1
|
Tays GD, Hupfeld KE, McGregor HR, Banker LA, De Dios YE, Bloomberg JJ, Reuter-Lorenz PA, Mulavara AP, Wood SJ, Seidler RD. The microgravity environment affects sensorimotor adaptation and its neural correlates. Cereb Cortex 2025; 35:bhae502. [PMID: 39756418 PMCID: PMC11795311 DOI: 10.1093/cercor/bhae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025] Open
Abstract
The microgravity environment results in transient changes in sensorimotor behavior upon astronauts' return to Earth; the effects on behavior inflight are less understood. We examined whether adaptation to sensory conflict is disrupted in microgravity, suggesting competition for adaptive resources. We evaluated sensorimotor adaptation pre-, in-, and post-flight, as well as functional brain changes at pre- and post-flight, in astronauts participating in International Space Station missions. Astronauts (n = 13) performed this task pre- and four times post-flight within an MRI scanner and performed the task three times in microgravity during a 6-mo mission. We collected behavioral data from Earth-bound controls (n = 13) along the same timeline. Astronauts displayed no change in adaptation from pre- to inflight or following their return to Earth. They showed greater aftereffects of adaptation inflight; controls did not. Astronauts also displayed increased brain activity from pre- to post-flight. These increases did not return to baseline levels until 90 d post-flight. This pattern of brain activity may reflect compensation, allowing astronauts to maintain pre-flight performance levels. These findings indicate that microgravity does not alter short-term visuomotor adaptation; however, it does affect de-adaptation, and post-flight sensorimotor neural activation can take up to 90 d to return to pre-flight levels.
Collapse
Affiliation(s)
- G D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - L A Banker
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | | | - J J Bloomberg
- NASA Johnson Space Center, Houston, TX, United States
| | - P A Reuter-Lorenz
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | | | - S J Wood
- NASA Johnson Space Center, Houston, TX, United States
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Molefi E, McLoughlin I, Palaniappan R. Transcutaneous Auricular Vagus Nerve Stimulation for Visually Induced Motion Sickness: An eLORETA Study. Brain Topogr 2024; 38:11. [PMID: 39487878 PMCID: PMC11531436 DOI: 10.1007/s10548-024-01088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive form of electrical brain stimulation, has shown potent therapeutic potential for a wide spectrum of conditions. How taVNS influences the characterization of motion sickness - a long mysterious syndrome with a polysymptomatic onset - remains unclear. Here, to examine taVNS-induced effects on brain function in response to motion-induced nausea, 64-channel electroencephalography (EEG) recordings from 42 healthy participants were analyzed; collected during nauseogenic visual stimulation concurrent with taVNS administration, in a crossover randomized sham-controlled study. Cortical neuronal generators were estimated from the obtained EEG using exact low-resolution brain electromagnetic tomography (eLORETA). While both sham and taVNS increased insula activation during electrical stimulation, compared to baseline, taVNS additionally augmented middle frontal gyrus neuronal activity. Following taVNS, brain regions including the supramarginal, parahippocampal, and precentral gyri were activated. Contrasting sham, taVNS markedly increased activity in the middle occipital gyrus during stimulation. A repeated-measures ANOVA showed that taVNS reduced motion sickness symptoms. This reduction in symptoms correlated with taVNS-induced neural activation. Our findings provide new insights into taVNS-induced brain changes, during and after nauseogenic stimuli exposure, including accompanying behavioral response. Together, these findings suggest that taVNS has promise as an effective neurostimulation tool for motion sickness management.
Collapse
Affiliation(s)
| | - Ian McLoughlin
- ICT Cluster, Singapore Institute of Technology, Singapore, Singapore
| | | |
Collapse
|
3
|
Maruta J. On labyrinthine function loss, motion sickness immunity, and velocity storage. Front Neurol 2024; 15:1426213. [PMID: 39006234 PMCID: PMC11239394 DOI: 10.3389/fneur.2024.1426213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Allred AR, Clark TK. A computational model of motion sickness dynamics during passive self-motion in the dark. Exp Brain Res 2024; 242:1127-1148. [PMID: 38489025 DOI: 10.1007/s00221-024-06804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Predicting the time course of motion sickness symptoms enables the evaluation of provocative stimuli and the development of countermeasures for reducing symptom severity. In pursuit of this goal, we present an Observer-driven model of motion sickness for passive motions in the dark. Constructed in two stages, this model predicts motion sickness symptoms by bridging sensory conflict (i.e., differences between actual and expected sensory signals) arising from the Observer model of spatial orientation perception (stage 1) to Oman's model of motion sickness symptom dynamics (stage 2; presented in 1982 and 1990) through a proposed "Normalized Innovation Squared" statistic. The model outputs the expected temporal development of human motion sickness symptom magnitudes (mapped to the Misery Scale) at a population level, due to arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained model parameters using individual subject responses collected during fore-aft translations and off-vertical axis of rotation motions. Improving on prior efforts, we only used datasets with experimental conditions congruent with the perceptual stage (i.e., adequately provided passive motions without visual cues) to inform the model. We assessed model performance by predicting an unseen validation dataset, producing a Q2 value of 0.91. Demonstrating this model's broad applicability, we formulate predictions for a host of stimuli, including translations, earth-vertical rotations, and altered gravity, and we provide our implementation for other users. Finally, to guide future research efforts, we suggest how to rigorously advance this model (e.g., incorporating visual cues, active motion, responses to motion of different frequency, etc.).
Collapse
Affiliation(s)
- Aaron R Allred
- Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA.
| | - Torin K Clark
- Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Ramazan K, Devran AY, Muhammed ON. An old approach to a novel problem: effect of combined balance therapy on virtual reality induced motion sickness: a randomized, placebo controlled, double-blinded study. BMC MEDICAL EDUCATION 2024; 24:156. [PMID: 38374042 PMCID: PMC10875861 DOI: 10.1186/s12909-024-05152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The objective of this study was to investigate the impact of a rehabilitation program aimed at addressing vestibular and proprioceptive deficits, which are believed to underlie the pathophysiology of motion sickness. METHODS A total of 121 medical students with motion sickness participated in this study and were randomly divided into intervention (n = 60) and placebo control (n = 61) groups. The intervention group underwent combined balance, proprioception, and vestibular training three times a week for 4 weeks, while the control group received placebo training. The study assessed various measurements, including the Virtual reality sickness questionnaire (VRSQ), tolerance duration, enjoyment level measured by VAS, stability levels using Biodex, and balance with the Flamingo balance test (FBT). All measurements were conducted both at baseline and 4 weeks later. RESULTS There was no significant difference in pre-test scores between the intervention and control groups, suggesting a similar baseline in both groups (p > 0.05). The results showed a significant improvement in VRSQ, tolerance duration, VAS, Biodex, and FBT scores in the intervention group (p < 0.05). While, the control group showed a significant increase only in VAS scores after 4 weeks of training (p < 0.05). A statistically significant improvement was found between the groups for VRSQ (p < 0.001), tolerance duration (p < 0.001), VAS (p < 0.001), Biodex (p = 0.015), and FBT scores (p < 0.05), in favor of the intervention group. CONCLUSIONS A combined balance training program for motion sickness proves to be effective in reducing motion sickness symptoms, enhancing user enjoyment, and extending the usage duration of virtual reality devices while improving balance and stability. In contrast, placebo training did not alter motion sickness levels. These findings offer valuable insights for expanding the usage of virtual reality, making it accessible to a broader population.
Collapse
Affiliation(s)
- Kurul Ramazan
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Altuntas Yasin Devran
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ogun Nur Muhammed
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
6
|
Bappi MH, Prottay AAS, Al-Khafaji K, Akbor MS, Hossain MK, Islam MS, Asha AI, Medeiros CR, Tahim CM, Lucetti ECP, Coutinho HDM, Kamli H, Islam MT. Antiemetic effects of sclareol, possibly through 5-HT 3 and D 2 receptor interaction pathways: In-vivo and in-silico studies. Food Chem Toxicol 2023; 181:114068. [PMID: 37863383 DOI: 10.1016/j.fct.2023.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Emesis is a complex physiological phenomenon that serves as a defense against numerous toxins, stressful situations, adverse medication responses, chemotherapy, and movement. Nevertheless, preventing emesis during chemotherapy or other situations is a significant issue for researchers. Hence, the majority view contends that successfully combining therapy is the best course of action. In-vivo analysis offers a more comprehensive grasp of how compounds behave within a complex biological environment, whereas in-silico evaluation refers to the use of computational models to forecast biological interactions. OBJECTIVES The objectives of the present study were to evaluate the effects of Sclareol (SCL) on copper sulphate-induced emetic chicks and to investigate the combined effects of these compounds using a conventional co-treatment approach and in-silico study. METHODS SCL (5, 10, and 15 mg/kg) administered orally with or without pre-treatment with anti-emetic drugs (Ondansetron (ODN): 24 mg/kg, Domperidone (DOM): 80 mg/kg, Hyoscine butylbromide (HYS): 100 mg/kg, and Promethazine hydrochloride (PRO): 100 mg/kg) to illustrate the effects and the potential involvement with 5HT3, D2, M3/AChM, H1, or NK1 receptors by SCL. Furthermore, an in-silico analysis was conducted to forecast the role of these receptors in the emetic process. RESULTS The results suggest that SCL exerted a dose-dependent anti-emetic effect on the chicks. Pretreatment with SCL-10 significantly minimized the number of retches and lengthened the emesis tendency of the experimental animals. SCL-10 significantly increased the anti-emetic effects of ODN and DOM. However, compared to the ODN-treated group, (SCL-10 + ODN) group considerably (p < 0.0001) extended the latency duration (109.40 ± 1.03 s) and significantly (p < 0.01) decreased the number of retches (20.00 ± 0.70), indicating an anti-emetic effect on the test animals. In in-silico analysis, SCL exhibited promising binding affinities with suggesting receptors. CONCLUSION SCL-10 exerted an inhibitory-like effect on emetic chicks, probably through the interaction of the 5HT3 and D2 receptors. Further studies are highly appreciated to validate this study and determine the precise mechanism(s) behind the anti-emetic effects of SCL. We expect that SCL-10 may be utilized as an antiemetic treatment in a single dosage form or that it may function as a synergist with other traditional medicines.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Khattab Al-Khafaji
- Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh University of Science, Baghdad, 10081, Iraq
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Muhammad Kamal Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Pharmacy, University of Science & Technology Chittagong, Chittagong, 4202, Bangladesh
| | - Md Shahazul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Afia Ibnath Asha
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Cassio Rocha Medeiros
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro Do Norte, CE, 63024-015, Brazil
| | - Catarina Martins Tahim
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro Do Norte, CE, 63024-015, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato, CE, 63105-000, Brazil.
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
7
|
Allred AR, Clark TK. A computational model of motion sickness dynamics during passive self-motion in the dark. Exp Brain Res 2023; 241:2311-2332. [PMID: 37589937 DOI: 10.1007/s00221-023-06684-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Predicting the time course of motion sickness symptoms enables the evaluation of provocative stimuli and the development of countermeasures for reducing symptom severity. In pursuit of this goal, we present an observer-driven model of motion sickness for passive motions in the dark. Constructed in two stages, this model predicts motion sickness symptoms by bridging sensory conflict (i.e., differences between actual and expected sensory signals) arising from the observer model of spatial orientation perception (stage 1) to Oman's model of motion sickness symptom dynamics (stage 2; presented in 1982 and 1990) through a proposed "Normalized innovation squared" statistic. The model outputs the expected temporal development of human motion sickness symptom magnitudes (mapped to the Misery Scale) at a population level, due to arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained model parameters using individual subject responses collected during fore-aft translations and off-vertical axis of rotation motions. Improving on prior efforts, we only used datasets with experimental conditions congruent with the perceptual stage (i.e., adequately provided passive motions without visual cues) to inform the model. We assessed model performance by predicting an unseen validation dataset, producing a Q2 value of 0.86. Demonstrating this model's broad applicability, we formulate predictions for a host of stimuli, including translations, earth-vertical rotations, and altered gravity, and we provide our implementation for other users. Finally, to guide future research efforts, we suggest how to rigorously advance this model (e.g., incorporating visual cues, active motion, responses to motion of different frequency, etc.).
Collapse
Affiliation(s)
- Aaron R Allred
- Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA.
| | - Torin K Clark
- Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Allred AR, Kravets VG, Ahmed N, Clark TK. Modeling orientation perception adaptation to altered gravity environments with memory of past sensorimotor states. Front Neural Circuits 2023; 17:1190582. [PMID: 37547052 PMCID: PMC10399228 DOI: 10.3389/fncir.2023.1190582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Transitioning between gravitational environments results in a central reinterpretation of sensory information, producing an adapted sensorimotor state suitable for motor actions and perceptions in the new environment. Critically, this central adaptation is not instantaneous, and complete adaptation may require weeks of prolonged exposure to novel environments. To mitigate risks associated with the lagging time course of adaptation (e.g., spatial orientation misperceptions, alterations in locomotor and postural control, and motion sickness), it is critical that we better understand sensorimotor states during adaptation. Recently, efforts have emerged to model human perception of orientation and self-motion during sensorimotor adaptation to new gravity stimuli. While these nascent computational frameworks are well suited for modeling exposure to novel gravitational stimuli, they have yet to distinguish how the central nervous system (CNS) reinterprets sensory information from familiar environmental stimuli (i.e., readaptation). Here, we present a theoretical framework and resulting computational model of vestibular adaptation to gravity transitions which captures the role of implicit memory. This advancement enables faster readaptation to familiar gravitational stimuli, which has been observed in repeat flyers, by considering vestibular signals dependent on the new gravity environment, through Bayesian inference. The evolution and weighting of hypotheses considered by the CNS is modeled via a Rao-Blackwellized particle filter algorithm. Sensorimotor adaptation learning is facilitated by retaining a memory of past harmonious states, represented by a conditional state transition probability density function, which allows the model to consider previously experienced gravity levels (while also dynamically learning new states) when formulating new alternative hypotheses of gravity. In order to demonstrate our theoretical framework and motivate future experiments, we perform a variety of simulations. These simulations demonstrate the effectiveness of this model and its potential to advance our understanding of transitory states during which central reinterpretation occurs, ultimately mitigating the risks associated with the lagging time course of adaptation to gravitational environments.
Collapse
Affiliation(s)
- Aaron R. Allred
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Victoria G. Kravets
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Nisar Ahmed
- Cooperative Human-Robot Interaction Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Torin K. Clark
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Woo YS, Jang KM, Nam SG, Kwon M, Lim HK. Recovery time from VR sickness due to susceptibility: Objective and quantitative evaluation using electroencephalography. Heliyon 2023; 9:e14792. [PMID: 37095971 PMCID: PMC10121634 DOI: 10.1016/j.heliyon.2023.e14792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
With the increasing use of virtual reality (VR) devices, interest in reducing their negative effects, such as VR sickness, is also increasing. This study used electroencephalography (EEG) to investigate participants' VR sickness recovery time after watching a VR video. We tested 40 participants in advance using a motion sickness susceptibility questionnaire (MSSQ). We classified the participants into two groups (sensitive group/non-sensitive group) depending on their MSSQ scores. We used a simulator sickness questionnaire (SSQ) and EEG to evaluate VR sickness. The SSQ score increased significantly after watching the VR sickness-inducing video (VR video) in both groups (p < 0.001). The recovery time based on the SSQ was 11.3 ± 6.6 min for the sensitive group and 9.1 ± 5.2 min for the non-sensitive group. The difference in recovery time between the two groups was not significant (p > 0.05). EEG results showed that recovery time took an average of 11.5 ± 7.1 min in both groups. The EEG data showed that the delta wave increased significantly across all brain areas (p < 0.01). There was no statistical difference between groups in recovering VR sickness depending on individual characteristics. However, we confirmed that subjective and objective VR recovery required at least 11.5 min. This finding can inform recommendations regarding the VR sickness recovery times.
Collapse
Affiliation(s)
- Ye Shin Woo
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Kyoung-Mi Jang
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Sun Gu Nam
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Moonyoung Kwon
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Hyun Kyoon Lim
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- University of Science and Technology, Daejeon, Republic of Korea
- Corresponding author. Korea Research Institute of Standards and Science, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Palmisano S, Allison RS, Teixeira J, Kim J. Differences in virtual and physical head orientation predict sickness during active head-mounted display-based virtual reality. VIRTUAL REALITY 2022; 27:1293-1313. [PMID: 36567954 PMCID: PMC9761034 DOI: 10.1007/s10055-022-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/30/2022] [Indexed: 06/05/2023]
Abstract
During head-mounted display (HMD)-based virtual reality (VR), head movements and motion-to-photon-based display lag generate differences in our virtual and physical head pose (referred to as DVP). We propose that large-amplitude, time-varying patterns of DVP serve as the primary trigger for cybersickness under such conditions. We test this hypothesis by measuring the sickness and estimating the DVP experienced under different levels of experimentally imposed display lag (ranging from 0 to 222 ms on top of the VR system's ~ 4 ms baseline lag). On each trial, seated participants made continuous, oscillatory head rotations in yaw, pitch or roll while viewing a large virtual room with an Oculus Rift CV1 HMD (head movements were timed to a computer-generated metronome set at either 1.0 or 0.5 Hz). After the experiment, their head-tracking data were used to objectively estimate the DVP during each trial. The mean, peak, and standard deviation of these DVP data were then compared to the participant's cybersickness ratings for that trial. Irrespective of the axis, or the speed, of the participant's head movements, the severity of their cybersickness was found to increase with each of these three DVP summary measures. In line with our DVP hypothesis, cybersickness consistently increased with the amplitude and the variability of our participants' DVP. DVP similarly predicted their conscious experiences during HMD VR-such as the strength of their feelings of spatial presence and their perception of the virtual scene's stability.
Collapse
Affiliation(s)
- Stephen Palmisano
- School of Psychology, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Robert S. Allison
- Centre for Vision Research, York University, Toronto, ON Canada
- Department of Electrical Engineering and Computer Science, York University, Toronto, Canada
| | - Joel Teixeira
- School of Psychology, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Juno Kim
- School of Optometry and Vision Science, University of New South Wales, Wollongong, Australia
| |
Collapse
|
11
|
Lele AS, Fang Y, Anwar A, Raychowdhury A. Bio-mimetic high-speed target localization with fused frame and event vision for edge application. Front Neurosci 2022; 16:1010302. [PMID: 36507348 PMCID: PMC9732385 DOI: 10.3389/fnins.2022.1010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Evolution has honed predatory skills in the natural world where localizing and intercepting fast-moving prey is required. The current generation of robotic systems mimics these biological systems using deep learning. High-speed processing of the camera frames using convolutional neural networks (CNN) (frame pipeline) on such constrained aerial edge-robots gets resource-limited. Adding more compute resources also eventually limits the throughput at the frame rate of the camera as frame-only traditional systems fail to capture the detailed temporal dynamics of the environment. Bio-inspired event cameras and spiking neural networks (SNN) provide an asynchronous sensor-processor pair (event pipeline) capturing the continuous temporal details of the scene for high-speed but lag in terms of accuracy. In this work, we propose a target localization system combining event-camera and SNN-based high-speed target estimation and frame-based camera and CNN-driven reliable object detection by fusing complementary spatio-temporal prowess of event and frame pipelines. One of our main contributions involves the design of an SNN filter that borrows from the neural mechanism for ego-motion cancelation in houseflies. It fuses the vestibular sensors with the vision to cancel the activity corresponding to the predator's self-motion. We also integrate the neuro-inspired multi-pipeline processing with task-optimized multi-neuronal pathway structure in primates and insects. The system is validated to outperform CNN-only processing using prey-predator drone simulations in realistic 3D virtual environments. The system is then demonstrated in a real-world multi-drone set-up with emulated event data. Subsequently, we use recorded actual sensory data from multi-camera and inertial measurement unit (IMU) assembly to show desired working while tolerating the realistic noise in vision and IMU sensors. We analyze the design space to identify optimal parameters for spiking neurons, CNN models, and for checking their effect on the performance metrics of the fused system. Finally, we map the throughput controlling SNN and fusion network on edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second even at constrained resource availability. This work may open new research directions by coupling multiple sensing and processing modalities inspired by discoveries in neuroscience to break fundamental trade-offs in frame-based computer vision.
Collapse
Affiliation(s)
- Ashwin Sanjay Lele
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Yan Fang
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, United States
| | - Aqeel Anwar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Arijit Raychowdhury
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
12
|
Sadiq O, Barnett-Cowan M. Can the Perceived Timing of Multisensory Events Predict Cybersickness? Multisens Res 2022; 35:623-652. [PMID: 36731533 DOI: 10.1163/22134808-bja10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
Humans are constantly presented with rich sensory information that the central nervous system (CNS) must process to form a coherent perception of the self and its relation to its surroundings. While the CNS is efficient in processing multisensory information in natural environments, virtual reality (VR) poses challenges of temporal discrepancies that the CNS must solve. These temporal discrepancies between information from different sensory modalities leads to inconsistencies in perception of the virtual environment which often causes cybersickness. Here, we investigate whether individual differences in the perceived relative timing of sensory events, specifically parameters of temporal-order judgement (TOJ), can predict cybersickness. Study 1 examined audiovisual (AV) TOJs while Study 2 examined audio-active head movement (AAHM) TOJs. We deduced metrics of the temporal binding window (TBW) and point of subjective simultaneity (PSS) for a total of 50 participants. Cybersickness was quantified using the Simulator Sickness Questionnaire (SSQ). Study 1 results (correlations and multiple regression) show that the oculomotor SSQ shares a significant yet positive correlation with AV PSS and TBW. While there is a positive correlation between the total SSQ scores and the TBW and PSS, these correlations are not significant. Therefore, although these results are promising, we did not find the same effect for AAHM TBW and PSS. We conclude that AV TOJ may serve as a potential tool to predict cybersickness in VR. Such findings will generate a better understanding of cybersickness which can be used for development of VR to help mitigate discomfort and maximize adoption.
Collapse
Affiliation(s)
- Ogai Sadiq
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
13
|
Mikheeva I, Mikhailova G, Zhujkova N, Shtanchaev R, Arkhipov V, Pavlik L. Studying the structure of the nucleus of the trochlear nerve in mice through 7 days of readaptation to earth gravity after spaceflight. Brain Res 2022; 1795:148077. [PMID: 36096199 DOI: 10.1016/j.brainres.2022.148077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
The negative effect of hypogravity on the human organism is manifested to a greater extent after the astronauts return to the conditions of habitual gravity. In this work, to elucidate the causes underlying atypical nystagmus, arising after the flight, we studied structural changes in the motoneurons of the trochlear nerve after a 7-day readaptation of mice to the conditions of Earth's gravity. It is known, that motoneurons of the trochlear nerve innervate the muscle that controls the movement of the eyes in the vertical direction. We showed that the number of axodendritic synapses and some other morphological parameters of motoneurons changed by microgravity can return to their original state in 7 days. However, according to some parameters, motoneurons retain a "memory" of the action of microgravity and do not completely restore the structure. The volume of the soma, the shape of the nuclei, the number and orientation of dendrites do not return to pre-flight parameters. The number of dendrites after 7 days of adaptation remained increased, and the proportion of dendrites in the ventrolateral direction became 2.5 times greater than in motoneurons after space flight. The increased number of mitochondria after space flight became even more significant after readaptation. Microgravity-induced plastic changes retain to some extent "memory traces" after readaptation to Earth's gravity. It can be assumed that the restoration of the function of the trochlear nuclei (overcoming nystagmus) is carried out not only by reversible restoration of the structure of neurons, but partially using those mechanisms that are formed in weightlessness.
Collapse
Affiliation(s)
- Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia.
| | - Gulnara Mikhailova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Natalya Zhujkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Rashid Shtanchaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Vladimir Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| |
Collapse
|
14
|
Irmak T, Kotian V, Happee R, de Winkel KN, Pool DM. Amplitude and Temporal Dynamics of Motion Sickness. Front Syst Neurosci 2022; 16:866503. [PMID: 35615427 PMCID: PMC9126086 DOI: 10.3389/fnsys.2022.866503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between the amplitude of motion and the accumulation of motion sickness in time is unclear. Here, we investigated this relationship at the individual and group level. Seventeen participants were exposed to four oscillatory motion stimuli, in four separate sessions, separated by at least 1 week to prevent habituation. Motion amplitude was varied between sessions at either 1, 1.5, 2, or 2.5 ms-2. Time evolution was evaluated within sessions applying: an initial motion phase for up to 60 min, a 10-min rest, a second motion phase up to 30 min to quantify hypersensitivity and lastly, a 5-min rest. At both the individual and the group level, motion sickness severity (MISC) increased linearly with respect to acceleration amplitude. To analyze the evolution of sickness over time, we evaluated three variations of the Oman model of nausea. We found that the slow (502 s) and fast (66.2 s) time constants of motion sickness were independent of motion amplitude, but varied considerably between individuals (slow STD = 838 s; fast STD = 79.4 s). We also found that the Oman model with output scaling following a power law with an exponent of 0.4 described our data much better as compared to the exponent of 2 proposed by Oman. Lastly, we showed that the sickness forecasting accuracy of the Oman model depended significantly on whether the participants had divergent or convergent sickness dynamics. These findings have methodological implications for pre-experiment participant screening, as well as online tuning of automated vehicle algorithms based on sickness susceptibility.
Collapse
Affiliation(s)
- Tugrul Irmak
- Cognitive Robotics Department, Delft University of Technology, Delft, Netherlands
| | - Varun Kotian
- Cognitive Robotics Department, Delft University of Technology, Delft, Netherlands
| | - Riender Happee
- Cognitive Robotics Department, Delft University of Technology, Delft, Netherlands
| | - Ksander N. de Winkel
- Cognitive Robotics Department, Delft University of Technology, Delft, Netherlands
| | - Daan M. Pool
- Control and Simulation Department, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
15
|
Zhang ZH, Liu LP, Fang Y, Wang XC, Wang W, Chan YS, Wang L, Li H, Li YQ, Zhang FX. A New Vestibular Stimulation Mode for Motion Sickness With Emphatic Analysis of Pica. Front Behav Neurosci 2022; 16:882695. [PMID: 35600993 PMCID: PMC9115577 DOI: 10.3389/fnbeh.2022.882695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Motion sickness (MS) was frequently introduced for rodents in research work through passive motion that disturbed vestibular signals in the presence of visual and aleatory, proprioceptive inputs. Inducement of MS in this way causes conflicting signals that activate intermixed neural circuits representing multimodal stimulation. From reductionism, a lab setup to elicit rat MS via vestibular stimulation was configured in the present study for MS study in connection with dissection of the central vestibular component causally underlying MS. The individual animal was blinded to light with a custom-made restrainer, and positioned at an inclination of 30° for otolith organs to receive unusual actions by gravitoinertial vector. Following a 2-h double-axis (earth-vertical) rotation involving angular acceleration/deceleration, a suit of behaviors characterizing the MS was observed to be significantly changed including pica (eating non-nutritive substance like kaolin), conditioned taste avoidance and locomotion (p < 0.05). Notably, for the statistical hypothesis testing, the utility of net increased amount of kaolin consumption as independent variables in data processing was expounded. In addition, Fos-immunostained neurons in vestibular nucleus complex were significantly increased in number, suggesting the rotation-induced MS was closely related to the vestibular activation. In conclusion, our work indicated that the present setup could effectively elicit the MS by disturbing vestibular signals in rat in the context of well-controlled proprioceptive inputs and lack of visual afference.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Department of Anatomy, Medical College, Yan’an University, Yan’an, China
| | - Li-Peng Liu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yan Fang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Wei Wang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Department of Pharmacology, Xi’an Biomedicine College, Xi’an, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lu Wang
- Department of Anatomy, Medical College, Yan’an University, Yan’an, China
| | - Hui Li
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fu-Xing Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Ugur E, Konukseven BO, Topdag M, Cakmakci ME, Topdag DO. Expansion to the Motion Sickness Susceptibility Questionnaire-Short Form: A Cross-Sectional Study. J Audiol Otol 2022; 26:76-82. [PMID: 35196446 PMCID: PMC8996090 DOI: 10.7874/jao.2021.00577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives The primary objective of this study is to investigate the necessity of questioning virtual reality systems in the motion sickness susceptibility questionnaire (MSSQ)-short form. The secondary objective of this study is to determine the validity and reliability of the Turkish version of the MSSQ-short form, with proven validity and reliability. Subjects and Methods In the questionnaire form, for which expert opinion was obtained to maintain linguistic equivalence, the virtual reality items were added to the questionnaire. The questionnaire was then administered to 297 individuals. The results were statistically analyzed with and without these virtual reality items for validity and reliability. Results After the addition of the virtual reality items, the reliability of the questionnaire was found to be quite high (Cronbach’s alpha r=0.912). The norm values between the original MSSQ-short form (12.9±9.9) and the Turkish MSSQ-short form (13.8±12.9) were found to be consistent. Conclusions Motion sickness symptoms can occur not only during movement, but also with indirect stimulus. Our findings suggest that adding virtual reality items to the original form is important in long term practical applications. Our results show that the Turkish version of the original questionnaire is quite reliable. Submission of the MSSQ-short form in Turkish will be useful for documentation and will also encourage further research in this area.
Collapse
Affiliation(s)
- Emel Ugur
- Mehmet Ali Aydinlar University Vocational School of Health Sciences Audiometry, Istanbul, Turkey.,Department of Audiology, Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Bahriye Ozlem Konukseven
- Department of Audiology, Istanbul Aydin University Institute of Health Sciences, Istanbul, Turkey
| | - Murat Topdag
- Department of Otorhinolaryngology, Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Mustafa Engin Cakmakci
- Mehmet Ali Aydinlar University Vocational School of Health Sciences Audiometry, Istanbul, Turkey.,Department of Otorhinolaryngology, Acibadem Bakirkoy Hospital, Istanbul, Turkey
| | - Deniz Ozlem Topdag
- Department of Otorhinolaryngology, Acibadem Altunizade Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Zhao Q, Ning BF, Zhou JY, Wang J, Yao YJ, Peng ZY, Yuan ZL, Chen JD, Xie WF. Transcutaneous Electrical Acustimulation Ameliorates Motion Sickness Induced by Rotary Chair in Healthy Subjects: A Prospective Randomized Crossover Study. Neuromodulation 2022; 25:1421-1430. [DOI: 10.1016/j.neurom.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/25/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
|
18
|
Carriot J, Mackrous I, Cullen KE. Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity. Front Neural Circuits 2021; 15:760313. [PMID: 34803615 PMCID: PMC8595211 DOI: 10.3389/fncir.2021.760313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the next century, flying civilians to space or humans to Mars will no longer be a subject of science fiction. The altered gravitational environment experienced during space flight, as well as that experienced following landing, results in impaired perceptual and motor performance-particularly in the first days of the new environmental challenge. Notably, the absence of gravity unloads the vestibular otolith organs such that they are no longer stimulated as they would be on earth. Understanding how the brain responds initially and then adapts to altered sensory input has important implications for understanding the inherent abilities as well as limitations of human performance. Space-based experiments have shown that altered gravity causes structural and functional changes at multiple stages of vestibular processing, spanning from the hair cells of its sensory organs to the Purkinje cells of the vestibular cerebellum. Furthermore, ground-based experiments have established the adaptive capacity of vestibular pathways and neural mechanism that likely underlie this adaptation. We review these studies and suggest that the brain likely uses two key strategies to adapt to changes in gravity: (i) the updating of a cerebellum-based internal model of the sensory consequences of gravity; and (ii) the re-weighting of extra-vestibular information as the vestibular system becomes less (i.e., entering microgravity) and then again more reliable (i.e., return to earth).
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Kravets VG, Dixon JB, Ahmed NR, Clark TK. COMPASS: Computations for Orientation and Motion Perception in Altered Sensorimotor States. Front Neural Circuits 2021; 15:757817. [PMID: 34720889 PMCID: PMC8553968 DOI: 10.3389/fncir.2021.757817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Reliable perception of self-motion and orientation requires the central nervous system (CNS) to adapt to changing environments, stimuli, and sensory organ function. The proposed computations required of neural systems for this adaptation process remain conceptual, limiting our understanding and ability to quantitatively predict adaptation and mitigate any resulting impairment prior to completing adaptation. Here, we have implemented a computational model of the internal calculations involved in the orientation perception system’s adaptation to changes in the magnitude of gravity. In summary, we propose that the CNS considers parallel, alternative hypotheses of the parameter of interest (in this case, the CNS’s internal estimate of the magnitude of gravity) and uses the associated sensory conflict signals (i.e., difference between sensory measurements and the expectation of them) to sequentially update the posterior probability of each hypothesis using Bayes rule. Over time, an updated central estimate of the internal magnitude of gravity emerges from the posterior probability distribution, which is then used to process sensory information and produce perceptions of self-motion and orientation. We have implemented these hypotheses in a computational model and performed various simulations to demonstrate quantitative model predictions of adaptation of the orientation perception system to changes in the magnitude of gravity, similar to those experienced by astronauts during space exploration missions. These model predictions serve as quantitative hypotheses to inspire future experimental assessments.
Collapse
Affiliation(s)
- Victoria G Kravets
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Jordan B Dixon
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Nisar R Ahmed
- COHRINT Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Torin K Clark
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
20
|
Hupfeld KE, McGregor HR, Koppelmans V, Beltran NE, Kofman IS, De Dios YE, Riascos RF, Reuter-Lorenz PA, Wood SJ, Bloomberg JJ, Mulavara AP, Seidler RD. Brain and Behavioral Evidence for Reweighting of Vestibular Inputs with Long-Duration Spaceflight. Cereb Cortex 2021; 32:755-769. [PMID: 34416764 DOI: 10.1093/cercor/bhab239] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Microgravity alters vestibular signaling. In-flight adaptation to altered vestibular afferents is reflected in post-spaceflight aftereffects, evidenced by declines in vestibularly mediated behaviors (e.g., walking/standing balance), until readaptation to Earth's 1G environment occurs. Here we examine how spaceflight affects neural processing of applied vestibular stimulation. We used fMRI to measure brain activity in response to vestibular stimulation in 15 astronauts pre- and post-spaceflight. We also measured vestibularly-mediated behaviors, including balance, mobility, and rod-and-frame test performance. Data were collected twice preflight and four times postflight. As expected, vestibular stimulation at the preflight sessions elicited activation of the parietal opercular area ("vestibular cortex") and deactivation of somatosensory and visual cortices. Pre- to postflight, we found widespread reductions in this somatosensory and visual cortical deactivation, supporting sensory compensation and reweighting with spaceflight. These pre- to postflight changes in brain activity correlated with changes in eyes closed standing balance, and greater pre- to postflight reductions in deactivation of the visual cortices associated with less postflight balance decline. The observed brain changes recovered to baseline values by 3 months postflight. Together, these findings provide evidence for sensory reweighting and adaptive cortical neuroplasticity with spaceflight. These results have implications for better understanding compensation and adaptation to vestibular functional disruption.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - V Koppelmans
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - R F Riascos
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - P A Reuter-Lorenz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - S J Wood
- NASA Johnson Space Center, Houston, TX, USA
| | | | | | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Schröder L, von Werder D, Ramaioli C, Wachtler T, Henningsen P, Glasauer S, Lehnen N. Unstable Gaze in Functional Dizziness: A Contribution to Understanding the Pathophysiology of Functional Disorders. Front Neurosci 2021; 15:685590. [PMID: 34354560 PMCID: PMC8330597 DOI: 10.3389/fnins.2021.685590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We are still lacking a pathophysiological mechanism for functional disorders explaining the emergence and manifestation of characteristic, severely impairing bodily symptoms like chest pain or dizziness. A recent hypothesis based on the predictive coding theory of brain function suggests that in functional disorders, internal expectations do not match the actual sensory body states, leading to perceptual dysregulation and symptom perception. To test this hypothesis, we investigated the account of internal expectations and sensory input on gaze stabilization, a physiologically relevant parameter of gaze shifts, in functional dizziness. Methods: We assessed gaze stabilization in eight functional dizziness patients and 11 healthy controls during two distinct epochs of large gaze shifts: during a counter-rotation epoch (CR epoch), where the brain can use internal models, motor planning, and resulting internal expectations to achieve internally driven gaze stabilization; and during an oscillation epoch (OSC epoch), where, due to terminated motor planning, no movement expectations are present, and gaze is stabilized by sensory input alone. Results: Gaze stabilization differed between functional patients and healthy controls only when internal movement expectations were involved [F(1,17) = 14.63, p = 0.001, and partial η2 = 0.463]: functional dizziness patients showed reduced gaze stabilization during the CR (p = 0.036) but not OSC epoch (p = 0.26). Conclusion: While sensory-driven gaze stabilization is intact, there are marked, well-measurable deficits in internally-driven gaze stabilization in functional dizziness pointing at internal expectations that do not match actual body states. This experimental evidence supports the perceptual dysregulation hypothesis of functional disorders and is an important step toward understanding the underlying pathophysiology.
Collapse
Affiliation(s)
- Lena Schröder
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dina von Werder
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Cecilia Ramaioli
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Wachtler
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Henningsen
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Glasauer
- Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Nadine Lehnen
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
22
|
Qi RR, Xiao SF, Pan LL, Mao YQ, Su Y, Wang LJ, Cai YL. Profiling of cybersickness and balance disturbance induced by virtual ship motion immersion combined with galvanic vestibular stimulation. APPLIED ERGONOMICS 2021; 92:103312. [PMID: 33338973 DOI: 10.1016/j.apergo.2020.103312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Profile of cybersickness and balance disturbance induced by virtual ship motion alone and in combination with galvanic vestibular stimulation (GVS) remained unclear. Subjects were exposed to a ship deck vision scene under simulated Degree 5 or 3 sea condition using a head-mounted virtual reality display with or without GVS. Virtual ship motion at Degree 5 induced significant cybersickness with symptom profile: nausea syndrome > central (headache and dizziness) > peripheral (cold sweating) > increased salivation. During a single session of virtual ship motion exposure, GVS aggravated balance disturbance but did not affect most cybersickness symptoms except cold sweating. Repeated exposure induced cybersickness habituation which was delayed by GVS, while the temporal change of balance disturbance was unaffected. These results suggested that vestibular inputs play different roles in cybersickness and balance disturbance during virtual reality exposure. GVS might not serve as a potential countermeasure against cybersickness induced by virtual ship motion.
Collapse
Affiliation(s)
- Rui-Rui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China
| | - Shui-Feng Xiao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China
| | - Lei-Lei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China
| | - Yu-Qi Mao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China
| | - Yang Su
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China
| | - Lin-Jie Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China.
| | - Yi-Ling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
23
|
Recenti M, Ricciardi C, Aubonnet R, Picone I, Jacob D, Svansson HÁR, Agnarsdóttir S, Karlsson GH, Baeringsdóttir V, Petersen H, Gargiulo P. Toward Predicting Motion Sickness Using Virtual Reality and a Moving Platform Assessing Brain, Muscles, and Heart Signals. Front Bioeng Biotechnol 2021; 9:635661. [PMID: 33869153 PMCID: PMC8047066 DOI: 10.3389/fbioe.2021.635661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (I MS ). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for I MS ). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.
Collapse
Affiliation(s)
- Marco Recenti
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Carlo Ricciardi
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland.,Department of Advanced Biomedical Sciences, University Hospital of Naples "Federico II", Naples, Italy
| | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Ilaria Picone
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland.,Department of Advanced Biomedical Sciences, University Hospital of Naples "Federico II", Naples, Italy
| | - Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Halldór Á R Svansson
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Sólveig Agnarsdóttir
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Gunnar H Karlsson
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Valdís Baeringsdóttir
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Hannes Petersen
- Department of Anatomy, University of Iceland, Reykjavík, Iceland.,Akureyri Hospital, Akureyri, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland.,Department of Science, Landspitali University Hospital, Reykjavík, Iceland
| |
Collapse
|
24
|
Kharlamova A, Proshchina A, Gulimova V, Krivova Y, Soldatov P, Saveliev S. Cerebellar morphology and behavioural correlations of the vestibular function alterations in weightlessness. Neurosci Biobehav Rev 2021; 126:314-328. [PMID: 33766673 DOI: 10.1016/j.neubiorev.2021.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
In humans and other vertebrates, the range of disturbances and behavioural changes induced by spaceflight conditions are well known. Sensory organs and the central nervous system (CNS) are forced to adapt to new environmental conditions of weightlessness. In comparison with peripheral vestibular organs and behavioural disturbances in weightlessness conditions, the CNS vestibular centres of vertebrates, including the cerebellum, have been poorly examined in orbital experiments, as well as in experimental micro- and hypergravity. However, the cerebellum serves as a critical control centre for learning and sensory system integration during space-flight. Thus, it is referred to as a principal brain structure for adaptation to gravity and the entire sensorimotor adaptation and learning during weightlessness. This paper is focused on the prolonged spaceflight effects on the vestibular cerebellum evidenced from animal models used in the Bion-M1 project. The changes in the peripheral vestibular apparatus and brainstem primary vestibular centres with appropriate behavioural disorders after altered gravity exposure are briefly reviewed. The cerebellum studies in space missions and altered gravity are discussed.
Collapse
Affiliation(s)
- Anastasia Kharlamova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia.
| | | | - Victoria Gulimova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| | - Yulia Krivova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| | - Pavel Soldatov
- State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Khoroshevskoyoe Shosse, 76A, Moscow, Russia
| | - Sergey Saveliev
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| |
Collapse
|
25
|
Irmak T, Pool DM, Happee R. Objective and subjective responses to motion sickness: the group and the individual. Exp Brain Res 2020; 239:515-531. [PMID: 33249541 PMCID: PMC7936971 DOI: 10.1007/s00221-020-05986-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/11/2020] [Indexed: 10/26/2022]
Abstract
We investigated and modeled the temporal evolution of motion sickness in a highly dynamic sickening drive. Slalom maneuvers were performed in a passenger vehicle, resulting in lateral accelerations of 0.4 g at 0.2 Hz, to which participants were subjected as passengers for up to 30 min. Subjective motion sickness was recorded throughout the sickening drive using the MISC scale. In addition, physiological and postural responses were evaluated by recording head roll, galvanic skin response (GSR) and electrocardiography (ECG). Experiment 1 compared external vision (normal view through front and side car windows) to internal vision (obscured view through front and side windows). Experiment 2 tested hypersensitivity with a second exposure a few minutes after the first drive and tested repeatability of individuals' sickness responses by measuring these two exposures three times in three successive sessions. An adapted form of Oman's model of nausea was used to quantify sickness development, repeatability, and motion sickness hypersensitivity at an individual level. Internal vision was more sickening compared to external vision with a higher mean MISC (4.2 vs. 2.3), a higher MISC rate (0.59 vs. 0.10 min-1) and more dropouts (66% vs. 33%) for whom the experiment was terminated due to reaching a MISC level of 7 (moderate nausea). The adapted Oman model successfully captured the development of sickness, with a mean model error, including the decay during rest and hypersensitivity upon further exposure, of 11.3%. Importantly, we note that knowledge of an individuals' previous motion sickness response to sickening stimuli increases individual modeling accuracy by a factor of 2 when compared to group-based modeling, indicating individual repeatability. Head roll did not vary significantly with motion sickness. ECG varied slightly with motion sickness and time. GSR clearly varied with motion sickness, where the tonic and phasic GSR increased 42.5% and 90%, respectively, above baseline at high MISC levels, but GSR also increased in time independent of motion sickness, accompanied with substantial scatter.
Collapse
Affiliation(s)
- Tugrul Irmak
- Cognitive Robotics Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Leeghwaterstraat, The Netherlands.
| | - Daan M Pool
- Control and Simulation Section, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Kluyverweg, The Netherlands
| | - Riender Happee
- Cognitive Robotics Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Leeghwaterstraat, The Netherlands
| |
Collapse
|
26
|
Gallagher M, Choi R, Ferrè ER. Multisensory Interactions in Virtual Reality: Optic Flow Reduces Vestibular Sensitivity, but Only for Congruent Planes of Motion. Multisens Res 2020; 33:625-644. [PMID: 31972542 DOI: 10.1163/22134808-20201487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
During exposure to Virtual Reality (VR) a sensory conflict may be present, whereby the visual system signals that the user is moving in a certain direction with a certain acceleration, while the vestibular system signals that the user is stationary. In order to reduce this conflict, the brain may down-weight vestibular signals, which may in turn affect vestibular contributions to self-motion perception. Here we investigated whether vestibular perceptual sensitivity is affected by VR exposure. Participants' ability to detect artificial vestibular inputs was measured during optic flow or random motion stimuli on a VR head-mounted display. Sensitivity to vestibular signals was significantly reduced when optic flow stimuli were presented, but importantly this was only the case when both visual and vestibular cues conveyed information on the same plane of self-motion. Our results suggest that the brain dynamically adjusts the weight given to incoming sensory cues for self-motion in VR; however this is dependent on the congruency of visual and vestibular cues.
Collapse
Affiliation(s)
| | - Reno Choi
- Royal Holloway, University of London, Egham, UK
| | | |
Collapse
|
27
|
Weech S, Wall T, Barnett-Cowan M. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation. Exp Brain Res 2020; 238:427-437. [PMID: 31938844 DOI: 10.1007/s00221-019-05718-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 11/26/2022]
Abstract
The mechanism underlying cybersickness during virtual reality (VR) exposure is still poorly understood, although research has highlighted a causal role for visual-vestibular sensory conflict. Recently established methods for reducing cybersickness include galvanic vestibular stimulation (GVS) to mimic absent vestibular cues in VR, or vibration of the vestibular organs to add noise to the sensory modality. Here, we examined if applying noise to the vestibular system using noisy-current GVS affects sickness severity in VR. Participants were exposed to one of the two VR games that were classified as either moderately or intensely nauseogenic. The VR content lasted for 50 min and was broken down into three blocks: 30 min of gameplay during exposure to either noisy GVS (± 1750 μA) or sham stimulation (0 μA), and 10 min of gameplay before and after this block. We characterized the effects of noisy GVS in terms of post-minus-pre-exposure cybersickness scores. In the intense VR condition, we found a main effect of noisy vestibular stimulation on a verbal cybersickness scale, but not for questionnaire measures of cybersickness. Participants reported lower cybersickness scores during and directly after exposure to GVS. However, this difference was quickly extinguished (~ 3-6 min) after further VR exposure, indicating that sensory adaptation did not persist after stimulation was terminated. In contrast, there were no differences between the sham and GVS group for the moderate VR content. The results show the potential for reducing cybersickness with non-invasive sensory stimulation. We address possible mechanisms for the observed effects, including noise-induced sensory re-weighting.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.
| | - Travis Wall
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
28
|
Abstract
Our research described in this article was motivated by the puzzling finding of the Skylab M131 experiments: head movements made while rotating that are nauseogenic and disorienting on Earth are innocuous in a weightless, 0-g environment. We describe a series of parabolic flight experiments that directly addressed this puzzle and discovered the gravity-dependent responses to semicircular canal stimulation, consistent with the principles of velocity storage. We describe a line of research that started in a different direction, investigating dynamic balancing, but ended up pointing to the gravity dependence of angular velocity-to-position integration of semicircular canal signals. Together, these lines of research and the theoretical framework of velocity storage provide an answer to at least part of the M131 puzzle. We also describe recently discovered neural circuits by which active, dynamic vestibular, multisensory, and motor signals are interpreted as either appropriate for action and orientation or as conflicts evoking motion sickness and disorientation.
Collapse
Affiliation(s)
- James R Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, Massachusetts
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
29
|
Wei Y, Okazaki YO, So RHY, Chu WCW, Kitajo K. Motion sickness-susceptible participants exposed to coherent rotating dot patterns show excessive N2 amplitudes and impaired theta-band phase synchronization. Neuroimage 2019; 202:116028. [PMID: 31326576 DOI: 10.1016/j.neuroimage.2019.116028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022] Open
Abstract
Visually induced motion sickness (VIMS) can occur via prolonged exposure to visual stimulation that generates the illusion of self-motion (vection). Not everyone is susceptible to VIMS and the neural mechanism underlying susceptibility is unclear. This study explored the differences of electroencephalographic (EEG) signatures between VIMS-susceptible and VIMS-resistant groups. Thirty-two-channel EEG data were recorded from 12 VIMS-susceptible and 15 VIMS-resistant university students while they were watching two patterns of moving dots: (1) a coherent rotation pattern (vection-inducing and potentially VIMS-provoking pattern), and (2) a random movement pattern (non-VIMS-provoking control). The VIMS-susceptible group exhibited a significantly larger increase in the parietal N2 response when exposed to the coherent rotating pattern than when exposed to control patterns. In members of the VIMS-resistant group, before vection onset, global connectivity from all other EEG electrodes to the right-temporal-parietal and to the right-central areas increased, whereas after vection onset the global connectivity to the right-frontal area reduced. Such changes were not observed in the susceptible group. Further, the increases in N2 amplitude and the identified phase synchronization index were significantly correlated with individual motion sickness susceptibility. Results suggest that VIMS susceptibility is associated with systematic impairment of dynamic cortical coordination as captured by the phase synchronization of cortical activities. Analyses of dynamic EEG signatures could be a means to unlock the neural mechanism of VIMS.
Collapse
Affiliation(s)
- Yue Wei
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China; Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuka O Okazaki
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Richard H Y So
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China; Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and Technology, Hong Kong, China; Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong, China
| | - Keiichi Kitajo
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan; Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| |
Collapse
|
30
|
|
31
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
32
|
Clark TK, Newman MC, Karmali F, Oman CM, Merfeld DM. Mathematical models for dynamic, multisensory spatial orientation perception. PROGRESS IN BRAIN RESEARCH 2019; 248:65-90. [PMID: 31239146 DOI: 10.1016/bs.pbr.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mathematical models have been proposed for how the brain interprets sensory information to produce estimates of self-orientation and self-motion. This process, spatial orientation perception, requires dynamically integrating multiple sensory modalities, including visual, vestibular, and somatosensory cues. Here, we review the progress in mathematical modeling of spatial orientation perception, focusing on dynamic multisensory models, and the experimental paradigms in which they have been validated. These models are primarily "black box" or "as if" models for how the brain processes spatial orientation cues. Yet, they have been effective scientifically, in making quantitative hypotheses that can be empirically assessed, and operationally, in investigating aircraft pilot disorientation, for example. The primary family of models considered, the observer model, implements estimation theory approaches, hypothesizing that internal models (i.e., neural systems replicating the behavior/dynamics of physical systems) are used to produce expected sensory measurements. Expected signals are then compared to actual sensory afference, yielding sensory conflict, which is weighted to drive central perceptions of gravity, angular velocity, and translation. This approach effectively predicts a wide range of experimental scenarios using a small set of fixed free parameters. We conclude with limitations and applications of existing mathematical models and important areas of future work.
Collapse
Affiliation(s)
- Torin K Clark
- Smead Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States.
| | - Michael C Newman
- Environmental Tectonics Corporation, Southampton, PA, United States
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States; Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Charles M Oman
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel M Merfeld
- Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, United States; Naval Aerospace Medical Research Lab (NAMRL), Naval Medical Research Unit-Dayton (NAMRUD), Dayton, OH, United States
| |
Collapse
|
33
|
Weech S, Kenny S, Barnett-Cowan M. Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front Psychol 2019; 10:158. [PMID: 30778320 PMCID: PMC6369189 DOI: 10.3389/fpsyg.2019.00158] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
In order to take advantage of the potential offered by the medium of virtual reality (VR), it will be essential to develop an understanding of how to maximize the desirable experience of "presence" in a virtual space ("being there"), and how to minimize the undesirable feeling of "cybersickness" (a constellation of discomfort symptoms experienced in VR). Although there have been frequent reports of a possible link between the observer's sense of presence and the experience of bodily discomfort in VR, the amount of literature that discusses the nature of the relationship is limited. Recent research has underlined the possibility that these variables have shared causes, and that both factors may be manipulated with a single approach. This review paper summarizes the concepts of presence and cybersickness and highlights the strengths and gaps in our understanding about their relationship. We review studies that have measured the association between presence and cybersickness, and conclude that the balance of evidence favors a negative relationship between the two factors which is driven principally by sensory integration processes. We also discuss how system immersiveness might play a role in modulating both presence and cybersickness. However, we identify a serious absence of high-powered studies that aim to reveal the nature of this relationship. Based on this evidence we propose recommendations for future studies investigating presence, cybersickness, and other related factors.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| | - Sophie Kenny
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| | - Michael Barnett-Cowan
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
34
|
Idoux E, Tagliabue M, Beraneck M. No Gain No Pain: Relations Between Vestibulo-Ocular Reflexes and Motion Sickness in Mice. Front Neurol 2018; 9:918. [PMID: 30483206 PMCID: PMC6240678 DOI: 10.3389/fneur.2018.00918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
Motion sickness occurs when the vestibular system is subjected to conflicting sensory information or overstimulation. Despite the lack of knowledge about the actual underlying mechanisms, several drugs, among which scopolamine, are known to prevent or alleviate the symptoms. Here, we aim at better understanding how motion sickness affects the vestibular system, as well as how scopolamine prevents motion sickness at the behavioral and cellular levels. We induced motion sickness in adult mice and tested the vestibulo-ocular responses to specific stimulations of the semi-circular canals and of the otoliths, with or without scopolamine, as well as the effects of scopolamine and muscarine on central vestibular neurons recorded on brainstem slices. We found that both motion sickness and scopolamine decrease the efficacy of the vestibulo-ocular reflexes and propose that this decrease in efficacy might be a protective mechanism to prevent later occurrences of motion sickness. To test this hypothesis, we used a behavioral paradigm based on visuo-vestibular interactions which reduces the efficacy of the vestibulo-ocular reflexes. This paradigm also offers protection against motion sickness, without requiring any drug. At the cellular level, we find that depending on the neuron, scopolamine can have opposite effects on the polarization level and firing frequency, indicating the presence of at least two types of muscarinic receptors in the medial vestibular nucleus. The present results set the basis for future studies of motion sickness counter-measures in the mouse model and offers translational perspectives for improving the treatment of affected patients.
Collapse
Affiliation(s)
- Erwin Idoux
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National D'Etudes Spatiales, Paris, France
| | - Michele Tagliabue
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Beraneck
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Weech S, Varghese JP, Barnett-Cowan M. Estimating the sensorimotor components of cybersickness. J Neurophysiol 2018; 120:2201-2217. [PMID: 30044672 PMCID: PMC6295542 DOI: 10.1152/jn.00477.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022] Open
Abstract
The user base of the virtual reality (VR) medium is growing, and many of these users will experience cybersickness. Accounting for the vast interindividual variability in cybersickness forms a pivotal step in solving the issue. Most studies of cybersickness focus on a single factor (e.g., balance, sex, or vection), while other contributors are overlooked. Here, we characterize the complex relationship between cybersickness and several measures of sensorimotor processing. In a single session, we conducted a battery of tests of balance control, vection responses, and vestibular sensitivity to self-motion. Following this, we measured cybersickness after VR exposure. We constructed a principal components regression model using the measures of sensorimotor processing. The model significantly predicted 37% of the variability in cybersickness measures, with 16% of this variance being accounted for by a principal component that represented balance control measures. The strongest predictor was participants' sway path length during vection, which was inversely related to cybersickness [ r(28) = -0.53, P = 0.002] and uniquely accounted for 7.5% of the variance in cybersickness scores across participants. Vection strength reports and measures of vestibular sensitivity were not significant predictors of cybersickness. We discuss the possible role of sensory reweighting in cybersickness that is suggested by these results, and we identify other factors that may account for the remaining variance in cybersickness. The results reiterate that the relationship between balance control and cybersickness is anything but straightforward. NEW & NOTEWORTHY The advent of consumer virtual reality provides a pressing need for interventions that combat sickness in simulated environments (cybersickness). This research builds on multiple theories of cybersickness etiology to develop a predictive model that distinguishes between individuals who are/are not likely to experience cybersickness. In the future this approach can be adapted to provide virtual reality users with curated content recommendations based on more efficient measurements of sensorimotor processing.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | | | | |
Collapse
|
36
|
Tu L, Lu Z, Dieser K, Schmitt C, Chan SW, Ngan MP, Andrews PLR, Nalivaiko E, Rudd JA. Brain Activation by H 1 Antihistamines Challenges Conventional View of Their Mechanism of Action in Motion Sickness: A Behavioral, c-Fos and Physiological Study in Suncus murinus (House Musk Shrew). Front Physiol 2017; 8:412. [PMID: 28659825 PMCID: PMC5470052 DOI: 10.3389/fphys.2017.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Motion sickness occurs under a variety of circumstances and is common in the general population. It is usually associated with changes in gastric motility, and hypothermia, which are argued to be surrogate markers for nausea; there are also reports that respiratory function is affected. As laboratory rodents are incapable of vomiting, Suncus murinus was used to model motion sickness and to investigate changes in gastric myoelectric activity (GMA) and temperature homeostasis using radiotelemetry, whilst also simultaneously investigating changes in respiratory function using whole body plethysmography. The anti-emetic potential of the highly selective histamine H1 receptor antagonists, mepyramine (brain penetrant), and cetirizine (non-brain penetrant), along with the muscarinic receptor antagonist, scopolamine, were investigated in the present study. On isolated ileal segments from Suncus murinus, both mepyramine and cetirizine non-competitively antagonized the contractile action of histamine with pK b values of 7.5 and 8.4, respectively; scopolamine competitively antagonized the contractile action of acetylcholine with pA2 of 9.5. In responding animals, motion (1 Hz, 4 cm horizontal displacement, 10 min) increased the percentage of the power of bradygastria, and decreased the percentage power of normogastria whilst also causing hypothermia. Animals also exhibited an increase in respiratory rate and a reduction in tidal volume. Mepyramine (50 mg/kg, i.p.) and scopolamine (10 mg/kg, i.p.), but not cetirizine (10 mg/kg, i.p.), significantly antagonized motion-induced emesis but did not reverse the motion-induced disruptions of GMA, or hypothermia, or effects on respiration. Burst analysis of plethysmographic-derived waveforms showed mepyramine also had increased the inter-retch+vomit frequency, and emetic episode duration. Immunohistochemistry demonstrated that motion alone did not induce c-fos expression in the brain. Paradoxically, mepyramine increased c-fos in brain areas regulating emesis control, and caused hypothermia; it also appeared to cause sedation and reduced the dominant frequency of slow waves. In conclusion, motion-induced emesis was associated with a disruption of GMA, respiration, and hypothermia. Mepyramine was a more efficacious anti-emetic than cetirizine, suggesting an important role of centrally-located H1 receptors. The ability of mepyramine to elevate c-fos provides a new perspective on how H1 receptors are involved in mechanisms of emesis control.
Collapse
Affiliation(s)
- Longlong Tu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Karolina Dieser
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Christina Schmitt
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher EducationHong Kong, China
| | - Man P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Paul L R Andrews
- Division of Biomedical Sciences, St. George's University of LondonLondon, United Kingdom
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Brain and Mind Institute, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
37
|
Bertolini G, Durmaz MA, Ferrari K, Küffer A, Lambert C, Straumann D. Determinants of Motion Sickness in Tilting Trains: Coriolis/Cross-Coupling Stimuli and Tilt Delay. Front Neurol 2017; 8:195. [PMID: 28555125 PMCID: PMC5430385 DOI: 10.3389/fneur.2017.00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/21/2017] [Indexed: 11/13/2022] Open
Abstract
Faster trains require tilting of the cars to counterbalance the centrifugal forces during curves. Motion sensitive passengers, however, complain of discomfort and overt motion sickness. A recent study comparing different control systems in a tilting train, suggested that the delay of car tilts relative to the curve of the track contributes to motion sickness. Other aspects of the motion stimuli, like the lateral accelerations and the car jitters, differed between the tested conditions and prevented a final conclusion on the role of tilt delay. Nineteen subjects were tested on a motorized 3D turntable that simulated the roll tilts during yaw rotations experienced on a tilting train, isolating them from other motion components. Each session was composed of two consecutive series of 12 ideal curves that were defined on the bases of recordings during an actual train ride. The simulated car tilts started either at the beginning of the curve acceleration phase (no-delay condition) or with 3 s of delay (delay condition). Motion sickness was self-assessed by each subject at the end of each series using an analog motion sickness scale. All subjects were tested in both conditions. Significant increases of motion sickness occurred after the first sequence of 12 curves in the delay condition, but not in the no-delay condition. This increase correlated with the sensitivity of motion sickness, which was self-assessed by each subject before the experiment. The second sequence of curve did not lead to a significant further increase of motion sickness in any condition. Our results demonstrate that, even if the speed and amplitude are as low as those experienced on tilting trains, a series of roll tilts with a delay relative to the horizontal rotations, isolated from other motion stimuli occurring during a travel, generate Coriolis/cross-coupling stimulations sufficient to rapidly induce motion sickness in sensitive individuals. The strength and the rapid onset of the motion sickness reported confirm that, even if the angular velocity involved are low, the Coriolis/cross-coupling resulting from the delay is a major factor in causing sickness that can be resolved by improving the tilt timing relative to the horizontal rotation originating from the curve.
Collapse
Affiliation(s)
- Giovanni Bertolini
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| | - Meek Angela Durmaz
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| | - Kim Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Alexander Küffer
- Department of Neurosurgery, Zurich University Hospital, Zurich, Switzerland
| | - Charlotte Lambert
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| | - Dominik Straumann
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland
| |
Collapse
|
38
|
Storage of passive motion pattern in hippocampal CA1 region depends on CaMKII/CREB signaling pathway in a motion sickness rodent model. Sci Rep 2017; 7:43385. [PMID: 28230177 PMCID: PMC5322525 DOI: 10.1038/srep43385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 11/25/2022] Open
Abstract
Sensory mismatch between actual motion information and anticipated sensory patterns (internal model) is the etiology of motion sickness (MS). Some evidence supports that hippocampus might involve the neural storage of the “internal model”. This study established an “internal model” acquisition-retention behavioral model using a repeated habituation rotation training protocol. We tried to identify the hippocampal subregion involved in “internal model” retention using chemical lesion methods. Hippocampal kinases (CaMK, CaMKIV, CREB and ERK1/2) phosphorylation in the target subregion was assayed and the effects of kinase inhibitors (KN93 or U0126) on “internal model” retention were investigated. The activities of potential kinases (CaMKII and CREB) were also examined in otoliths deficit het/het mice. In habituated rats, CA1 lesion reproduced MS-related behavioral responses on “internal model” retention day. Habituation training increased CaMKII and CREB activity but had no effect on CaMKIV and ERK1/2 activity in the CA1, while inhibition of CaMKII but not ERK1/2 impaired “internal model” retention. In het/het mice, CaMKII and CREB were not activated in the CA1 on the retention day. These results suggested that CaMKII/CREB pathway might potentially contribute to the storage of the “internal model” in the hippocampal CA1 after motion sickness induced by vestibular stimulation.
Collapse
|
39
|
Alexandra P, Anastasia K, Valeriy B, Victoria G, Sergey S. Vestibular cerebellum of thick-toed geckos (Chondrodactylus turnery GRAY, 1864) and C57/BL6N mice after the long-term space flight on the biosatellite BION-M1. J Chem Neuroanat 2017; 79:58-65. [DOI: 10.1016/j.jchemneu.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
|
40
|
Cassady K, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood S, Castenada RR, Kofman I, Bloomberg J, Mulavara A, Seidler R. Effects of a spaceflight analog environment on brain connectivity and behavior. Neuroimage 2016; 141:18-30. [DOI: 10.1016/j.neuroimage.2016.07.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 01/25/2023] Open
|
41
|
Wang J, Lewis RF. Contribution of intravestibular sensory conflict to motion sickness and dizziness in migraine disorders. J Neurophysiol 2016; 116:1586-1591. [PMID: 27385797 PMCID: PMC5144688 DOI: 10.1152/jn.00345.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Migraine is associated with enhanced motion sickness susceptibility and can cause episodic vertigo [vestibular migraine (VM)], but the mechanisms relating migraine to these vestibular symptoms remain uncertain. We tested the hypothesis that the central integration of rotational cues (from the semicircular canals) and gravitational cues (from the otolith organs) is abnormal in migraine patients. A postrotational tilt paradigm generated a conflict between canal cues (which indicate the head is rotating) and otolith cues (which indicate the head is tilted and stationary), and eye movements were measured to quantify two behaviors that are thought to minimize this conflict: suppression and reorientation of the central angular velocity signal, evidenced by attenuation ("dumping") of the vestibuloocular reflex and shifting of the rotational axis of the vestibuloocular reflex toward the earth vertical. We found that normal and migraine subjects, but not VM patients, displayed an inverse correlation between the extent of dumping and the size of the axis shift such that the net "conflict resolution" mediated through these two mechanisms approached an optimal value and that the residual sensory conflict in VM patients (but not migraine or normal subjects) correlated with motion sickness susceptibility. Our findings suggest that the brain normally controls the dynamic and spatial characteristics of central vestibular signals to minimize intravestibular sensory conflict and that this process is disrupted in VM, which may be responsible for the enhance motion intolerance and episodic vertigo that characterize this disorder.
Collapse
Affiliation(s)
- Joanne Wang
- Case Western University Medical School, Cleveland, Ohio
| | - Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Abstract
Over 2000 years ago the Greek physician Hippocrates wrote, "sailing on the sea proves that motion disorders the body." Indeed, the word "nausea" derives from the Greek root word naus, hence "nautical," meaning a ship. The primary signs and symptoms of motion sickness are nausea and vomiting. Motion sickness can be provoked by a wide variety of transport environments, including land, sea, air, and space. The recent introduction of new visual technologies may expose more of the population to visually induced motion sickness. This chapter describes the signs and symptoms of motion sickness and different types of provocative stimuli. The "how" of motion sickness (i.e., the mechanism) is generally accepted to involve sensory conflict, for which the evidence is reviewed. New observations concern the identification of putative "sensory conflict" neurons and the underlying brain mechanisms. But what reason or purpose does motion sickness serve, if any? This is the "why" of motion sickness, which is analyzed from both evolutionary and nonfunctional maladaptive theoretic perspectives. Individual differences in susceptibility are great in the normal population and predictors are reviewed. Motion sickness susceptibility also varies dramatically between special groups of patients, including those with different types of vestibular disease and in migraineurs. Finally, the efficacy and relative advantages and disadvantages of various behavioral and pharmacologic countermeasures are evaluated.
Collapse
Affiliation(s)
- J F Golding
- Department of Psychology, Faculty of Science and Technology, University of Westminster, London, UK.
| |
Collapse
|
43
|
Zhang LL, Wang JQ, Qi RR, Pan LL, Li M, Cai YL. Motion Sickness: Current Knowledge and Recent Advance. CNS Neurosci Ther 2015; 22:15-24. [PMID: 26452639 DOI: 10.1111/cns.12468] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Motion sickness (MS) is a common physiological response to real or virtual motion. Numerous studies have investigated the neurobiological mechanism and the control measures of MS. This review summarizes the current knowledge about pathogenesis and pathophysiology, prediction, evaluation, and countermeasures of MS. The sensory conflict hypothesis is the most widely accepted theory for MS. Both the hippocampus and vestibular cortex might play a role in forming internal model. The pathophysiology focuses on the visceral afference, thermoregulation and MS-related neuroendocrine. Single-nucleotide polymorphisms (SNPs) in some genes and epigenetic modulation might contribute to MS susceptibility and habituation. Questionnaires, heart rate variability (HRV) and electrogastrogram (EGG) are useful for diagnosing and evaluating MS. We also list MS medications to guide clinical practice. Repeated real motion exposure and combined visual-vestibular interaction training accelerate the progress of habituation. Behavioral and dietary countermeasures, as well as physiotherapy, are also effective in alleviating MS symptoms.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jun-Qin Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Rui-Rui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Lei-Lei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Ling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
44
|
Moore JD, Mercer Lindsay N, Deschênes M, Kleinfeld D. Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus. PLoS Biol 2015; 13:e1002253. [PMID: 26393890 PMCID: PMC4579082 DOI: 10.1371/journal.pbio.1002253] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/13/2015] [Indexed: 11/29/2022] Open
Abstract
Active sensing involves the fusion of internally generated motor events with external sensation. For rodents, active somatosensation includes scanning the immediate environment with the mystacial vibrissae. In doing so, the vibrissae may touch an object at any angle in the whisk cycle. The representation of touch and vibrissa self-motion may in principle be encoded along separate pathways, or share a single pathway, from the periphery to cortex. Past studies established that the spike rates in neurons along the lemniscal pathway from receptors to cortex, which includes the principal trigeminal and ventral-posterior-medial thalamic nuclei, are substantially modulated by touch. In contrast, spike rates along the paralemniscal pathway, which includes the rostral spinal trigeminal interpolaris, posteromedial thalamic, and ventral zona incerta nuclei, are only weakly modulated by touch. Here we find that neurons along the lemniscal pathway robustly encode rhythmic whisking on a cycle-by-cycle basis, while encoding along the paralemniscal pathway is relatively poor. Thus, the representations of both touch and self-motion share one pathway. In fact, some individual neurons carry both signals, so that upstream neurons with a supralinear gain function could, in principle, demodulate these signals to recover the known decoding of touch as a function of vibrissa position in the whisk cycle.
Collapse
Affiliation(s)
- Jeffrey D. Moore
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Nicole Mercer Lindsay
- Section of Neurobiology, University of California, San Diego, La Jolla, California, United States of America
| | - Martin Deschênes
- Centre de Recherche Université Laval Robert-Giffard, Québec City, Québec, Canada
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
- Section of Neurobiology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
45
|
Lehnen N, Heuser F, Sağlam M, Schulz CM, Wagner KJ, Taki M, Kochs EF, Jahn K, Brandt T, Glasauer S, Schneider E. Opioid-Induced Nausea Involves a Vestibular Problem Preventable by Head-Rest. PLoS One 2015; 10:e0135263. [PMID: 26313751 PMCID: PMC4551845 DOI: 10.1371/journal.pone.0135263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 07/20/2015] [Indexed: 11/19/2022] Open
Abstract
Background and Aims Opioids are indispensable for pain treatment but may cause serious nausea and vomiting. The mechanism leading to these complications is not clear. We investigated whether an opioid effect on the vestibular system resulting in corrupt head motion sensation is causative and, consequently, whether head-rest prevents nausea. Methods Thirty-six healthy men (26.6±4.3 years) received an opioid remifentanil infusion (45 min, 0.15 μg/kg/min). Outcome measures were the vestibulo-ocular reflex (VOR) gain determined by video-head-impulse-testing, and nausea. The first experiment (n = 10) assessed outcome measures at rest and after a series of five 1-Hz forward and backward head-trunk movements during one-time remifentanil administration. The second experiment (n = 10) determined outcome measures on two days in a controlled crossover design: (1) without movement and (2) with a series of five 1-Hz forward and backward head-trunk bends 30 min after remifentanil start. Nausea was psychophysically quantified (scale from 0 to 10). The third controlled crossover experiment (n = 16) assessed nausea (1) without movement and (2) with head movement; isolated head movements consisting of the three axes of rotation (pitch, roll, yaw) were imposed 20 times at a frequency of 1 Hz in a random, unpredictable order of each of the three axes. All movements were applied manually, passively with amplitudes of about ± 45 degrees. Results The VOR gain decreased during remifentanil administration (p<0.001), averaging 0.92±0.05 (mean±standard deviation) before, 0.60±0.12 with, and 0.91±0.05 after infusion. The average half-life of VOR recovery was 5.3±2.4 min. 32/36 subjects had no nausea at rest (nausea scale 0.00/0.00 median/interquartile range). Head-trunk and isolated head movement triggered nausea in 64% (p<0.01) with no difference between head-trunk and isolated head movements (nausea scale 4.00/7.25 and 1.00/4.5, respectively). Conclusions Remifentanil reversibly decreases VOR gain at a half-life reflecting the drug’s pharmacokinetics. We suggest that the decrease in VOR gain leads to a perceptual mismatch of multisensory input with the applied head movement, which results in nausea, and that, consequently, vigorous head movements should be avoided to prevent opioid-induced nausea.
Collapse
Affiliation(s)
- Nadine Lehnen
- Centre for Sensorimotor Research, Munich University Hospital, Munich, Germany
- German Centre for Vertigo and Balance Disorders, Munich University Hospital, Munich, Germany
- Department of Neurology, Munich University Hospital, Munich, Germany
| | - Fabian Heuser
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- * E-mail:
| | - Murat Sağlam
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Gediz University, Izmir, Turkey
| | - Christian M. Schulz
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus J. Wagner
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Masakatsu Taki
- Department of Otolaryngology-HNS, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eberhard F. Kochs
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus Jahn
- German Centre for Vertigo and Balance Disorders, Munich University Hospital, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Thomas Brandt
- German Centre for Vertigo and Balance Disorders, Munich University Hospital, Munich, Germany
- Institute for Clinical Neurosciences, Munich University Hospital, Munich, Germany
| | - Stefan Glasauer
- Centre for Sensorimotor Research, Munich University Hospital, Munich, Germany
- German Centre for Vertigo and Balance Disorders, Munich University Hospital, Munich, Germany
- Department of Neurology, Munich University Hospital, Munich, Germany
| | - Erich Schneider
- German Centre for Vertigo and Balance Disorders, Munich University Hospital, Munich, Germany
- Institute for Clinical Neurosciences, Munich University Hospital, Munich, Germany
- Institute for Medical Technology, Brandenburg Institute of Technology, Cottbus-Senftenberg, Germany
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Motion sickness remains bothersome in conventional transport and is an emerging hazard in visual information technologies. Treatment remains unsatisfactory but advances in brain imaging, neurophysiology, and neuropharmacology may provide insights into more effective drug and behavioural management. We review these major developments. RECENT FINDINGS Recent progress has been in identifying brain mechanisms and loci associated with motion sickness and nausea per se. The techniques have included conventional neurophysiology, pathway mapping, and functional MRI, implicating multiple brain regions including cortex, brainstem, and cerebellum. Understanding of the environmental and behavioural conditions provocative of and protective against motion sickness and how vestibular disease may sensitize to motion sickness has increased. The problem of nauseogenic information technology has emerged as a target for research, motivated by its ubiquitous applications. Increased understanding of the neurophysiology and brain regions associated with motion sickness may provide for more effective medication in the future. However, the polysymptomatic nature of motion sickness, high interindividual variability, and the extensive brain regions involved may preclude a single, decisive treatment. SUMMARY Motion sickness is an emerging hazard in information technologies. Adaptation remains the most effective countermeasure together with established medications, notably scopolamine and antihistamines. Neuropharmacological investigations may provide more effective medication in the foreseeable future.
Collapse
|
47
|
Seidler RD, Mulavara AP, Bloomberg JJ, Peters BT. Individual predictors of sensorimotor adaptability. Front Syst Neurosci 2015; 9:100. [PMID: 26217197 PMCID: PMC4491631 DOI: 10.3389/fnsys.2015.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/19/2015] [Indexed: 12/03/2022] Open
Abstract
There are large individual variations in strategies and rates of sensorimotor adaptation to spaceflight. This is seen in both the magnitude of performance disruptions when crewmembers are first exposed to microgravity, and in the rate of re-adaptation when they return to Earth's gravitational environment. Understanding the sources of this variation can lead to a better understanding of the processes underlying adaptation, as well as provide insight into potential routes for facilitating performance of "slow adapters". Here we review the literature on brain, behavioral, and genetic predictors of motor learning, recovery of motor function following neural insult, and sensorimotor adaptation. For example, recent studies have identified specific genetic polymorphisms that are associated with faster adaptation on manual joystick tasks and faster recovery of function following a stroke. Moreover, the extent of recruitment of specific brain regions during learning and adaptation has been shown to be predictive of the magnitude of subsequent learning. We close with suggestions for forward work aimed at identifying predictors of spaceflight adaptation success. Identification of "slow adapters" prior to spaceflight exposure would allow for more targeted preflight training and/or provision of booster training and adaptation adjuncts during spaceflight.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Psychology, Kinesiology, Neuroscience, Neuromotor Behavior Laboratory, University of MichiganAnn Arbor, MI, USA
| | - Ajitkumar P. Mulavara
- Universities Space Research AssociationHouston, TX, USA
- NASA Johnson Space CenterHouston, TX, USA
| | | | - Brian T. Peters
- Wyle Science, Technology and Engineering GroupHouston, TX, USA
| |
Collapse
|
48
|
Carriot J, Jamali M, Cullen KE. Rapid adaptation of multisensory integration in vestibular pathways. Front Syst Neurosci 2015; 9:59. [PMID: 25932009 PMCID: PMC4399207 DOI: 10.3389/fnsys.2015.00059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/29/2015] [Indexed: 12/02/2022] Open
Abstract
Sensing gravity is vital for our perception of spatial orientation, the control of upright posture, and generation of our everyday activities. When an astronaut transitions to microgravity or returns to earth, the vestibular input arising from self-motion will not match the brain's expectation. Our recent neurophysiological studies have provided insight into how the nervous system rapidly reorganizes when vestibular input becomes unreliable by both (1) updating its internal model of the sensory consequences of motion and (2) up-weighting more reliable extra-vestibular information. These neural strategies, in turn, are linked to improvements in sensorimotor performance (e.g., gaze and postural stability, locomotion, orienting) and perception characterized by similar time courses. We suggest that furthering our understanding of the neural mechanisms that underlie sensorimotor adaptation will have important implications for optimizing training programs for astronauts before and after space exploration missions and for the design of goal-oriented rehabilitation for patients.
Collapse
Affiliation(s)
- Jerome Carriot
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Mohsen Jamali
- Department of Physiology, McGill University Montreal, QC, Canada
| | | |
Collapse
|