifer Just
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Charlotte Bold
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrike C Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Korte
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Wang H, Muthu Karuppan MK, Nair M, Lakshmana MK. Autophagy-Dependent Increased ADAM10 Mature Protein Induced by TFEB Overexpression Is Mediated Through PPARα. Mol Neurobiol 2021; 58:2269-2283. [PMID: 33417226 DOI: 10.1007/s12035-020-02230-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Nonamyloidogenic processing of amyloid precursor protein (APP) by augmenting ADAM10 is a promising therapeutic strategy for Alzheimer's disease (AD). Therefore identification of molecular pathways that regulate ADAM10 expression is crucial. Autophagy is strongly dysregulated in AD, and TFEB was recently shown to be a master regulator of autophagy-lysosome pathway (ALP). Here, we report that TFEB expression in HeLa cells increased ADAM10 mature form by 72% (p < 0.01, n = 4), while TFEB knockdown by CRISPR strategy reduced ADAM10 mature form by 36% (p < 0.05, n = 4). Autophagy inhibition by 3-methyladenine (3-MA), but not bafilomycin A1 (BAF1), reduced ADAM10 mature form by 49% (p < 0.05, n = 4) in the TFEB expressing HeLa cells. Autophagy activation by 3 h of starvation increased ADAM10 to 91% (p < 0.001, n = 6) relative to 51% (p < 0.01, n = 6) in the nutrient-fed cells. Further, siRNAs targeted against PPARα in HeLa cells decreased ADAM10 levels by 28% (p < 0.05, n = 6) relative to the cells treated with scrambled siRNAs. Further, incubation of EGFP-TFEB expressing HeLa cells with PPARα antagonist, but not PPARβ or PPARγ antagonists, prevented TFEB-induced increase in ADAM10 levels. Importantly, flag-TFEB expression in the brain also increased ADAM10 by 60% (p < 0.05, n = 3) in the cortical and 34% (p < 0.001, n = 3) in the hippocampal homogenates. ADAM10 activity also increased by 57% (p < 0.01, n = 3) in the HeLa cells. Finally, TFEB-induced ADAM10 potentiation led to increased secretion of sAPPα by 154% (p < 0.001, n = 3) in the cortex and 62% (p < 0.001, n = 3) in the hippocampus. Thus, TFEB expression enhances nonamyloidogenic processing of APP. In conclusion, TFEB expression induces ADAM10 in an autophagy-dependent manner through PPARα.
Collapse
Affiliation(s)
- Hongjie Wang
- Institute for Human Health & Disease Intervention (I-HEALTH), Department of Chemistry and Biochemistry, Center for Molecular Biology and Biotechnology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33458, USA
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200, 8th Street, University Park, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200, 8th Street, University Park, Miami, FL, 33199, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200, 8th Street, University Park, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Substrate-Specific Activation of α-Secretase by 7-Deoxy-Trans-Dihydronarciclasine Increases Non-Amyloidogenic Processing of β-Amyloid Protein Precursor. Molecules 2020; 25:molecules25030646. [PMID: 32028607 PMCID: PMC7037359 DOI: 10.3390/molecules25030646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
Accumulation of β-amyloid (Aβ) in the brain has been implicated in the pathology of Alzheimer’s disease (AD). Aβ is produced from the Aβ precursor protein (APP) through the amyloidogenic pathway by β-, and γ-secretase. Alternatively, APP can be cleaved by α-, and γ-secretase, precluding the production of Aβ. Thus, stimulating α-secretase mediated APP processing is considered a therapeutic option not only for decreasing Aβ production but for increasing neuroprotective sAPPα. We have previously reported that 7-deoxy-trans-dihydronarciclasine (E144), the active component of Lycoris chejuensis, decreases Aβ production by attenuating APP level, and retarding APP maturation. It can also improve cognitive function in the AD model mouse. In this study, we further analyzed the activating effect of E144 on α-secretase. Treatment of E144 increased sAPPα, but decreased β-secretase products from HeLa cells stably transfected with APP. E144 directly activated ADAM10 and ADAM17 in a substrate-specific manner both in cell-based and in cell-free assays. The Lineweaver–Burk plot analysis revealed that E144 enhanced the affinities of A Disintegrin and Metalloproteinases (ADAMs) towards the substrate. Consistent with this result, immunoprecipitation analysis showed that interactions of APP with ADAM10 and ADAM17 were increased by E144. Our results indicate that E144 might be a novel agent for AD treatment as a substrate-specific activator of α-secretase.
Collapse
|
12
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Bram JMDF, Talib LL, Joaquim HPG, Sarno TA, Gattaz WF, Forlenza OV. Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:963-972. [PMID: 29845446 DOI: 10.1007/s00406-018-0905-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The clinical diagnosis of Alzheimer's disease (AD) is a probabilistic formulation that may lack accuracy particularly at early stages of the dementing process. Abnormalities in amyloid-beta precursor protein (APP) metabolism and in the level of APP secretases have been demonstrated in platelets, and to a lesser extent in leukocytes, of AD patients, with conflicting results. The aim of the present study was to compare the protein level of the APP secretases A-disintegrin and metalloprotease 10 (ADAM10), Beta-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PSEN1) in platelets and leukocytes from 20 non-medicated older adults with AD and 20 healthy elders, and to determine the potential use of these biomarkers to discriminate cases of AD from controls. The protein levels of all APP secretases were significantly higher in platelets compared to leukocytes. We found statistically a significant decrease in ADAM10 (52.5%, p < 0.0001) and PSEN1 (32%, p = 0.02) in platelets from AD patients compared to controls, but not in leukocytes. Combining all three secretases to generate receiver-operating characteristic (ROC) curves, we found a good discriminatory effect (AD vs. controls) when using platelets (the area under the curve-AUC-0.90, sensitivity 88.9%, specificity 66.7%, p = 0.003), but not in leukocytes (AUC 0.65, sensitivity 77.8%, specificity 50.0%, p = 0.2). Our findings indicate that platelets represent a better biological matrix than leukocytes to address the peripheral level of APP secretases. In addition, combining the protein level of ADAM10, BACE1, and PSEN1 in platelets, yielded a good accuracy to discriminate AD from controls.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Tamires Alves Sarno
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil.
| |
Collapse
|
14
|
Sun R, He T, Pan Y, Katusic ZS. Effects of senescence and angiotensin II on expression and processing of amyloid precursor protein in human cerebral microvascular endothelial cells. Aging (Albany NY) 2019; 10:100-114. [PMID: 29348391 PMCID: PMC5811245 DOI: 10.18632/aging.101362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
The present study was designed to determine the effects of senescence and angiotensin II (Ang II) on expression and processing of amyloid precursor protein (APP) in human brain microvascular endothelial cells (BMECs). Senescence caused a decrease in APP expression thereby resulting in reduced secretion of soluble APPα (sAPPα). In contrast, β-site APP cleaving enzyme (BACE1) expression and production of amyloid β (Aβ)40 were increased in senescent endothelium. Importantly, in senescent human BMECs, treatment with BACE1 inhibitor IV inhibited Aβ generation and increased sAPPα production by enhancing a disintegrin and metalloprotease (ADAM)10 expression. Furthermore, Ang II impaired expression of ADAM10 and significantly reduced generation of sAPPα in senescent human BMECs. This inhibitory effect of Ang II was prevented by treatment with BACE1 inhibitor IV. Our results suggest that impairment of α-processing and shift to amyloidogenic pathway of APP contribute to endothelial dysfunction induced by senescence. Loss of sAPPα in senescent cells treated with Ang II exacerbates detrimental effects of senescence on APP processing. Notably, inhibition of BACE1 has beneficial effects on senescence induced endothelial dysfunction. Reported findings may help to explain contributions of senescent cerebral microvascular endothelium to development of cerebral amyloid angiopathy and Alzheimer’s disease (AD) pathology.
Collapse
Affiliation(s)
- Ruohan Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.,Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tongrong He
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yujun Pan
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Cortese A, Delgado-Morales R, Almeida OFX, Romberg C. The Arctic/Swedish APP mutation alters the impact of chronic stress on cognition in mice. Eur J Neurosci 2019; 50:2773-2785. [PMID: 31231836 PMCID: PMC6852344 DOI: 10.1111/ejn.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Chronic stress is a major risk factor for developing Alzheimer's disease (AD) and promotes the processing of amyloid precursor protein (APP) to β-amyloid (Aβ). However, the precise relationship of stress and disease-typical cognitive decline is presently not well understood. The aim of this study was to investigate how early life stress may affect cognition in adult mice with and without soluble Aβ pathology typical for the early stages of the disease. We focussed on sustained attention and response control, aspects of cognition mediated by the prefrontal cortex that are consistently impaired both in early AD and after chronic stress exposure. Young wild-type mice as well as transgenic arcAβ mice overexpressing the hAPParc/swe transgene were exposed to a chronic unpredictable stress paradigm (age 3-8 weeks). At 15 weeks, these mice were tested on the 5-choice serial reaction time task, a test of sustained attention and executive control. We found that, expectedly, chronic stress increased impulsive choices and impaired sustained attention in wild-type mice. However, the same treatment reduced impulsivity and did not interfere with sustained attention in arcAβ mice. These findings suggest an unexpected interaction between chronic stress and Aβ whereby Aβ-pathology caused by the hAPParc/swe mutation prevented and/or reversed stress-induced cognitive changes through mechanisms that deserve further investigation. They also indicate that Aβ, in modest amounts, may have a beneficial role for cognitive stability, for example by protecting neural networks from the impact of further physiological or behavioural stress.
Collapse
Affiliation(s)
- Aurelio Cortese
- Max-Planck-Institute for Psychiatry, Munich, Germany.,Computational Neuroscience Laboratories, ATR Institute International, Kyoto, Japan
| | | | | | | |
Collapse
|
16
|
Morrissey JA, Mockett BG, Singh A, Kweon D, Ohline SM, Tate WP, Hughes SM, Abraham WC. A C-terminal peptide from secreted amyloid precursor protein-α enhances long-term potentiation in rats and a transgenic mouse model of Alzheimer's disease. Neuropharmacology 2019; 157:107670. [PMID: 31202608 DOI: 10.1016/j.neuropharm.2019.107670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/05/2019] [Accepted: 06/12/2019] [Indexed: 01/20/2023]
Abstract
Processing of the amyloid precursor protein by alternative secretases results in ectodomain shedding of either secreted amyloid precursor protein-α (sAPPα) or its counterpart secreted amyloid precursor protein-β (sAPPβ). Although sAPPα contains only 16 additional amino acids at its C-terminus compared to sAPPβ, it displays significantly greater potency in neuroprotection, neurotrophism and enhancement of long-term potentiation (LTP). In the current study, this 16 amino acid peptide sequence (CTα16) was characterised for its ability to replicate the synaptic plasticity-enhancing properties of sAPPα. An N-acetylated version of CTα16 produced concentration-dependent increases in the induction and persistence of LTP at Schaffer collateral/commissural synapses in area CA1 of young adult rat hippocampal slices. A scrambled peptide had no effect. CTα16 significantly enhanced de novo protein synthesis, and correspondingly its enhancement of LTP was blocked by the protein synthesis inhibitor cycloheximide, as well as by the α7-nicotinic receptor blocker α-bungarotoxin. The impaired LTP of 14-16 month old APPswe/PS1dE9 transgenic mice, a mouse model of Alzheimer's disease, was completely restored to the wild-type level by CTα16. These results indicate that the CTα16 peptide fragment of sAPPα mimics the larger protein's functionality with respect to LTP, stimulation of protein synthesis and activation of α7-nAChRs, and thus like sAPPα may have potential as a therapeutic agent against the plasticity and cognitive deficits observed in AD and other neurological disorders.
Collapse
Affiliation(s)
- Jodi A Morrissey
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - David Kweon
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Shane M Ohline
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
He T, Sun R, Santhanam AV, d'Uscio LV, Lu T, Katusic ZS. Impairment of amyloid precursor protein alpha-processing in cerebral microvessels of type 1 diabetic mice. J Cereb Blood Flow Metab 2019; 39:1085-1098. [PMID: 29251519 PMCID: PMC6547183 DOI: 10.1177/0271678x17746981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms underlying dysfunction of cerebral microvasculature induced by type 1 diabetes (T1D) are not fully understood. We hypothesized that in cerebral microvascular endothelium, α-processing of amyloid precursor protein (APP) is impaired by T1D. In cerebral microvessels derived from streptozotocin (STZ)-induced T1D mice protein levels of APP and its α-processing enzyme, a disintegrin and metalloprotease 10 (ADAM10) were significantly decreased, along with down-regulation of adenylate cyclase 3 (AC3) and enhanced production of thromboxane A2 (TXA2). In vitro studies in human brain microvascular endothelial cells (BMECs) revealed that knockdown of AC3 significantly suppressed ADAM10 protein levels, and that activation of TXA2 receptor decreased APP expression. Furthermore, levels of soluble APPα (sAPPα, a product of α-processing of APP) were significantly reduced in hippocampus of T1D mice. In contrast, amyloidogenic processing of APP was not affected by T1D in both cerebral microvessels and hippocampus. Most notably, studies in endothelial specific APP knockout mice established that genetic inactivation of APP in endothelium was sufficient to significantly reduce sAPPα levels in the hippocampus. In aggregate, our findings suggest that T1D impairs non-amyloidogenic processing of APP in cerebral microvessels. This may exert detrimental effect on local concentration of neuroprotective molecule, sAPPα, in the hippocampus.
Collapse
Affiliation(s)
- Tongrong He
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ruohan Sun
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.,2 Department of Neurology, First Hospital and Clinical College of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Anantha Vr Santhanam
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- 3 Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- 1 Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
18
|
Chun YS, Kwon OH, Oh HG, Cho YY, Yang HO, Chung S. Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein. Biomol Ther (Seoul) 2019; 27:276-282. [PMID: 30332887 PMCID: PMC6513189 DOI: 10.4062/biomolther.2018.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 09/01/2018] [Indexed: 11/05/2022] Open
Abstract
β-amyloid precursor protein (APP) can be cleaved by α-, and γ-secretase at plasma membrane producing soluble ectodomain fragment (sAPPα). Alternatively, following endocytosis, APP is cleaved by β-, and γ-secretase at early endosomes generating β-amyloid (Aβ), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for Aβ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased Aβ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on Aβ production. We found that justicidin A reduced endocytosis of APP, increasing sAPPα level, while decreasing Aβ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on Aβ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.
Collapse
Affiliation(s)
- Yoon Sun Chun
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun Geun Oh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Glutamate Receptor Trafficking and Protein Synthesis Mediate the Facilitation of LTP by Secreted Amyloid Precursor Protein-Alpha. J Neurosci 2019; 39:3188-3203. [PMID: 30804097 DOI: 10.1523/jneurosci.1826-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/15/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Secreted amyloid precursor protein-alpha (sAPPα) has growth factor-like properties and can modulate long-term potentiation (LTP) and memory. Here, we demonstrate that exposure to sAPPα converts short-lasting LTP into protein-synthesis-dependent late LTP in hippocampal slices from male rats. sAPPβ had no discernable effect. We hypothesized that sAPPα facilitated LTP via regulated glutamate receptor trafficking and de novo protein synthesis. We found using a linear mixed model that sAPPα stimulated trafficking of GluA2-lacking AMPARs, as well as NMDARs to the extrasynaptic cell surface, in a calcium/calmodulin-dependent kinase II and protein kinase G-dependent manner. Both cell surface receptor accumulation and LTP facilitation were present even after sAPPα washout and inhibition of receptor trafficking or protein synthesis prevented all these effects. Direct visualization of newly synthesized proteins (FUNCAT-PLA) confirmed the ability of sAPPα to stimulate de novo protein synthesis and revealed GluA1 as one of the upregulated proteins. Therefore, sAPPα generates a coordinated synthesis and trafficking of glutamate receptors to the cell surface that facilitate LTP.SIGNIFICANCE STATEMENT Secreted amyloid precursor protein-alpha (sAPPα) is a neurotrophic and neuroprotective protein that can promote synaptic plasticity and memory, yet the molecular mechanisms underlying these effects are still not well understood. Here, we show that sAPPα facilitates long-term potentiation (LTP) in a concentration-dependent fashion through cellular processes involving de novo protein synthesis and trafficking of both GluA2-lacking AMPARs and NMDARs to the extrasynaptic cell surface. sAPPα also enhances GluA1, but not GluA2, synthesis. The trafficking effects, along with the LTP facilitation, persist after sAPPα washout, revealing a metaplastic capability of exogenous sAPPα administration. sAPPα thus facilitates LTP through coordinated activation of protein synthesis and trafficking of glutamate receptors to the cell surface, where they are positioned for priming LTP.
Collapse
|
20
|
Amyloid Precursor Protein Mediates Neuronal Protection from Rotenone Toxicity. Mol Neurobiol 2019; 56:5471-5482. [PMID: 30612335 PMCID: PMC6614131 DOI: 10.1007/s12035-018-1460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial complex I dysfunction is the most common respiratory chain defect in human disorders and a hotspot for neurodegenerative diseases. Amyloid precursor protein (APP) and its non-amyloidogenic processing products, in particular soluble APP α (sAPPα), have been shown to provide neuroprotection in models of neuronal injury; however, APP-mediated protection from acute mitochondrial injury has not been previously reported. Here, we use the plant-derived pesticide rotenone, a potent complex I-specific mitochondrial inhibitor, to discover neuroprotective effects of APP and sAPPα in vitro, in neuronal cell lines over-expressing APP, and in vivo, in a retinal neuronal rotenone toxicity mouse model. Our results show that APP over-expression is protective against rotenone toxicity in neurons via sAPPα through an autocrine/paracrine mechanism that involves the Pi3K/Akt pro-survival pathway. APP−/− mice exhibit greater susceptibility to retinal rotenone toxicity, while intravitreal delivery of sAPPα reduces inner retinal neuronal death in wild-type mice following rotenone challenge. We also show a significant decrease in human retinal expression of APP with age. These findings provide insights into the therapeutic potential of non-amyloidogenic processing of APP in complex I-related neurodegeneration.
Collapse
|
21
|
Wang M, Jing T, Wang X, Yao D. Beta-secretase/BACE1 promotes APP endocytosis and processing in the endosomes and on cell membrane. Neurosci Lett 2018; 685:63-67. [PMID: 30120949 DOI: 10.1016/j.neulet.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Amyloid-β proteins deposition and aggregation occur in extracellular space and form neuritic plaques in Alzheimer's disease (AD) brain. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1)/ β-secretase and γ-secretase Presenilin 1 (PSEN1) conduct sequential cleavage of amyloid- β precursor protein (APP) and yield amyloid- β proteins. However the details of the interactions of APP with the enzymes and transportation of catalytic products are unclear. Here we reveal distinctive targeting patterns of the proteins in subcellular organelles in N2A cells. We find all three proteins co-localize in endosomes with APP and PSEN1 co-localize and associate on cell membrane and nucleus. By selectively knocking down BACE1 or PSEN 1 with siRNA, we discover that BACE1 functions as the enzyme initiating the first cleavage step and serves a scaffold for APP and PSEN1 endocytosis. PSEN1 knocking-down only leads to the reduction of BACE1 in cell membrane and nucleus. We conclude that BACE1 facilitates the transportation of APP and formation of the complex with γ-secretase, resulting in the stepwise cleavages of APP. After BACE1 cleavage APP binds to PSEN1 and transfers to cell membrane or nucleus for final processing and amyloid genesis.
Collapse
Affiliation(s)
- Mingguang Wang
- Department of Neurology, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, 221006, China
| | - Tian Jing
- Department of Neurology, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, 221006, China
| | - Xuan Wang
- Department of Neurology, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, 221006, China
| | - Dan Yao
- Department of Neurology, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, 221006, China.
| |
Collapse
|
22
|
Turcato F, Kim P, Barnett A, Jin Y, Scerba M, Casey A, Selman W, Greig NH, Luo Y. Sequential combined Treatment of Pifithrin-α and Posiphen Enhances Neurogenesis and Functional Recovery After Stroke. Cell Transplant 2018; 27:607-621. [PMID: 29871513 PMCID: PMC6041885 DOI: 10.1177/0963689718766328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: Although cerebral ischemia can activate endogenous reparative processes, such as
proliferation of endogenous neural stem cells (NSCs) in the subventricular zone (SVZ)
and subgranular zone (SGZ), the majority of these new cells die shortly after injury and
do not appropriately differentiate into neurons, or migrate and functionally integrate
into the brain. The purpose of this study was to examine a novel strategy for treatment
of stroke after injury by optimizing the survival of ischemia-induced endogenous NSCs in
the SVZ and SGZ. Methods: Adult SVZ and SGZ NSCs were grown as neurospheres in culture and treated with a p53
inactivator, pifithrin-α (PFT-α), and an amyloid precursor protein (APP)-lowering drug,
posiphen, and effects on neurosphere number, size and neuronal differentiation were
evaluated. This combined sequential treatment approach was then evaluated in mice
challenged with middle cerebral artery occlusion (MCAo). Locomotor behavior and
cognition were evaluated at 4 weeks, and the number of new surviving neurons was
quantified in nestin creERT2-YFP mice. Results: PFT-α and posiphen enhanced the self-renewal, proliferation rate and neuronal
differentiation of adult SVZ and SGZ NSCs in culture. Their sequential combination in
mice challenged with MCAo-induced stroke mitigated locomotor and cognitive impairments
and increased the survival of SVZ and SGZ NSCs cells. PFT-α and the combined
posiphen+PFT-α treatment similarly improved locomotion behavior in stroke challenged
mice. Notably, however, the combined treatment provided significantly more potent
cognitive function enhancement in stroke mice, as compared with PFT-α single
treatment. Interpretation: Delayed combined sequential treatment with an inhibitor of p53 dependent apoptosis
(PFT-α) and APP synthesis (posiphen) proved able to enhance stroke-induced endogenous
neurogenesis and improve the functional recovery in stroke animals. Whereas the combined
sequential treatment provided no further improvement in locomotor function, as compared
with PFT-α alone treatment, suggesting a potential ceiling in the locomotion behavioral
outcome in stroke animals, combined treatment more potently augmented cognitive function
recovery after stroke.
Collapse
Affiliation(s)
- Flavia Turcato
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA.,2 Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paul Kim
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Austin Barnett
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Yongming Jin
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Mike Scerba
- 3 National Institute of Aging, Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, Baltimore, USA
| | - Anthony Casey
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Warren Selman
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Nigel H Greig
- 3 National Institute of Aging, Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, Baltimore, USA
| | - Yu Luo
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
23
|
Kim YJ, Yoo JY, Kim OS, Kim HB, Ryu J, Kim HS, Lee JH, Yoo HI, Song DY, Baik TK, Woo RS. Neuregulin 1 regulates amyloid precursor protein cell surface expression and non-amyloidogenic processing. J Pharmacol Sci 2018; 137:146-153. [DOI: 10.1016/j.jphs.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023] Open
|
24
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Zhang G, Mosley RL, Gelbard HA, Gendelman HE. URMC-099 facilitates amyloid-β clearance in a murine model of Alzheimer's disease. J Neuroinflammation 2018; 15:137. [PMID: 29729668 PMCID: PMC5935963 DOI: 10.1186/s12974-018-1172-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
Background The mixed lineage kinase type 3 inhibitor URMC-099 facilitates amyloid-beta (Aβ) clearance and degradation in cultured murine microglia. One putative mechanism is an effect of URMC-099 on Aβ uptake and degradation. As URMC-099 promotes endolysosomal protein trafficking and reduces Aβ microglial pro-inflammatory activities, we assessed whether these responses affect Aβ pathobiogenesis. To this end, URMC-099’s therapeutic potential, in Aβ precursor protein/presenilin-1 (APP/PS1) double-transgenic mice, was investigated in this model of Alzheimer’s disease (AD). Methods Four-month-old APP/PS1 mice were administered intraperitoneal URMC-099 injections at 10 mg/kg daily for 3 weeks. Brain tissues were examined by biochemical, molecular and immunohistochemical tests. Results URMC-099 inhibited mitogen-activated protein kinase 3/4-mediated activation and attenuated β-amyloidosis. Microglial nitric oxide synthase-2 and arginase-1 were co-localized with lysosomal-associated membrane protein 1 (Lamp1) and Aβ. Importatly, URMC-099 restored synaptic integrity and hippocampal neurogenesis in APP/PS1 mice. Conclusions URMC-099 facilitates Aβ clearance in the brain of APP/PS1 mice. The multifaceted immune modulatory and neuroprotective roles of URMC-099 make it an attractive candidate for ameliorating the course of AD. This is buttressed by removal of pathologic Aβ species and restoration of the brain’s microenvironment during disease.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gang Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
25
|
Tan VTY, Mockett BG, Ohline SM, Parfitt KD, Wicky HE, Peppercorn K, Schoderboeck L, Yahaya MFB, Tate WP, Hughes SM, Abraham WC. Lentivirus-mediated expression of human secreted amyloid precursor protein-alpha prevents development of memory and plasticity deficits in a mouse model of Alzheimer's disease. Mol Brain 2018; 11:7. [PMID: 29426354 PMCID: PMC5806250 DOI: 10.1186/s13041-018-0348-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/16/2018] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease driven in large part by accumulated deposits in the brain of the amyloid precursor protein (APP) cleavage product amyloid-β peptide (Aβ). However, AD is also characterised by reductions in secreted amyloid precursor protein-alpha (sAPPα), an alternative cleavage product of APP. In contrast to the neurotoxicity of accumulated Αβ, sAPPα has many neuroprotective and neurotrophic properties. Increasing sAPPα levels has the potential to serve as a therapeutic treatment that mitigates the effects of Aβ and rescue cognitive function. Here we tested the hypothesis that lentivirus-mediated expression of a human sAPPα construct in a mouse model of AD (APPswe/PS1dE9), begun before the onset of plaque pathology, could prevent later behavioural and electrophysiological deficits. Male mice were given bilateral intra-hippocampal injections at 4 months of age and tested 8–10 months later. Transgenic mice expressing sAPPα performed significantly better than untreated littermates in all aspects of the spatial water maze task. Expression of sAPPα also resulted in partial rescue of long-term potentiation (LTP), tested in vitro. These improvements occurred in the absence of changes in amyloid pathology. Supporting these findings on LTP, lentiviral-mediated expression of sAPPα for 3 months from 10 months of age, or acute sAPPα treatment in hippocampal slices from 18 to 20 months old transgenic mice, completely reversed the deficits in LTP. Together these findings suggest that sAPPα has wide potential to act as either a preventative or restorative therapeutic treatment in AD by mitigating the effects of Aβ toxicity and enhancing cognitive reserve.
Collapse
Affiliation(s)
- Valerie T Y Tan
- Department of Psychology, University of Otago, Box 56, Dunedin, 9054, New Zealand.,Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Bruce G Mockett
- Department of Psychology, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Shane M Ohline
- Department of Psychology, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Karen D Parfitt
- Department of Neuroscience, Pomona College, Claremont, California, 91711, USA
| | - Hollie E Wicky
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Lucia Schoderboeck
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Mohamad Fairuz Bin Yahaya
- Department of Psychology, University of Otago, Box 56, Dunedin, 9054, New Zealand.,Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
26
|
Hunter S, Brayne C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatry 2018; 23:81-93. [PMID: 29112196 DOI: 10.1038/mp.2017.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
Many models of disease progression in Alzheimer's disease (AD) have been proposed to help guide experimental design and aid the interpretation of results. Models focussing on the genetic evidence include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two decades. However, the ACH has never been fully accepted and has not yet delivered on its therapeutic promise. We review the ACH, PSH and AMA in relation to levels of APP proteolytic fragments reported from AD-associated mutations in APP. Different APP mutations have diverse effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three disease pathways that can differ between familial and sporadic AD and two pathways associated with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the effects of mutations in APP as the APP proteolytic system has not been investigated systematically. The confounding effects of sequence homology, complexity of competing cleavages and antibody cross reactivities all illustrate limitations in our understanding of the roles these fragments and the APP proteolytic system as a whole in normal aging and disease play. Current experimental design should be refined to generate clearer evidence, addressing both aging and complex disorders with standardised reporting formats. A more flexible theoretical framework capable of accommodating the complexity of the APP proteolytic system is required to integrate available evidence.
Collapse
Affiliation(s)
- S Hunter
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - C Brayne
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
27
|
Llufriu-Dabén G, Carrete A, Chierto E, Mailleux J, Camand E, Simon A, Vanmierlo T, Rose C, Allinquant B, Hendriks JJ, Massaad C, Meffre D, Jafarian-Tehrani M. Targeting demyelination via α-secretases promoting sAPPα release to enhance remyelination in central nervous system. Neurobiol Dis 2018; 109:11-24. [DOI: 10.1016/j.nbd.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
|
28
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Huang W, Cheng P, Yu K, Han Y, Song M, Li Y. Hyperforin attenuates aluminum-induced Aβ production and Tau phosphorylation via regulating Akt/GSK-3β signaling pathway in PC12 cells. Biomed Pharmacother 2017; 96:1-6. [PMID: 28961505 DOI: 10.1016/j.biopha.2017.09.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Aluminum (Al) is a neurotoxicant and cause β-amyloid (Aβ) peptides aggregation and tau hyperphosphorylation. Hyperforin (HF) is one of the major active constituents of the extracts of St. John's Wort (Hypericum perforatum), can treat Alzheimer's disease (AD) and other diseases involving peptide accumulation and cognition impairment. To determine the effects of HF on Al-induced Aβ formation and tau hyperphosphorylation, PC12 cells were cultured and treated with Al-malt (500μM) and/or HF (1μM). The results showed that HF treatment significantly attenuated Al-malt-induced Aβ1-42 production by reducing the expressions of APP, BACE1 and PS1, while increasing the expressions of sAPPα, ADAM9/10/17, and tau phosphorylation in PC12 cells. In addition, HF treatment also increased phosphorylation of AKT (Ser473) and inhibited GSK-3β activity by increasing phosphorylation of GSK-3β (Ser9). These results indicated that HF may exert the protection via regulating the AKT/GSK-3β signaling to reduce Aβ production and tau phosphorylation in PC12 cells. Furthermore, these results could lead a possible therapeutics for the management of Al neurotoxicity.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ping Cheng
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Kaiyuan Yu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
30
|
Chang CF, Lai JH, Wu JCC, Greig NH, Becker RE, Luo Y, Chen YH, Kang SJ, Chiang YH, Chen KY. (-)-Phenserine inhibits neuronal apoptosis following ischemia/reperfusion injury. Brain Res 2017; 1677:118-128. [PMID: 28963051 DOI: 10.1016/j.brainres.2017.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Stroke commonly leads to adult disability and death worldwide. Its major symptoms are spastic hemiplegia and discordant motion, consequent to neuronal cell death induced by brain vessel occlusion. Acetylcholinesterase (AChE) is upregulated and allied with inflammation and apoptosis after stroke. Recent studies suggest that AChE inhibition ameliorates ischemia-reperfusion injury and has neuroprotective properties. (-)-Phenserine, a reversible AChE inhibitor, has a broad range of actions independent of its AChE properties, including neuroprotective ones. However, its protective effects and detailed mechanism of action in the rat middle cerebral artery occlusion model (MCAO) remain to be elucidated. This study investigated the therapeutic effects of (-)-phenserine for stroke in the rat focal cerebral ischemia model and oxygen-glucose deprivation/reperfusion (OGD/RP) damage model in SH-SY5Y neuronal cultures. (-)-Phenserine mitigated OGD/PR-induced SH-SY5Y cell death, providing an inverted U-shaped dose-response relationship between concentration and survival. In MCAO challenged rats, (-)-phenserine reduced infarction volume, cell death and improved body asymmetry, a behavioral measure of stoke impact. In both cellular and animal studies, (-)-phenserine elevated brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) levels, and decreased activated-caspase 3, amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP) expression, potentially mediated through the ERK-1/2 signaling pathway. These actions mitigated neuronal apoptosis in the stroke penumbra, and decreased matrix metallopeptidase-9 (MMP-9) expression. In synopsis, (-)-phenserine significantly reduced neuronal damage induced by ischemia/reperfusion injury in a rat model of MCAO and cellular model of OGD/RP, demonstrating that its anti-apoptotic/neuroprotective/neurotrophic cholinergic and non-cholinergic properties warrant further evaluation in conditions of brain injury.
Collapse
Affiliation(s)
- Cheng-Fu Chang
- Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taiwan; Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jing-Huei Lai
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - John Chung-Che Wu
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Robert E Becker
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Aristea Translational Medicine, Park City, UT, USA
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Yen-Hua Chen
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Shuo-Jhen Kang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Kai-Yun Chen
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Gill J, Cashion A, Osier N, Arcurio L, Motamedi V, Dell KC, Carr W, Kim HS, Yun S, Walker P, Ahlers S, LoPresti M, Yarnell A. Moderate blast exposure alters gene expression and levels of amyloid precursor protein. NEUROLOGY-GENETICS 2017; 3:e186. [PMID: 28975156 PMCID: PMC5618107 DOI: 10.1212/nxg.0000000000000186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/30/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore gene expression after moderate blast exposure (vs baseline) and proteomic changes after moderate- (vs low-) blast exposure. METHODS Military personnel (N = 69) donated blood for quantification of protein level, and peak pressure exposures were detected by helmet sensors before and during a blast training program (10 days total). On day 7, some participants (n = 29) sustained a moderate blast (mean peak pressure = 7.9 psi) and were matched to participants with no/low-blast exposure during the training (n = 40). PAXgene tubes were collected from one training site at baseline and day 10; RNA-sequencing day 10 expression was compared with each participant's own baseline samples to identify genes and pathways differentially expressed in moderate blast-exposed participants. Changes in amyloid precursor protein (APP) from baseline to the day of blast and following 2 days were evaluated. Symptoms were assessed using a self-reported form. RESULTS We identified 1,803 differentially expressed genes after moderate blast exposure; the most altered network was APP. Significantly reduced levels of peripheral APP were detected the day after the moderate blast exposure and the following day. Protein concentrations correlated with the magnitude of the moderate blast exposure on days 8 and 9. APP concentrations returned to baseline levels 3 days following the blast, likely due to increases in the genetic expression of APP. Onset of concentration problems and headaches occurred after moderate blast. CONCLUSIONS Moderate blast exposure results in a signature biological profile that includes acute APP reductions, followed by genetic expression increases and normalization of APP levels; these changes likely influence neuronal recovery.
Collapse
Affiliation(s)
- Jessica Gill
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Ann Cashion
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Nicole Osier
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Lindsay Arcurio
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Vida Motamedi
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Kristine C Dell
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Walter Carr
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Hyung-Suk Kim
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Sijung Yun
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Peter Walker
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Stephen Ahlers
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Matthew LoPresti
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| | - Angela Yarnell
- Intramural Research Program, CNRM Co Director Biomarkers Core, Uniformed Services University of the Health Sciences (J.G.) and National Institute of Nursing Research (A.C., N.O., L.A., V.M., H.-S.K., S.Y.), National Institutes of Health, Bethesda; Walter Reed Army Institute of Research (K.C.D., M.L., A.Y.), Silver Spring; Army Medical Research and Materiel Command (W.C.), Fort Detrick; and Naval Medical Research Center (P.W., S.A.), Silver Spring, MD
| |
Collapse
|
32
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
33
|
Lopez Sanchez MIG, Waugh HS, Tsatsanis A, Wong BX, Crowston JG, Duce JA, Trounce IA. Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta. Sci Rep 2017; 7:9835. [PMID: 28852095 PMCID: PMC5574989 DOI: 10.1038/s41598-017-10233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Amyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer’s disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear. In this study we investigated the effects of increased levels of neuronal APP or Aβ on mitochondrial metabolism and gene expression, in human SH-SY5Y neuroblastoma cells. Increased non-amyloidogenic processing of APP, but not Aβ, profoundly decreased respiration and enhanced glycolysis, while mitochondrial DNA (mtDNA) transcripts were decreased, without detrimental effects to cell growth. These effects cannot be ascribed to Aβ toxicity, since higher levels of endogenous Aβ in our models do not cause oxidative phosphorylation (OXPHOS) perturbations. Similarly, chemical inhibition of β-secretase decreased mitochondrial respiration, suggesting that non-amyloidogenic processing of APP may be responsible for mitochondrial changes. Our results have two important implications, the need for caution in the interpretation of mitochondrial perturbations in models where APP is overexpressed, and a potential role of sAPPα or other non-amyloid APP fragments as acute modulators of mitochondrial metabolism.
Collapse
Affiliation(s)
- M Isabel G Lopez Sanchez
- Centre for Eye Research Australia, 75 Commercial Road, Melbourne, 3004, Victoria, Australia.,Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia
| | - Hayley S Waugh
- Centre for Eye Research Australia, 75 Commercial Road, Melbourne, 3004, Victoria, Australia.,Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia
| | - Andrew Tsatsanis
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.,Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia, 75 Commercial Road, Melbourne, 3004, Victoria, Australia.,Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia
| | - James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.,Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Ian A Trounce
- Centre for Eye Research Australia, 75 Commercial Road, Melbourne, 3004, Victoria, Australia. .,Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Manduca Contactin Regulates Amyloid Precursor Protein-Dependent Neuronal Migration. J Neurosci 2017; 36:8757-75. [PMID: 27535920 DOI: 10.1523/jneurosci.0729-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Amyloid precursor protein (APP) was originally identified as the source of β-amyloid peptides that accumulate in Alzheimer's disease (AD), but it also has been implicated in the control of multiple aspects of neuronal motility. APP belongs to an evolutionarily conserved family of transmembrane proteins that can interact with a variety of adapter and signaling molecules. Recently, we showed that both APP and its insect ortholog [APPL (APP-Like)] directly bind the heterotrimeric G-protein Goα, supporting the model that APP can function as an unconventional Goα-coupled receptor. We also adapted a well characterized assay of neuronal migration in the hawkmoth, Manduca sexta, to show that APPL-Goα signaling restricts ectopic growth within the developing nervous system, analogous to the role postulated for APP family proteins in controlling migration within the mammalian cortex. Using this assay, we have now identified Manduca Contactin (MsContactin) as an endogenous ligand for APPL, consistent with previous work showing that Contactins interact with APP family proteins in other systems. Using antisense-based knockdown protocols and fusion proteins targeting both proteins, we have shown that MsContactin is selectively expressed by glial cells that ensheath the migratory neurons (expressing APPL), and that MsContactin-APPL interactions normally prevent inappropriate migration and outgrowth. These results provide new evidence that Contactins can function as authentic ligands for APP family proteins that regulate APP-dependent responses in the developing nervous system. They also support the model that misregulated Contactin-APP interactions might provoke aberrant activation of Goα and its effectors, thereby contributing to the neurodegenerative sequelae that typify AD. SIGNIFICANCE STATEMENT Members of the amyloid precursor protein (APP) family participate in many aspects of neuronal development, but the ligands that normally activate APP signaling have remained controversial. This research provides new evidence that members of the Contactin family function as authentic ligands for APP and its orthologs, and that this evolutionarily conserved class of membrane-attached proteins regulates key aspects of APP-dependent migration and outgrowth in the embryonic nervous system. By defining the normal role of Contactin-APP signaling during development, these studies also provide the framework for investigating how the misregulation of Contactin-APP interactions might contribute to neuronal dysfunction in the context of both normal aging and neurodegenerative conditions, including Alzheimer's disease.
Collapse
|
35
|
Jayne T, Newman M, Verdile G, Sutherland G, Münch G, Musgrave I, Moussavi Nik SH, Lardelli M. Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 52:781-99. [PMID: 27060961 DOI: 10.3233/jad-151186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of mutations causing familial Alzheimer's disease (fAD) have been found in the gene PRESENILIN1 (PSEN1) with additional mutations in the related gene PRESENILIN2 (PSEN2). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (AβPP/APP) that is a fAD mutation locus. AβPP is the source of the amyloid-β (Aβ) peptide enriched in the brains of people with fAD or the more common, late onset, sporadic form of AD, sAD. These observations have resulted in a focus on γ-secretase activity and Aβ as we attempt to understand the molecular basis of AD pathology. In this paper we briefly review some of the history of research on γ-secretase in AD. We then discuss the main ideas regarding the role of γ-secretase and the PSEN genes in this disease. We examine the significance of the "fAD mutation reading frame preservation rule" that applies to PSEN1 and PSEN2 (and AβPP) and look at alternative roles for AβPP and Aβ in fAD. We present a case for an alternative interpretation of published data on the role of γ-secretase activity and fAD-associated mutations in AD pathology. Evidence supports a "PSEN holoprotein multimer hypothesis" where PSEN fAD mutations generate mutant PSEN holoproteins that multimerize with wild type holoprotein and dominantly interfere with an AD-critical function(s) such as autophagy or secretion of Aβ. Holoprotein multimerization may be required for the endoproteolysis that activates PSENs' γ-secretase activity.
Collapse
Affiliation(s)
- Tanya Jayne
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health Innovation Research Institute - Biosciences, Faculty of Health Sciences, Curtin University, Kent Street, Bentley, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,McCusker Alzheimer's Disease Research Foundation, Hollywood Private Hospital, Hollywood Medical Centre, Nedlands, WA, Australia
| | - Greg Sutherland
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Gerald Münch
- Molecular Medicine Research Group & School of Medicine, Western Sydney University, Campbelltown NSW, Australia
| | - Ian Musgrave
- Discipline of Pharmacology, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Seyyed Hani Moussavi Nik
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA, Australia
| |
Collapse
|
36
|
Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels. J Neurosci 2017; 36:8356-71. [PMID: 27511009 DOI: 10.1523/jneurosci.4130-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/19/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. SIGNIFICANCE STATEMENT Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological function of APP and may be important for understanding mechanisms of neurodegenerative diseases.
Collapse
|
37
|
Transcriptional regulation of RACK1 and modulation of its expression: Role of steroid hormones and significance in health and aging. Cell Signal 2017; 35:264-271. [DOI: 10.1016/j.cellsig.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
|
38
|
A Genome-Wide Association Study Reveals Differences in the Genetic Mechanism of Control of the Two Gait Patterns of the Brazilian Mangalarga Marchador Breed. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18:281-298. [PMID: 28360418 DOI: 10.1038/nrn.2017.29] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid precursor protein (APP) gives rise to the amyloid-β peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.
Collapse
|
40
|
Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci 2017; 10:56. [PMID: 28367112 PMCID: PMC5355436 DOI: 10.3389/fnmol.2017.00056] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the major physiological alpha-secretase in neurons, responsible for cleaving APP in a non-amyloidogenic manner. This cleavage results in the production of a neuroprotective APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta peptides. An increase in ADAM10 activity shifts the balance of APP processing toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus, increasing ADAM10 activity has been proposed an attractive target for the treatment of neurodegenerative diseases and it appears to be timely to investigate the physiological mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review reports on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10 expression may be regulated in humans, and (4) discuss how this knowledge on the physiological and pathophysiological regulation of ADAM10 may help to preserve or restore brain function.
Collapse
Affiliation(s)
- Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt/Main, Germany
| |
Collapse
|
41
|
Ramaker JM, Copenhaver PF. Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility. NEUROGENESIS 2017; 4:e1288510. [PMID: 28321435 PMCID: PMC5345750 DOI: 10.1080/23262133.2017.1288510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that signals via the heterotrimeric G protein Gαo, but evidence for APP-Gαo signaling in vivo has been lacking. Using Manduca as a model system, we showed that insect APP (APPL) regulates neuronal migration in a Gαo-dependent manner. Recently, we also demonstrated that Manduca Contactin (expressed by glial cells) induces APPL-Gαo retraction responses in migratory neurons, consistent with evidence that mammalian Contactins also interact with APP family members. Preliminary studies using cultured hippocampal neurons suggest that APP-Gαo signaling can similarly regulate growth cone motility. Whether Contactins (or other APP ligands) induce this response within the developing nervous system, and how this pathway is disrupted in AD, remains to be explored.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| |
Collapse
|
42
|
Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Front Mol Neurosci 2017; 10:30. [PMID: 28223920 PMCID: PMC5293819 DOI: 10.3389/fnmol.2017.00030] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer's disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.
Collapse
Affiliation(s)
- Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Max Richter
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
43
|
Hefter D, Draguhn A. APP as a Protective Factor in Acute Neuronal Insults. Front Mol Neurosci 2017; 10:22. [PMID: 28210211 PMCID: PMC5288400 DOI: 10.3389/fnmol.2017.00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/16/2017] [Indexed: 12/25/2022] Open
Abstract
Despite its key role in the molecular pathology of Alzheimer’s disease (AD), the physiological function of amyloid precursor protein (APP) is unknown. Increasing evidence, however, points towards a neuroprotective role of this membrane protein in situations of metabolic stress. A key observation is the up-regulation of APP following acute (stroke, cardiac arrest) or chronic (cerebrovascular disease) hypoxic-ischemic conditions. While this mechanism may increase the risk or severity of AD, APP by itself or its soluble extracellular fragment APPsα can promote neuronal survival. Indeed, different animal models of acute hypoxia-ischemia, traumatic brain injury (TBI) and excitotoxicity have revealed protective effects of APP or APPsα. The underlying mechanisms involve APP-mediated regulation of calcium homeostasis via NMDA receptors (NMDAR), voltage-gated calcium channels (VGCC) or internal calcium stores. In addition, APP affects the expression of survival- or apoptosis-related genes as well as neurotrophic factors. In this review, we summarize the current understanding of the neuroprotective role of APP and APPsα and possible implications for future research and new therapeutic strategies.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg UniversityHeidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
44
|
Xiong M, Jones OD, Peppercorn K, Ohline SM, Tate WP, Abraham WC. Secreted amyloid precursor protein-alpha can restore novel object location memory and hippocampal LTP in aged rats. Neurobiol Learn Mem 2017; 138:291-299. [DOI: 10.1016/j.nlm.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
|
45
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
46
|
Ludewig S, Korte M. Novel Insights into the Physiological Function of the APP (Gene) Family and Its Proteolytic Fragments in Synaptic Plasticity. Front Mol Neurosci 2017; 9:161. [PMID: 28163673 PMCID: PMC5247455 DOI: 10.3389/fnmol.2016.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) is well known to be involved in the pathophysiology of Alzheimer's disease (AD) via its cleavage product amyloid ß (Aß). However, the physiological role of APP, its various proteolytic products and the amyloid precursor-like proteins 1 and 2 (APLP1/2) are still not fully clarified. Interestingly, it has been shown that learning and memory processes represented by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants. In addition, APP and its fragments are implicated in regulating synaptic strength further reinforcing their modulatory role at the synapse. While APLP2 and APP are functionally redundant, the exclusively CNS expressed APLP1, might have individual roles within the synaptic network. The proteolytic product of non-amyloidogenic APP processing, APPsα, emerged as a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. Interestingly, the newly discovered η-secretase cleavage product, An-α acts in the opposite direction, namely decreasing LTP. In this review we summarize recent findings with emphasis on the physiological role of the APP gene family and its proteolytic products on synaptic function and plasticity, especially during processes of hippocampal LTP. Therefore, we focus on literature that provide electrophysiological data by using different mutant mouse strains either lacking full-length or parts of the APP proteins or that utilized secretase inhibitors as well as secreted APP fragments.
Collapse
Affiliation(s)
- Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU BraunschweigBraunschweig, Germany; Helmholtz Centre for Infection Research, AG NINDBraunschweig, Germany
| |
Collapse
|
47
|
He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37:106-122. [PMID: 26661245 PMCID: PMC5363732 DOI: 10.1177/0271678x15618977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature.
Collapse
Affiliation(s)
- Tongrong He
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha Vijay R Santhanam
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
48
|
Del Turco D, Paul MH, Schlaudraff J, Hick M, Endres K, Müller UC, Deller T. Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus. Front Mol Neurosci 2016; 9:134. [PMID: 27965537 PMCID: PMC5126089 DOI: 10.3389/fnmol.2016.00134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
The physiological role of amyloid precursor protein (APP) has been extensively investigated in the rodent hippocampus. Evidence suggests that APP plays a role in synaptic plasticity, dendritic and spine morphogenesis, neuroprotection and—at the behavioral level—hippocampus-dependent forms of learning and memory. Intriguingly, however, studies focusing on the role of APP in synaptic plasticity have reported diverging results and considerable differences in effect size between the dentate gyrus (DG) and area CA1 of the mouse hippocampus. We speculated that regional differences in APP expression could underlie these discrepancies and studied the expression of APP in both regions using immunostaining, in situ hybridization (ISH), and laser microdissection (LMD) in combination with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. In sum, our results show that APP is approximately 1.7-fold higher expressed in pyramidal cells of Ammon’s horn than in granule cells of the DG. This regional difference in APP expression may explain why loss-of-function approaches using APP-deficient mice revealed a role for APP in Hebbian plasticity in area CA1, whereas this could not be shown in the DG of the same APP mutants.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| | - Mandy H Paul
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| | - Jessica Schlaudraff
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-UniversityFrankfurt, Germany; Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg UniversityHeidelberg, Germany
| | - Kristina Endres
- Clinic for Psychiatry and Psychotherapy, University Medical Center Mainz Mainz, Germany
| | - Ulrike C Müller
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| |
Collapse
|
49
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
50
|
The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior. J Neurosci 2016; 35:16018-33. [PMID: 26658856 DOI: 10.1523/jneurosci.2009-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we followed a genetic approach and used APPΔCT15 knockin mice lacking the last 15 amino acids of APP, including the highly conserved YENPTY protein interaction motif. To circumvent functional compensation by the closely related APLP2, these mice were bred to an APLP2-KO background to generate APPΔCT15-DM double mutants. These APPΔCT15-DM mice were partially viable and displayed defects in neuromuscular synapse morphology and function with impairments in the ability to sustain transmitter release that resulted in muscular weakness. In the CNS, we demonstrate pronounced synaptic deficits including impairments in LTP that were associated with deficits in spatial learning and memory. Thus, the APP-CT15 domain provides essential physiological functions, likely via recruitment of specific interactors. Together with the well-established role of APPsα for synaptic plasticity, this shows that multiple domains of APP, including the conserved C-terminus, mediate signals required for normal PNS and CNS physiology. In addition, we demonstrate that lack of the APP-CT15 domain strongly impairs Aβ generation in vivo, establishing the APP C-terminus as a target for Aβ-lowering strategies. SIGNIFICANCE STATEMENT Synaptic dysfunction and cognitive decline are early hallmark features of Alzheimer's disease. Thus, it is essential to elucidate the in vivo function(s) of APP at the synapse. At present, it is unknown whether APP family proteins function as cell surface receptors, or mainly via shedding of their secreted ectodomains, such as neurotrophic APPsα. Here, to dissect APP functional domains, we used APP mutant mice lacking the last 15 amino acids that were crossed onto an APLP2-KO background. These APPΔCT15-DM mice showed defects in neuromuscular morphology and function. Synaptic deficits in the CNS included impairments of synaptic plasticity, spatial learning, and memory. Collectively, this indicates that multiple APP domains, including the C-terminus, are required for normal nervous system function.
Collapse
|