1
|
Ma X, Chen X, Che Y, Zhu S, Wang X, Gao S, Wu J, Kong F, Cheng C, Wu Y, Guo J, Qi J, Chai R. The single-cell transcriptomic landscape of the topological differences in mammalian auditory receptors. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2398-2410. [PMID: 39083201 DOI: 10.1007/s11427-024-2672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 10/22/2024]
Abstract
Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuwei Che
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Siyao Zhu
- School of Engineering, Vanderbilt University, Nashville, 37240, USA
| | - Xinlin Wang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shan Gao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiheng Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fanliang Kong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210096, China
- Research Institute of Otorhinolaryngology, Nanjing, 210096, China
| | - Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Beijing, 100081, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Beijing, 100081, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Schwieger J, Gao Z, Lenarz T, Munro G, Petersen KA, Scheper V. "Of mice and men": the relevance of Cometin and Erythropoietin origin for its effects on murine spiral ganglion neuron survival and neurite outgrowth in vitro. Front Neurosci 2023; 17:1224463. [PMID: 37638326 PMCID: PMC10450246 DOI: 10.3389/fnins.2023.1224463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Neurotrophic factors (NTF) play key roles in the survival of neurons, making them promising candidates for therapy of neurodegenerative diseases. In the case of the inner ear, sensorineural hearing loss (SNHL) is characterized over time by a degeneration of the primary auditory neurons, the spiral ganglion neurons (SGN). It is well known that selected NTF can protect SGN from degeneration, which positively influences the outcome of cochlear implants, the treatment of choice for patients with profound to severe SNHL. However, the outcome of studies investigating protective effects of NTF on auditory neurons are in some cases of high variability. We hypothesize that the factor origin may be one aspect that affects the neuroprotective potential. The aim of this study was to investigate the neuroprotective potential of human and mouse Erythropoietin (EPO) and Cometin on rat SGN. SGN were isolated from neonatal rats (P 2-5) and cultured in serum-free medium. EPO and Cometin of mouse and human origin were added in concentrations of 0.1, 1, and 10 ng/mL and 0.1, 1, and 10 μg/mL, respectively. The SGN survival rate and morphology, and the neurite outgrowth were determined and compared to negative (no additives) and positive (brain-derived neurotrophic factor, BDNF) controls. A neuroprotective effect of 10 μg/mL human Cometin comparable to that obtained with BDNF was observed in the SGN-culture. In contrast, mouse Cometin was ineffective. A similar influence of 10 μg/mL human and mouse and 1 μg/mL human Cometin on the length of regenerated neurites compared to BDNF was also detected. No other Cometin-conditions, and none of the EPO-conditions tested had neuroprotective or neuritogenic effects or influenced the neuronal morphology of the SGN. The neuroprotective effect of 10 μg/mL human Cometin on SGN indicates it is a potentially interesting protein for the supportive treatment of inner ear disorders. The finding that mouse Cometin had no effect on the SGN in the parallel-performed experiments underlines the importance of species origin of molecules being screened for therapeutic purpose.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Ear Nose and Throat Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| | | | | | - Verena Scheper
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| |
Collapse
|
4
|
Gupta SJ, Churchward MA, Todd KG, Winship IR. Pleiotrophin Signals Through ALK Receptor to Enhance the Growth of Neurons in the Presence of Inhibitory Chondroitin Sulfate Proteoglycans. Neurosci Insights 2023; 18:26331055231186993. [PMID: 37465214 PMCID: PMC10350765 DOI: 10.1177/26331055231186993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), one of the major extracellular matrix components of the glial scar that surrounds central nervous system (CNS) injuries, are known to inhibit the regeneration of neurons. This study investigated whether pleiotrophin (PTN), a growth factor upregulated during early CNS development, can overcome the inhibition mediated by CSPGs and promote the neurite outgrowth of neurons in vitro. The data showed that a CSPG matrix inhibited the outgrowth of neurites in primary cortical neuron cultures compared to a control matrix. PTN elicited a dose-dependent increase in the neurite outgrowth even in the presence of the growth inhibitory CSPG matrix, with optimal growth at 15 ng mL-1 of PTN (114.8% of neuronal outgrowth relative to laminin control). The growth-promoting effect of PTN was blocked by inhibition of the receptor anaplastic lymphoma kinase (ALK) by alectinib in a dose-dependent manner. Neurite outgrowth in the presence of this CSPG matrix was induced by activation of the protein kinase B (AKT) pathway, a key downstream mediator of ALK activation. This study identified PTN as a dose-dependent regulator of neurite outgrowth in primary cortical neurons cultured in the presence of a CSPG matrix and identified ALK activation as a key driver of PTN-induced growth.
Collapse
Affiliation(s)
- Somnath J Gupta
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Liu W, Ye Q, Xi W, Li Y, Zhou X, Wang Y, Ye Z, Hai K. The ERK/CREB/PTN/syndecan-3 pathway involves in heparin-mediated neuro-protection and neuro-regeneration against cerebral ischemia-reperfusion injury following cardiac arrest. Int Immunopharmacol 2021; 98:107689. [PMID: 34153666 DOI: 10.1016/j.intimp.2021.107689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Heparin, a commonly used anticoagulant, has been found to improve cerebral ischemia-reperfusion injury (CIR-CA) following cardiopulmonary resuscitation (CPR). Here, we aimed to explore the role of pleiotrophin (PTN)/syndecan-3 pathway in heparin therapy for CIR-CA. MATERIALS AND METHODS The CA-CPR model was constructed in Sprague-Dawley (SD) rats, which were treated with low molecular weight heparin, and the neurological changes and brain histopathological changes were evaluated. For in-vitro experiments, the ischemic injury model of primary neurons was established by oxygen and glucose deprivation (OGD), and the neuron regeneration was detected via the Cell counting Kit-8 (CCK8) method, flow cytometry and microscopy. CREB antagonist (KG-501), ERK antagonist (PD98059) and si-PTN were used respectively to inhibit the expression of CREB, ERK and PTN in cells, so as to explore the role of heparin in regulating neuronal regeneration. RESULTS Compared with the sham rats, the neurological deficits and cerebral edema of CA-CPR rats were significantly improved after heparin treatment. Heparin also attenuated OGD-mediated neuronal apoptosis and promoted neurite outgrowth in vitro. Moreover, heparin attenuated CA-CPR-mediated neuronal apoptosis and microglial neuroinflammation. In terms of the mechanism, heparin upregulated the expression of ERK, CREB, NF200, BDNF, NGF, PTN and syndecan-3 in the rat brains. Inhibition of ERK, CREB and interference with PTN expression notably weakened the heparin-mediated neuroprotective effects and restrained the expression of ERK/CREB and PTN/syndecan-3 pathway. CONCLUSION Heparin attenuates the secondary brain injury induced by CA-CPR through regulating the ERK/CREB-mediated PTN/syndecan-3 pathway.
Collapse
Affiliation(s)
- Wenxun Liu
- Ningxia Medical University, Yinchuan 750004, Ningxia, China; Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China
| | - Qingshan Ye
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China
| | - Wenhua Xi
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yan Li
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaohong Zhou
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China
| | - Yun Wang
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China
| | - Zhenhai Ye
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China
| | - Kerong Hai
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
6
|
Yang S, Ma N, Wu X, Ni H, Gao S, Sun L, Zhou P, Tala, Ran J, Zhou J, Liu M, Li D. CYLD deficiency causes auditory neuropathy due to reduced neurite outgrowth. J Clin Lab Anal 2021; 35:e23783. [PMID: 33934395 PMCID: PMC8183908 DOI: 10.1002/jcla.23783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Auditory neuropathy is a cause of hearing loss that has been studied in a number of animal models. Signal transmission from hair cells to spiral ganglion neurons plays an important role in normal hearing. CYLD is a microtubule-binding protein, and deubiquitinase involved in the regulation of various cellular processes. In this study, we used Cyld knockout (KO) mice and nerve cell lines to examine whether CYLD is associated with auditory neuropathy. METHODS Hearing of Cyld KO mice was studied using the TDT RZ6 auditory physiology workstation. The expression and localization of CYLD in mouse cochlea and cell lines were examined by RT-PCR, immunoblotting, and immunofluorescence. CYLD expression was knocked down in SH-SY5Y cells by shRNAs and in PC12 and N2A cells by siRNAs. Nerve growth factor and retinoic acid were used to induce neurite outgrowth, and the occurrence and length of neurites were statistically analyzed between knockdown and control groups. RESULTS Cyld KO mice had mild hearing impairment. Moreover, CYLD was widely expressed in mouse cochlear tissues and different nerve cell lines. Knocking down CYLD significantly reduced the length and proportion of neurites growing from nerve cells. CONCLUSIONS The abnormal hearing of Cyld KO mice might be caused by a decrease in the length and number of neurites growing from auditory nerve cells in the cochlea, suggesting that CYLD is a key protein affecting hearing.
Collapse
Affiliation(s)
- Song Yang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Nan Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Xuemei Wu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Lei Sun
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Tala
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
7
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
8
|
Li CY, Mittal R, Bergman J, Mittal J, Eshraghi AA. Recent advancements toward gapless neural-electrode interface post-cochlear implantation. Neural Regen Res 2021; 16:1805-1806. [PMID: 33510086 PMCID: PMC8328784 DOI: 10.4103/1673-5374.306085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Crystal Y Li
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jenna Bergman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
9
|
Tanaka T, Basisty N, Fantoni G, Candia J, Moore AZ, Biancotto A, Schilling B, Bandinelli S, Ferrucci L. Plasma proteomic biomarker signature of age predicts health and life span. eLife 2020; 9:61073. [PMID: 33210602 PMCID: PMC7723412 DOI: 10.7554/elife.61073] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Older age is a strong shared risk factor for many chronic diseases, and there is increasing interest in identifying aging biomarkers. Here, a proteomic analysis of 1301 plasma proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651 proteins associated with age (506 over-represented, 145 underrepresented with age). Mediation analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity, respectively. There was enrichment of proteins associated with inflammation and extracellular matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature predicted accumulation of chronic diseases and all-cause mortality. These data support the use of proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk of disease to be targeted for in depth diagnostic procedures and early interventions.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
| | - Nathan Basisty
- The Buck Institute for Research on Aging, Novato, United States
| | - Giovanna Fantoni
- National Institute on Aging, Intramural Research Program, Clinical Research Core, NIH, Baltimore, United States
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States
| | - Ann Z Moore
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
| | - Angelique Biancotto
- Precision Immunology, Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, United States
| | | | | | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
| |
Collapse
|
10
|
Positive association between PTN polymorphisms and schizophrenia in Northeast Chinese Han population. Psychiatr Genet 2020; 30:141-149. [PMID: 32868733 DOI: 10.1097/ypg.0000000000000262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a severely and highly heritable psychotic disorder, schizophrenia has become a serious public health problem in modern society. Pleiotrophin (PTN) is a secreted cell cytokine associated with the extracellular matrix and acts as a growth factor. PTN is mainly expressed in neuroectodermal and mesodermal tissues, indicating its effect in neuron migration and epithelium-mesenchyme interactions. Whereas PTN is associated with some neurodegenerative diseases and has modulating effects on them. In this study, we aimed to investigate the association between PTN polymorphisms and schizophrenia in an independent case-control sample-set including 738 schizophrenia patients and 1085 healthy controls. Of the 13 selected single nucleotide polymorphisms (SNPs), five showed significant differences in allele or/and genotype frequencies between patients and controls: rs3959914 (genotype: χ = 11.5217, P = 0.0032); rs11765480 (genotype: χ = 10.6620, P = 0.0049); rs1473355 (genotype: χ = 8.3902, P = 0.0151); rs322246 (allele: χ = 5.5954, P = 0.0180); rs322240 (genotype: χ = 8.8429, P = 0.0121; allele: χ = 8.7802, P = 0.0031). The haplotype analysis of the selected SNPs showed different haplotype frequencies for one block (rs322240, rs322246) between cases and controls (global: χ = 9.0290, P = 0.0110; A-G: χ = 8.985, P = 0.0027; C-A: χ = 5.814, P = 0.0159). Our present results indicate PTN as a susceptibility gene for schizophrenia.
Collapse
|
11
|
Wang T, Ye X, Bian W, Chen Z, Du J, Li M, Zhou P, Cui H, Ding YQ, Qi S, Liao M, Sun C. Allopregnanolone Modulates GABAAR-Dependent CaMKIIδ3 and BDNF to Protect SH-SY5Y Cells Against 6-OHDA-Induced Damage. Front Cell Neurosci 2020; 13:569. [PMID: 31998078 PMCID: PMC6970471 DOI: 10.3389/fncel.2019.00569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Allopregnanolone (APα), as a functional neurosteroid, exhibits the neuroprotective effect on neurodegenerative diseases such as Parkinson’s disease (PD) through γ-aminobutyric acid A receptor (GABAAR), but it has not been completely understood about its molecular mechanisms. In order to investigate the neuroprotective effect of APα, as well as to clarify its possible molecular mechanisms, SH-SY5Y neuronal cell lines were incubated with 6-hydroxydopamine (6-OHDA), which has been widely used as an in vitro model for PD, along with APα alone or in combination with GABAAR antagonist (bicuculline, Bic), intracellular Ca2+ chelator (EGTA) and voltage-gated L-type Ca2+ channel blocker (Nifedipine). The viability, proliferation, and differentiation of SH-SY5Y cells, the expression levels of calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase II δ3 (CaMKIIδ3), cyclin-dependent kinase-1 (CDK1) and brain-derived neurotrophic factor (BDNF), as well as the interaction between CaMKIIδ3 and CDK1 or BDNF, were detected by morphological and molecular biological methodology. Our results found that the cell viability and the number of tyrosine hydroxylase (TH), bromodeoxyuridine (BrdU) and TH/BrdU-positive cells in 6-OHDA-treated SH-SY5Y cells were significantly decreased with the concomitant reduction in the expression levels of aforementioned proteins, which were ameliorated following APα administration. In addition, Bic could further increase the number of TH or BrdU-positive cells as well as the expression levels of aforementioned proteins except for TH/BrdU-double positive cells, while EGTA and Nifedipine could attenuate the expression levels of CaM, CaMKIIδ3 and BDNF. Moreover, there existed a direct interaction between CaMKIIδ3 and CDK1 or BDNF. As a result, APα-induced an increase in the number of TH-positive SH-SY5Y cells might be mediated through GABAAR via Ca2+/CaM/CaMKIIδ3/BDNF (CDK1) signaling pathway, which would ultimately facilitate to elucidate PD pathogenesis and hold a promise as an alternative therapeutic target for PD.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichi Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juanjuan Du
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huairui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuangshuang Qi
- Department of Pharmacy, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyou Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|