1
|
Polverino A, Troisi Lopez E, Liparoti M, Minino R, Romano A, Cipriano L, Trojsi F, Jirsa V, Sorrentino G, Sorrentino P. Altered spreading of fast aperiodic brain waves relates to disease duration in Amyotrophic Lateral Sclerosis. Clin Neurophysiol 2024; 163:14-21. [PMID: 38663099 DOI: 10.1016/j.clinph.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE To test the hypothesis that patients affected by Amyotrophic Lateral Sclerosis (ALS) show an altered spatio-temporal spreading of neuronal avalanches in the brain, and that this may related to the clinical picture. METHODS We obtained the source-reconstructed magnetoencephalography (MEG) signals from thirty-six ALS patients and forty-two healthy controls. Then, we used the construct of the avalanche transition matrix (ATM) and the corresponding network parameter nodal strength to quantify the changes in each region, since this parameter provides key information about which brain regions are mostly involved in the spreading avalanches. RESULTS ALS patients presented higher values of the nodal strength in both cortical and sub-cortical brain areas. This parameter correlated directly with disease duration. CONCLUSIONS In this work, we provide a deeper characterization of neuronal avalanches propagation in ALS, describing their spatio-temporal trajectories and identifying the brain regions most likely to be involved in the process. This makes it possible to recognize the brain areas that take part in the pathogenic mechanisms of ALS. Furthermore, the nodal strength of the involved regions correlates directly with disease duration. SIGNIFICANCE Our results corroborate the clinical relevance of aperiodic, fast large-scale brain activity as a biomarker of microscopic changes induced by neurophysiological processes.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80131 Naples, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy
| | - Marianna Liparoti
- Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, University of Chieti-Pescara G. D'Annunzio, 66100 Chieti, Italy
| | - Roberta Minino
- Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Antonella Romano
- Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Lorenzo Cipriano
- Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France
| | - Giuseppe Sorrentino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80131 Naples, Italy; Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy; Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy.
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy; Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France; Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Starkweather CK, Morrison MA, Yaroshinsky M, Louie K, Balakid J, Presbrey K, Starr PA, Wang DD. Human upper extremity motor cortex activity shows distinct oscillatory signatures for stereotyped arm and leg movements. Front Hum Neurosci 2023; 17:1212963. [PMID: 37635808 PMCID: PMC10449648 DOI: 10.3389/fnhum.2023.1212963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Stepping and arm swing are stereotyped movements that require coordination across multiple muscle groups. It is not known whether the encoding of these stereotyped movements in the human primary motor cortex is confined to the limbs' respective somatotopy. Methods We recorded subdural electrocorticography activities from the hand/arm area in the primary motor cortex of 6 subjects undergoing deep brain stimulation surgery for essential tremor and Parkinson's disease who performed stepping (all patients) and arm swing (n = 3 patients) tasks. Results We show stepping-related low frequency oscillations over the arm area. Furthermore, we show that this oscillatory activity is separable, both in frequency and spatial domains, from gamma band activity changes that occur during arm swing. Discussion Our study contributes to the growing body of evidence that lower extremity movement may be more broadly represented in the motor cortex, and suggest that it may represent a way to coordinate stereotyped movements across the upper and lower extremities.
Collapse
Affiliation(s)
- Clara Kwon Starkweather
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie A. Morrison
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kenneth Louie
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jannine Balakid
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kara Presbrey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Doris D. Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Chen L, Wang Y, Wu Z, Shan Y, Li T, Hung SC, Xing L, Zhu H, Wang L, Lin W, Li G. Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants. Nat Commun 2023; 14:3727. [PMID: 37349301 PMCID: PMC10287661 DOI: 10.1038/s41467-023-38974-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Brain subcortical structures are paramount in many cognitive functions and their aberrations during infancy are predisposed to various neurodevelopmental and neuropsychiatric disorders, making it highly essential to characterize the early subcortical normative growth patterns. This study investigates the volumetric development and surface area expansion of six subcortical structures and their associations with Mullen scales of early learning by leveraging 513 high-resolution longitudinal MRI scans within the first two postnatal years. Results show that (1) each subcortical structure (except for the amygdala with an approximately linear increase) undergoes rapid nonlinear volumetric growth after birth, which slows down at a structure-specific age with bilaterally similar developmental patterns; (2) Subcortical local area expansion reveals structure-specific and spatiotemporally heterogeneous patterns; (3) Positive associations between thalamus and both receptive and expressive languages and between caudate and putamen and fine motor are revealed. This study advances our understanding of the dynamic early subcortical developmental patterns.
Collapse
Affiliation(s)
- Liangjun Chen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Ya Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Tengfei Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Sheng-Che Hung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Lei Xing
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Rd, Chapel Hill, NC, 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Choubdar H, Mahdavi M, Rostami Z, Zabeh E, Gillies MJ, Green AL, Aziz TZ, Lashgari R. Neural oscillatory characteristics of feedback-associated activity in globus pallidus interna. Sci Rep 2023; 13:4141. [PMID: 36914686 PMCID: PMC10011395 DOI: 10.1038/s41598-023-30832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Neural oscillatory activities in basal ganglia have prominent roles in cognitive processes. However, the characteristics of oscillatory activities during cognitive tasks have not been extensively explored in human Globus Pallidus internus (GPi). This study aimed to compare oscillatory characteristics of GPi between dystonia and Parkinson's Disease (PD). A dystonia and a PD patient performed the Intra-Extra-Dimension shift (IED) task during both on and off-medication states. During the IED task, patients had to correctly choose between two visual stimuli containing shapes or lines based on a hidden rule via trial and error. Immediate auditory and visual feedback was provided upon the choice to inform participants if they chose correctly. Bilateral GPi Local Field Potentials (LFP) activity was recorded via externalized DBS leads. Transient high gamma activity (~ 100-150 Hz) was observed immediately after feedback in the dystonia patient. Moreover, these bursts were phase synchronous between left and right GPi with an antiphase clustering of phase differences. In contrast, no synchronous high gamma activity was detected in the PD patient with or without dopamine administration. The off-med PD patient also displayed enhanced low frequency clusters, which were ameliorated by medication. The current study provides a rare report of antiphase homotopic synchrony in human GPi, potentially related to incorporating and processing feedback information. The absence of these activities in off and on-med PD patient indicates the potential presence of impaired medication independent feedback processing circuits. Together, these findings suggest a potential role for GPi's synchronized activity in shaping feedback processing mechanisms required in cognitive tasks.
Collapse
Affiliation(s)
- Hadi Choubdar
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mahdi Mahdavi
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Zahra Rostami
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.,Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Zabeh
- Department of Biomedical Engineering, Columbia University, Columbia, USA
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Nuffield Department of Clinical Neuroscience, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Nuffield Department of Clinical Neuroscience, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Reza Lashgari
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
5
|
Agoalikum E, Klugah-Brown B, Wu H, Hu P, Jing J, Biswal B. Structural differences among children, adolescents, and adults with attention-deficit/hyperactivity disorder and abnormal Granger causality of the right pallidum and whole-brain. Front Hum Neurosci 2023; 17:1076873. [PMID: 36866118 PMCID: PMC9971633 DOI: 10.3389/fnhum.2023.1076873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a childhood mental health disorder that often persists to adulthood and is characterized by inattentive, hyperactive, or impulsive behaviors. This study investigated structural and effective connectivity differences through voxel-based morphometry (VBM) and Granger causality analysis (GCA) across child, adolescent, and adult ADHD patients. Structural and functional MRI data consisting of 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years) was obtained from New York University Child Study Center for the ADHD-200 and UCLA dataset. Structural differences in the bilateral pallidum, bilateral thalamus, bilateral insula, superior temporal cortex, and the right cerebellum were observed among the three ADHD groups. The right pallidum was positively correlated with disease severity. The right pallidum as a seed precedes and granger causes the right middle occipital cortex, bilateral fusiform, left postcentral gyrus, left paracentral lobule, left amygdala, and right cerebellum. Also, the anterior cingulate cortex, prefrontal cortex, left cerebellum, left putamen, left caudate, bilateral superior temporal pole, middle cingulate cortex, right precentral gyrus, and the left supplementary motor area demonstrated causal effects on the seed region. In general, this study showed the structural differences and the effective connectivity of the right pallidum amongst the three ADHD age groups. Our work also highlights the evidence of the frontal-striatal-cerebellar circuits in ADHD and provides new insights into the effective connectivity of the right pallidum and the pathophysiology of ADHD. Our results further demonstrated that GCA could effectively explore the interregional causal relationship between abnormal regions in ADHD.
Collapse
Affiliation(s)
- Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongzhou Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junlin Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
6
|
Weerasekera A, Ion-Mărgineanu A, Nolan G, Mody M. Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia. Brain Sci 2022; 12:brainsci12040439. [PMID: 35447970 PMCID: PMC9031550 DOI: 10.3390/brainsci12040439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Subcortical structures play a significant role in cognitive and social-emotional behaviors and their abnormalities are associated with neuropsychiatric conditions. This exploratory study utilized ABIDE II/COBRE MRI and corresponding phenotypic datasets to compare subcortical volumes of adults with ASD (n = 29), SZ (n = 51) and age and gender matched neurotypicals (NT). We examined the association between subcortical volumes and select behavioral measures to determine whether core symptomatology of disorders could be explained by subcortical association patterns. We observed volume differences in ASD (viz., left pallidum, left thalamus, left accumbens, right amygdala) but not in SZ compared to their respective NT controls, reflecting morphometric changes specific to one of the disorder groups. However, left hippocampus and amygdala volumes were implicated in both disorders. A disorder-specific negative correlation (r = −0.39, p = 0.038) was found between left-amygdala and scores on the Social Responsiveness Scale (SRS) Social-Cognition in ASD, and a positive association (r = 0.29, p = 0.039) between full scale IQ (FIQ) and right caudate in SZ. Significant correlations between behavior measures and subcortical volumes were observed in NT groups (ASD-NT range; r = −0.53 to −0.52, p = 0.002 to 0.004, SZ-NT range; r = −0.41 to −0.32, p = 0.007 to 0.021) that were non-significant in the disorder groups. The overlap of subcortical volumes implicated in ASD and SZ may reflect common neurological mechanisms. Furthermore, the difference in correlation patterns between disorder and NT groups may suggest dysfunctional connectivity with cascading effects unique to each disorder and a potential role for IQ in mediating behavior and brain circuits.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-781-8204501
| | - Adrian Ion-Mărgineanu
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, 3001 Leuven, Belgium;
| | - Garry Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Maria Mody
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
7
|
Loued-Khenissi L, Trofimova O, Vollenweider P, Marques-Vidal P, Preisig M, Lutti A, Kliegel M, Sandi C, Kherif F, Stringhini S, Draganski B. Signatures of life course socioeconomic conditions in brain anatomy. Hum Brain Mapp 2022; 43:2582-2606. [PMID: 35195323 PMCID: PMC9057097 DOI: 10.1002/hbm.25807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
Socioeconomic status (SES) plays a significant role in health and disease. At the same time, early-life conditions affect neural function and structure, suggesting the brain may be a conduit for the biological embedding of SES. Here, we investigate the brain anatomy signatures of SES in a large-scale population cohort aged 45-85 years. We assess both gray matter morphometry and tissue properties indicative of myelin content. Higher life course SES is associated with increased volume in several brain regions, including postcentral and temporal gyri, cuneus, and cerebellum. We observe more widespread volume differences and higher myelin content in the sensorimotor network but lower myelin content in the temporal lobe associated with childhood SES. Crucially, childhood SES differences persisted in adult brains even after controlling for adult SES, highlighting the unique contribution of early-life conditions to brain anatomy, independent of later changes in SES. These findings inform on the biological underpinnings of social inequality, particularly as they pertain to early-life conditions.
Collapse
Affiliation(s)
- Leyla Loued-Khenissi
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne.,Theory of Pain Laboratory, University of Geneva, Geneva
| | - Olga Trofimova
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne
| | - Peter Vollenweider
- Department of medicine, Internal medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne
| | - Matthias Kliegel
- Laboratoire du Vieillissement Cognitif, Université de Genève, Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ferhat Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne
| | - Silvia Stringhini
- University Centre for General Medicine and Public Health (UNISANTE), Lausanne University, Lausanne, Switzerland.,Unit of Population Epidemiology, Primary Care Division, Geneva University Hospitals, Geneva, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne.,Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
8
|
Keogh C, Deli A, Zand APD, Zorman MJ, Boccard-Binet SG, Parrott M, Sigalas C, Weiss AR, Stein JF, FitzGerald JJ, Aziz TZ, Green AL, Gillies MJ. Spatial and Temporal Distribution of Information Processing in the Human Dorsal Anterior Cingulate Cortex. Front Hum Neurosci 2022; 16:780047. [PMID: 35370577 PMCID: PMC8973009 DOI: 10.3389/fnhum.2022.780047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is a key node in the human salience network. It has been ascribed motor, pain-processing and affective functions. However, the dynamics of information flow in this complex region and how it responds to inputs remain unclear and are difficult to study using non-invasive electrophysiology. The area is targeted by neurosurgery to treat neuropathic pain. During deep brain stimulation surgery, we recorded local field potentials from this region in humans during a decision-making task requiring motor output. We investigated the spatial and temporal distribution of information flow within the dACC. We demonstrate the existence of a distributed network within the anterior cingulate cortex where discrete nodes demonstrate directed communication following inputs. We show that this network anticipates and responds to the valence of feedback to actions. We further show that these network dynamics adapt following learning. Our results provide evidence for the integration of learning and the response to feedback in a key cognitive region.
Collapse
Affiliation(s)
- Conor Keogh
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alceste Deli
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Mark Jernej Zorman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Matthew Parrott
- St Hilda’s College, University of Oxford, Oxford, United Kingdom
| | | | - Alexander R. Weiss
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - John Frederick Stein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James J. FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Martin John Gillies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Martin John Gillies,
| |
Collapse
|
9
|
Yang B, Zhang W, Lencer R, Tao B, Tang B, Yang J, Li S, Zeng J, Cao H, Sweeney JA, Gong Q, Lui S. Grey matter connectome abnormalities and age-related effects in antipsychotic-naive schizophrenia. EBioMedicine 2021; 74:103749. [PMID: 34906839 PMCID: PMC8671864 DOI: 10.1016/j.ebiom.2021.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background Convergent evidence is increasing to indicate progressive brain abnormalities in schizophrenia. Knowing the brain network features over the illness course in schizophrenia, independent of effects of antipsychotic medications, would extend our sight on this question. Methods We recruited 237 antipsychotic-naive patients with schizophrenia range from 16 to 73 years old, and 254 healthy controls. High-resolution T1 weighted images were obtained with a 3.0T MR scanner. Grey matter networks were constructed individually based on the similarities of regional grey matter measurements. Network metrics were compared between patient groups and healthy controls, and regression analyses with age were conducted to determine potential differential rate of age-related changes between them. Findings Nodal centrality abnormalities were observed in patients with untreated schizophrenia, particularly in the central executive, default mode and salience networks. Accelerated age-related declines and illness duration-related declines were observed in global assortativity, and in nodal metrics of left superior temporal pole in schizophrenia patients. Although no significant intergroup differences in age-related regression were observed, the pattern of network metric alternation of left thalamus indicated higher nodal properties in early course patients, which decreased in long-term ill patients. Interpretations Global and nodal alterations in the grey matter connectome related to age and duration of illness in antipsychotic-naive patients, indicating potentially progressive network organizations mainly involving temporal regions and thalamus in schizophrenia independent from medication effects. Funding The National Natural Science Foundation of China, Sichuan Science and Technology Program, the Fundamental Research Funds for the Central Universities, Post-Doctor Research Project, West China Hospital, Sichuan University , the Science and Technology Project of the Health Planning Committee of Sichuan, Postdoctoral Interdisciplinary Research Project of Sichuan University and 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University.
Collapse
Affiliation(s)
- Beisheng Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Germany
| | - Bo Tao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - John A Sweeney
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Picton P, Mashour GA, Hudetz AG. Asymmetric neural dynamics characterize loss and recovery of consciousness. Neuroimage 2021; 236:118042. [PMID: 33848623 PMCID: PMC8310457 DOI: 10.1016/j.neuroimage.2021.118042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Anesthetics are known to disrupt neural interactions in cortical and subcortical brain circuits. While the effect of anesthetic drugs on consciousness is reversible, the neural mechanism mediating induction and recovery may be different. Insight into these distinct mechanisms can be gained from a systematic comparison of neural dynamics during slow induction of and emergence from anesthesia. To this end, we used functional magnetic resonance imaging (fMRI) data obtained in healthy volunteers before, during, and after the administration of propofol at incrementally adjusted target concentrations. We analyzed functional connectivity of corticocortical and subcorticocortical networks and the temporal autocorrelation of fMRI signal as an index of neural processing timescales. We found that en route to unconsciousness, temporal autocorrelation across the entire brain gradually increased, whereas functional connectivity gradually decreased. In contrast, regaining consciousness was associated with an abrupt restoration of cortical but not subcortical temporal autocorrelation and an abrupt boost of subcorticocortical functional connectivity. Pharmacokinetic effects could not account for the difference in neural dynamics between induction and emergence. We conclude that the induction and recovery phases of anesthesia follow asymmetric neural dynamics. A rapid increase in the speed of cortical neural processing and subcorticocortical neural interactions may be a mechanism that reboots consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Vijay Tarnal
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ellen L Janke
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amy M McKinney
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul Picton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Ozdurak Singin RH, Duz S, Kiraz M. Cortical and Subcortical Brain Volume Alterations Following Endurance Running at 38.6 km and 119.2 km in Male Athletes. Med Sci Monit 2021; 27:e926060. [PMID: 34155188 PMCID: PMC8234558 DOI: 10.12659/msm.926060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Although several studies have shown that ultramarathon running causes severe physical and mental stress and harms organ systems, its effect on brain tissue remains unclear. The purpose of this study was to investigate the volumetric change of cortical and subcortical brain structures following 38.6-km and 119.8-km mountain races. MATERIAL AND METHODS A total of 23 healthy male runners (age, 49.05±5.99 years) were classified as short-trail (ST; n=9) and ultra-trail (UT; n=14) endurance running. Pre- and post-test scanning of brain tissue was performed by using a 3-Tesla magnetic resonance imaging (MRI). Pre- and post-race differences in cortical and subcortical volumes in the ST and UT groups were separately determined by Wilcoxon signed-rank test. RESULTS Cortical gray matter (GM) and cerebral GM volume significantly increased after the race in both ST and UT groups, whereas the volume of the thalamus, caudate, pallidus, and hippocampus significantly increased only in the UT group. Cerebrospinal fluid (CSF) and white-matter (WM) volumes did not change after endurance running and remained unaltered in both groups. CONCLUSIONS Endurance running has a site-specific acute effect on cortical and subcortical structures and may attenuate GM volume decrease in older adult male athletes. The increased volume of subcortical structures might be a response of physical exercise and additional physical stress experienced by ultramarathon runners.
Collapse
Affiliation(s)
| | - Serkan Duz
- Faculty of Sport Sciences, Inonu University, Malatya, Turkey
| | - Murat Kiraz
- Department of Neurosurgery, Faculty of Medicine, Hitit University, Çorum, Turkey
| |
Collapse
|
12
|
Neural substrates for poststroke complex regional pain syndrome type I: a retrospective case-control study using voxel-based lesion symptom mapping analysis. Pain 2021; 161:1311-1320. [PMID: 31985589 DOI: 10.1097/j.pain.0000000000001816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poststroke complex regional pain syndrome (CRPS) is characterized by swelling, pain, and changes in the skin that appear on the affected wrist and hand. In this retrospective study, we analyzed the relationship between poststroke CRPS and the location of stroke lesion. From all patients admitted to our hospital from 2009 to 2019, we recruited 80 patients affected by their first unilateral stroke who met the inclusion/exclusion criteria. Thirty-eight patients diagnosed with CRPS after stroke were assigned to the experimental group according to the "Budapest criteria" adopted by the International Association for the Study of Pain, and 42 patients without CRPS were included as controls. Regions of interest were manually drawn on T1-weighted magnetic resonance images, and data were normalized to a standard brain template. In the poststroke CRPS group, the relationship between the location of brain lesion and pain severity was analyzed using Freedman-Lane multivariable regression adjusting for Medication Quantification Scale rating, which was the only parameter to show a statistically significant correlation with pain intensity. A threshold of P < 0.01 was considered statistically significant for all voxel-based lesion symptom mapping tests, corrected for multiple comparisons with 5000 permutations. Analyses using voxel-wise subtraction and Liebermeister statistics indicated that the corticospinal tract (CST) was associated with the development of poststroke CRPS. Statistically significant correlations were found between pain intensity and the CST and the adjacent lentiform nucleus. Our results suggest that the CST may be a relevant neural structure for development of poststroke CRPS and the intensity of pain caused by the syndrome.
Collapse
|
13
|
Bowler S, Mitchell BI, Kallianpur KJ, Chow D, Jiang W, Shikuma CM, Ndhlovu LC. Plasma anti-CD4 IgG is associated with brain abnormalities in people with HIV on antiretroviral therapy. J Neurovirol 2021; 27:334-339. [PMID: 33710596 DOI: 10.1007/s13365-021-00966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/28/2021] [Indexed: 11/26/2022]
Abstract
Anti-CD4 IgG autoantibodies have been implicated in CD4+ T cell reconstitution failure, leaving people with HIV (PWH) at heightened risk of HIV-associated comorbidities, such as neurocognitive impairment. Seventeen PWH on stable anti-retroviral therapy (ART) and 10 HIV seronegative controls had plasma anti-CD4 IgG antibodies measured by enzyme-linked immunosorbent assay. Neuropsychological (NP) tests assessed cognitive performance, and brain volumes were measured by structural magnetic resonance imaging. Anti-CD4 IgG levels were elevated (p = 0.04) in PWH compared with controls. Anti-CD4 IgG correlated with global NP z-scores (rho = - 0.51, p = 0.04). A relationship was observed between anti-CD4 IgG and putamen (β = - 0.39, p = 0.02), pallidum (β = - 0.38, p = 0.03), and amygdala (β = - 0.42, p = 0.05) regional brain volumes. The results of this study suggest the existence of an antibody-mediated relationship with neurocognitive impairment and brain abnormalities in an HIV-infected population.
Collapse
Affiliation(s)
- Scott Bowler
- Department of Tropical Medicine, University of Hawai'i, Honolulu, HI, USA.
- Department of Quantitative Health Sciences, University of Hawai'i, Honolulu, HI, USA.
- Hawaii Center for AIDS, University of Hawai'i, Honolulu, HI, USA.
| | | | - Kalpana J Kallianpur
- Department of Tropical Medicine, University of Hawai'i, Honolulu, HI, USA
- Hawaii Center for AIDS, University of Hawai'i, Honolulu, HI, USA
- Center for Translational Research On Aging, Kuakini Medical Center, Honolulu, HI, USA
| | - Dominic Chow
- Hawaii Center for AIDS, University of Hawai'i, Honolulu, HI, USA
- The Queen's Medical Center, Honolulu, HI, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, University of Hawai'i, Honolulu, HI, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Scheulin KM, Jurgielewicz BJ, Spellicy SE, Waters ES, Baker EW, Kinder HA, Simchick GA, Sneed SE, Grimes JA, Zhao Q, Stice SL, West FD. Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci Rep 2021; 11:3814. [PMID: 33589720 PMCID: PMC7884696 DOI: 10.1038/s41598-021-83432-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.
Collapse
Affiliation(s)
- Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | | | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Gregory A Simchick
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Aruna Bio Inc, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Atkinson-Clement C, Tarrano C, Porte CA, Wattiez N, Delorme C, McGovern EM, Brochard V, Thobois S, Tranchant C, Grabli D, Degos B, Corvol JC, Pedespan JM, Krystkoviak P, Houeto JL, Degardin A, Defebvre L, Valabregue R, Rosso C, Apartis E, Vidailhet M, Pouget P, Roze E, Worbe Y. Dissociation in reactive and proactive inhibitory control in Myoclonus dystonia. Sci Rep 2020; 10:13933. [PMID: 32811896 PMCID: PMC7434767 DOI: 10.1038/s41598-020-70926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/27/2020] [Indexed: 12/03/2022] Open
Abstract
Myoclonus-dystonia (MD) is a syndrome characterized by myoclonus of subcortical origin and dystonia, frequently associated with psychiatric comorbidities. The motor and psychiatric phenotypes of this syndrome likely result from cortico-striato-thamalo-cerebellar-cortical pathway dysfunction. We hypothesized that reactive and proactive inhibitory control may be altered in these patients. Using the Stop Signal Task, we assessed reactive and proactive inhibitory control in MD patients with (n = 12) and without (n = 21) deep brain stimulation of the globus pallidus interna and compared their performance to matched healthy controls (n = 24). Reactive inhibition was considered as the ability to stop an already initiated action and measured using the stop signal reaction time. Proactive inhibition was assessed through the influence of several consecutive GO or STOP trials on decreased response time or inhibitory process facilitation. The proactive inhibition was solely impaired in unoperated MD patients. Patients with deep brain stimulation showed impairment in reactive inhibition, independent of presence of obsessive–compulsive disorders. This impairment in reactive inhibitory control correlated with intrinsic severity of myoclonus (i.e. pre-operative score). The results point to a dissociation in reactive and proactive inhibitory control in MD patients with and without deep brain stimulation of the globus pallidus interna.
Collapse
Affiliation(s)
- Cyril Atkinson-Clement
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France
| | - Clement Tarrano
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Department of Neurology, CHU Côte de Nacre, Université Caen Normandie, Caen, France
| | - Camille-Albane Porte
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France
| | - Nicolas Wattiez
- Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne University, Paris, France
| | - Cécile Delorme
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Eavan M McGovern
- Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland
| | - Vanessa Brochard
- INSERM/APHP, Centre d'Investigation Clinique 1422, Paris, France
| | - Stéphane Thobois
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, University of Lyon, Bron, France.,Service de Neurologie C, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - David Grabli
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Bertrand Degos
- Department of Neurology, Hôpital Avicennes, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Jean-Christophe Corvol
- Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Pierre Krystkoviak
- Department of Neurology, Amiens University Medical Center, Amiens, France
| | - Jean-Luc Houeto
- Service de Neurologie, CIC-INSERM 1402, CHU de Poitiers, Poitiers, France
| | - Adrian Degardin
- Department of Neurology, Centre Hospitalier de Tourcoing, Tourcoing, France
| | - Luc Defebvre
- INSERM, U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, Université de Lille, Lille, France.,Lille Centre of Excellence for Neurodegenerative Diseases (LiCEND), Lille, France
| | - Romain Valabregue
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,UMR S 975, CNRS UMR 7225, ICM, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris, France
| | - Charlotte Rosso
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Urgences Cérébro-Vasculaires, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Emmanuelle Apartis
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Vidailhet
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Pierre Pouget
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France
| | - Emmanuel Roze
- Sorbonne University, 75005, Paris, France.,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Yulia Worbe
- Sorbonne University, 75005, Paris, France. .,Inserm U1127, CNRS UMR7225, UM75, ICM, 75013, Paris, France. .,Movement Investigation and Therapeutics Team, Paris, France. .,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
16
|
Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: Acute and chronic paradigms. Neuroimage 2020; 217:116904. [PMID: 32387742 DOI: 10.1016/j.neuroimage.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Invasive basal ganglia recordings in humans have significantly advanced our understanding of the neurophysiology of movement disorders. A recent technical advance has been the addition of electrocorticography to basal ganglia recording, for evaluating distributed motor networks. Here we review the rationale, results, and ethics of this multisite recording technique in movement disorders, as well as its application in chronic recording paradigms utilizing implantable neural interfaces that include a sensing function.
Collapse
Affiliation(s)
- Thomas A Wozny
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Doris D Wang
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
17
|
Peris TS, Piacentini J, Vreeland A, Salgari G, Levitt JG, Alger JR, Posse S, McCracken JT, O'Neill J. Neurochemical correlates of behavioral treatment of pediatric trichotillomania. J Affect Disord 2020; 273:552-561. [PMID: 32560953 DOI: 10.1016/j.jad.2020.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trichotillomania (TTM) is a chronic and impairing psychiatric disorder with suspected dysfunctional cortico-striato-thalamo-cortical (CSTC) circuit activity reflecting excitatory/inhibitory signaling imbalance. TTM neurochemistry is understudied, with no prior research using magnetic resonance spectroscopy (MRS). This pilot investigation examined associations between TTM diagnosis, symptom severity, and response to behavioral treatment with MRS neurometabolites glutamate (Glu) and γ-aminobutyric acid (GABA) in CSTC structures. METHODS Proton echo-planar spectroscopic imaging (PEPSI) MRS was acquired from bilateral pregenual anterior cingulate cortex (pACC), caudate, putamen, globus pallidus, thalamus, and proximal white matter in 10 unmedicated girls with TTM, ages 9-17 years, before and after treatment, and from 13 age- and sex-matched healthy controls. RESULTS Nine of 10 TTM patients were treatment responders. Pretreatment mean Glu and GABA did not differ significantly between participants and controls. Pretreatment TTM symptoms were correlated with Glu in (left + right) pACC (r = 0.88, p = 0.02) and thalamus (r = 0.82, p = 0.012), and were negatively correlated with pACC GABA (r = -0.84, p = 0.034). Mean GABA in putamen increased 69% (baseline to post-treatment) (p = 0.027). Higher pretreatment Glu in caudate, putamen, globus pallidus, and thalamus predicted greater symptom decreases with treatment (all r < -0.6, p < 0.05); higher caudate GABA predicted less treatment-related symptom decline (r = 0.86, p = 0.014). LIMITATIONS Small sample, GABA quantified with spectral fitting rather than editing. CONCLUSION Consistent with other neuroimaging, MRS reveals discrete CSTC chemical changes with effective behavior therapy, and possibly with TTM etiology. TTM symptoms relate to excess excitatory versus inhibitory signaling in pACC and thalamus; symptom improvement may reflect reduced excitatory drive of the CSTC direct-pathway activity.
Collapse
Affiliation(s)
- Tara S Peris
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA
| | - John Piacentini
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA
| | - Allison Vreeland
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA
| | - Giulia Salgari
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA
| | - Jennifer G Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA
| | - Jeffrey R Alger
- UCLA Departments of Neurology and Radiological Sciences, Los Angeles, CA 90024, USA
| | - Stefan Posse
- Departments of Electrical and Computer Engineering, Neurology, and Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - James T McCracken
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, USA.
| |
Collapse
|
18
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
19
|
Rahman N, Mihalkovic A, Geary O, Haffey R, Hamilton J, Thanos PK. Chronic aerobic exercise: Autoradiographic assessment of GABA(a) and mu-opioid receptor binding in adult rats. Pharmacol Biochem Behav 2020; 196:172980. [PMID: 32593790 DOI: 10.1016/j.pbb.2020.172980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Exercise programs have shown great potential for both the prevention and treatment of substance use disorder (SUD). As exercise has been shown to have potent effects on physical and psychological health, it is reasonable to examine the mechanism of how exercise can be used as an adjunct treatment for addiction. The present study examined the effects of chronic aerobic (treadmill) exercise on both GABA(a) and mu-opioid receptor levels in the brains of male and female rats. GABA(a) receptor binding, measured by [3H] Flunitrazepam, was increased in the cingulate cortex following exercise, but only in females. Mu-opioid receptor expression, measured by [3H] ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin) (DAMGO), showed no effect of exercise while showing an effect of sex, with increased [3H] DAMGO binding in the brains of sedentary males compared to that of sedentary females. Our findings support the potential role for GABA(a) signaling in the cingulate cortex as part of the mechanism of action of aerobic exercise. These data, along with prior reports, aid our understanding of the neurochemical impact and mechanism of chronic aerobic exercise on neuropsychiatric disease, particularly regarding addiction.
Collapse
Affiliation(s)
- Nabeel Rahman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Olivia Geary
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Rylee Haffey
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America.
| |
Collapse
|
20
|
Huang Y, Yaple ZA, Yu R. Goal-oriented and habitual decisions: Neural signatures of model-based and model-free learning. Neuroimage 2020; 215:116834. [PMID: 32283275 DOI: 10.1016/j.neuroimage.2020.116834] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Human decision-making is mainly driven by two fundamental learning processes: a slow, deliberative, goal-directed model-based process that maps out the potential outcomes of all options and a rapid habitual model-free process that enables reflexive repetition of previously successful choices. Although many model-informed neuroimaging studies have examined the neural correlates of model-based and model-free learning, the concordant activity among these two processes remains unclear. We used quantitative meta-analyses of functional magnetic resonance imaging experiments to identify the concordant activity pertaining to model-based and model-free learning over a range of reward-related paradigms. We found that: 1) both processes yielded concordant ventral striatum activity, 2) model-based learning activated the medial prefrontal cortex and orbital frontal cortex, and 3) model-free learning specifically activated the left globus pallidus and right caudate head. Our findings suggest that model-free and model-based decision making engage overlapping yet distinct neural regions. These stereotaxic maps improve our understanding of how deliberative goal-directed and reflexive habitual learning are implemented in the brain.
Collapse
Affiliation(s)
- Yi Huang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Zachary A Yaple
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Psychology, National University of Singapore, Singapore.
| |
Collapse
|
21
|
Vymazal J, Krámská L, Brožová H, Růžička E, Rulseh AM. Does serial administration of gadolinium-based contrast agents affect patient neurological and neuropsychological status? Fourteen-year follow-up of patients receiving more than fifty contrast administrations. J Magn Reson Imaging 2019; 51:1912-1913. [PMID: 31664740 PMCID: PMC7318267 DOI: 10.1002/jmri.26948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Lenka Krámská
- Department of Neurology, Clinical Psychology, Na Homolce Hospital, Prague, Czech Republic
| | - Hana Brožová
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | - Aaron M Rulseh
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
22
|
Noriega G. Restricted, Repetitive, and Stereotypical Patterns of Behavior in Autism-an fMRI Perspective. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1139-1148. [PMID: 31021772 DOI: 10.1109/tnsre.2019.2912416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main objective of this paper is to determine whether resting-state fMRI can identify functional connectivity differences between individuals with autism who experience severe issues with restricted, repetitive, and stereotypical behaviors, those who experience only mild issues, and controls. We use resting-state fMRI data from the ABIDE-I preprocessed repository, with participants grouped according to their ADI-R Restricted, Repetitive, and Stereotyped Patterns of Behavior Subscore. Three processing methods are used for analysis. A time-correlation approach establishes a basic baseline, and we introduce a method based on sliding time windows, with means across time adjusted to consider the fraction of time the correlation measure is above/below average. We complement these with a band-limited coherence approach. For completeness, preprocessing schemes with and without global signal regression are considered. Our results are in line with recent ones which find both over- and under-connectivities in the autistic brain. We find that there are indeed significant differences in connectivity between various regions that differentiate between ASD subjects with severe stereotypical/restrictive behavior issues, those with only mild issues, and controls. Interestingly, for some regions, the "signature" of subjects in the milder of the ASD groups appears to be distinct (i.e., over- or under-connected) relative to both the more severe ASD group and the controls.
Collapse
|
23
|
Cho SS, Christopher L, Koshimori Y, Li C, Lang AE, Houle S, Strafella AP. Decreased pallidal vesicular monoamine transporter type 2 availability in Parkinson's disease: The contribution of the nigropallidal pathway. Neurobiol Dis 2019; 124:176-182. [DOI: 10.1016/j.nbd.2018.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
|
24
|
Weiss AR, Gillies MJ, Philiastides MG, Apps MA, Whittington MA, FitzGerald JJ, Boccard SG, Aziz TZ, Green AL. Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task. Front Hum Neurosci 2018; 12:203. [PMID: 29872384 PMCID: PMC5972193 DOI: 10.3389/fnhum.2018.00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence-whether a result has positive (either expected or desirable) or negative (either unexpected or undesirable) value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed. We hypothesized that local field potentials (LFPs) would reveal changes in the dACC related to prediction error and valence and used the unique opportunity offered by deep brain stimulation (DBS) surgery in the dACC of three human subjects to test this hypothesis. We used a cognitive task that involved the presentation of object pairs, a motor response, and audiovisual feedback to guide future object selection choices. The dACC displayed distinctly lateralized theta frequency (3-8 Hz) event-related potential responses-the left hemisphere dACC signaled outcome valence and prediction errors while the right hemisphere dACC was involved in prediction formation. Multivariate analyses provided evidence that the human dACC response to decision outcomes reflects two spatiotemporally distinct early and late systems that are consistent with both our lateralized electrophysiological results and the involvement of the theta frequency oscillatory activity in dACC cognitive processing. Further findings suggested that dACC does not respond to other phases of action-outcome-feedback tasks such as the motor response which supports the notion that dACC primarily signals information that is crucial for behavioral monitoring and not for motor control.
Collapse
Affiliation(s)
- Alexander R Weiss
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Marios G Philiastides
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Matthew A Apps
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | - James J FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Sandra G Boccard
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Pallidal Deep-Brain Stimulation Disrupts Pallidal Beta Oscillations and Coherence with Primary Motor Cortex in Parkinson's Disease. J Neurosci 2018; 38:4556-4568. [PMID: 29661966 DOI: 10.1523/jneurosci.0431-18.2018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023] Open
Abstract
In Parkinson's disease (PD), subthalamic nucleus beta band oscillations are decreased by therapeutic deep-brain stimulation (DBS) and this has been proposed as important to the mechanism of therapy. The globus pallidus is a common alternative target for PD with similar motor benefits as subthalamic DBS, but effects of pallidal stimulation in PD are not well studied, and effects of pallidal DBS on cortical function in PD are unknown. Here, in 20 PD and 14 isolated dystonia human patients of both genders undergoing pallidal DBS lead implantation, we recorded local field potentials from the globus pallidus and in a subset of these, recorded simultaneous sensorimotor cortex ECoG potentials. PD patients had elevated resting pallidal low beta band (13-20 Hz) power compared with dystonia patients, whereas dystonia patients had elevated resting pallidal theta band (4-8 Hz) power compared with PD. We show that this results in disease-specific patterns of interaction between the pallidum and motor cortex: PD patients demonstrated relatively elevated phase coherence with the motor cortex in the beta band and this was reduced by therapeutic pallidal DBS. Dystonia patients had greater theta band phase coherence. Our results support the hypothesis that specific motor phenomenology observed in movement disorders are associated with elevated network oscillations in specific frequency bands, and that DBS in movement disorders acts in general by disrupting elevated synchronization between basal ganglia output and motor cortex.SIGNIFICANCE STATEMENT Perturbations in synchronized oscillatory activity in brain networks are increasingly recognized as important features in movement disorders. The globus pallidus is a commonly used target for deep-brain stimulation (DBS) in Parkinson's disease (PD), however, the effects of pallidal DBS on basal ganglia and cortical oscillations are unknown. Using invasive intraoperative recordings in patients with PD and isolated dystonia, we found disease-specific patterns of elevated oscillatory synchronization within the pallidum and in coherence between pallidum and motor cortex. Therapeutic pallidal DBS in PD suppresses these elevated synchronizations, reducing the influence of diseased basal ganglia on cortical physiology. We propose a general mechanism for DBS therapy in movement disorders: functional disconnection of basal ganglia output and motor cortex by coherence suppression.
Collapse
|
26
|
de Gusmao CM, Pollak LE, Sharma N. Neuropsychological and psychiatric outcome of GPi-deep brain stimulation in dystonia. Brain Stimul 2017. [PMID: 28647175 DOI: 10.1016/j.brs.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous investigators have observed changes in cognitive and psychiatric domains after GPi-DBS for dystonia, such as declines in semantic verbal fluency and set shifting or increased suicidality. Others have reported stability or improvements in select areas, such as graphomotor speed and mood. Interpretation of these findings is limited by inclusion of select patient populations or limited neuropsychological testing. OBJECTIVE To describe cognitive and neuropsychiatric outcomes in a cohort of patients with primary and secondary dystonia undergoing Globus Pallidus pars interna deep brain stimulation (GPi-DBS). METHODS Patients with primary and secondary dystonia were evaluated at baseline and post-operatively with a comprehensive battery of neuropsychological tests and mood inventories including anxiety, depression and hopelessness scales. Statistical significance was calculated with one-tailed student t-test, defined as p value < 0.05. RESULTS Twelve patients were included in the study. Nine were male (75%) and the mean age at baseline assessment was 42.3 years (range 13-68; SD 18.0). The majority had focal or segmental dystonia (8/12, 66%), 4 patients had generalized dystonia. Three patients had monogenic dystonias (DYT 1 and DYT 3), and two patients had acquired (tardive) dystonia. Mean time between surgery and follow-up was 13.1 months (SD 3.1). Subjects demonstrated stable performance on most tests, with statistically significant improvements noted in working memory (letter-number sequencing), executive function (trail-making B), anxiety and depression. CONCLUSIONS In an etiologically and clinically diverse patient population, administration of comprehensive battery of cognitive tests pre and post-operatively suggests that GPi-DBS is safe from cognitive and psychiatric perspectives.
Collapse
Affiliation(s)
| | - Lauren E Pollak
- Department of Psychiatry, Massachusetts General Hospital, 02114, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, 02114, USA
| |
Collapse
|