1
|
Zamorano AM, De Martino E, Insausti-Delgado A, Vuust P, Flor H, Graven-Nielsen T. Impact of Chronic Pain on Use-Dependent Plasticity: Corticomotor Excitability and Motor Representation in Musicians With and Without Pain. Brain Topogr 2024; 37:874-880. [PMID: 38236487 PMCID: PMC11393196 DOI: 10.1007/s10548-023-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Long-term musical training induces adaptive changes in the functional representation of the motor cortex. It is unknown if the maladaptive plasticity associated with chronic pain, frequently affecting trained musicians, may alter the use-dependent plasticity in the motor cortex. This study investigated the interaction between adaptive and maladaptive plasticity in the motor pathways, in particular how chronic pain influences long-term use-dependent plasticity. Using transcranial magnetic stimulation (TMS), corticospinal excitability was assessed by measuring the amplitude of the motor-evoked potential (MEP), area of the motor map, volume, and center of gravity of the first dorsal interosseous muscle in 19 pain-free musicians, 17 upper limb/neck pain chronic pain musicians, and 19 pain-free non-musicians as controls. Motor map volume and MEP amplitude were smaller for both pain-free and chronic pain musicians compared to pain-free controls (P < 0.011). No significant differences were found between musicians with and without chronic pain. These findings confirm that long-term musical training can lead to focalized and specialized functional organization of the primary motor cortex. Moreover, the adaptive use-dependent plasticity acquired through fine-motor skill acquisition is not significantly compromised by the maladaptive plasticity typically associated with chronic pain, highlighting the potential of long-term sensorimotor training to counteract the effects of chronic pain in the motor system.
Collapse
Affiliation(s)
- Anna M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249 | Aalborg, 9260, Gistrup, Denmark.
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249 | Aalborg, 9260, Gistrup, Denmark
| | | | - Peter Vuust
- Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Herta Flor
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249 | Aalborg, 9260, Gistrup, Denmark
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249 | Aalborg, 9260, Gistrup, Denmark
| |
Collapse
|
2
|
Zolezzi DM, Larsen DB, Zamorano AM, Graven-Nielsen T. Facilitation of Early and Middle Latency SEP after tDCS of M1: No Evidence of Primary Somatosensory Homeostatic Plasticity. Neuroscience 2024; 551:143-152. [PMID: 38735429 DOI: 10.1016/j.neuroscience.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Homeostatic plasticity is a mechanism that stabilizes cortical excitability within a physiological range. Most homeostatic plasticity protocols have primed and tested the homeostatic response of the primary motor cortex (M1). This study investigated if a homeostatic response could be recorded from the primary sensory cortex (S1) after inducing homeostatic plasticity in M1. In 31 healthy participants, homeostatic plasticity was induced over M1 with a priming and testing block of transcranial direct current stimulation (tDCS) in two different sessions (anodal and cathodal). S1 excitability was assessed by early (N20, P25) and middle-latency (N33-P45) somatosensory evoked potentials (SEP) extracted from 4 electrodes (CP5, CP3, P5, P3). Baseline and post-measures (post-priming, 0-min, 10-min, and 20-min after homeostatic induction) were taken. Anodal M1 homeostatic plasticity induction significantly facilitated the N20-P25, P45 peak, and N33-P45 early SEP components up to 20-min post-induction, without any indication of a homeostatic response (i.e., reduced SEP). Cathodal homeostatic induction did not induce any significant effect on early or middle latency SEPs. M1 homeostatic plasticity induction by anodal stimulation protocol to the primary motor cortex did not induce a homeostatic response in SEPs.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis B Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Anna M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Phylactou P, Pham TNM, Narskhani N, Diya N, Seminowicz DA, Schabrun SM. Phosphene and motor transcranial magnetic stimulation thresholds are correlated: A meta-analytic investigation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111020. [PMID: 38692474 DOI: 10.1016/j.pnpbp.2024.111020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Transcranial magnetic stimulation (TMS) is commonly delivered at an intensity defined by the resting motor threshold (rMT), which is thought to represent cortical excitability, even if the TMS target area falls outside of the motor cortex. This approach rests on the assumption that cortical excitability, as measured through the motor cortex, represents a 'global' measure of excitability. Another common approach to measure cortical excitability relies on the phosphene threshold (PT), measured through the visual cortex of the brain. However, it remains unclear whether either estimate can serve as a singular measure to infer cortical excitability across different brain regions. If PT and rMT can indeed be used to infer cortical excitability across brain regions, they should be correlated. To test this, we systematically identified previous studies that measured PT and rMT to calculate an overall correlation between the two estimates. Our results, based on 16 effect sizes from eight studies, indicated that PT and rMT are correlated (ρ = 0.4), and thus one measure could potentially serve as a measure to infer cortical excitability across brain regions. Three exploratory meta-analyses revealed that the strength of the correlation is affected by different methodologies, and that PT intensities are higher than rMT. Evidence for a PT-rMT correlation remained robust across all analyses. Further research is necessary for an in-depth understanding of how cortical excitability is reflected through TMS.
Collapse
Affiliation(s)
- P Phylactou
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada; The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada.
| | - T N M Pham
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| | - N Narskhani
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| | - N Diya
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| | - D A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - S M Schabrun
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada; The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON, Canada
| |
Collapse
|
4
|
Herrero Babiloni A, Provost C, Charlebois-Plante C, De Koninck BP, Apinis-Deshaies A, Lavigne GJ, Martel MO, De Beaumont L. One session of repetitive transcranial magnetic stimulation induces mild and transient analgesic effects among female individuals with painful temporomandibular disorders. J Oral Rehabil 2024; 51:827-839. [PMID: 38225806 DOI: 10.1111/joor.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
OBJECTIVE Temporomandibular disorders (TMD) are characterised by chronic pain and dysfunction in the jaw joint and masticatory muscles. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential non-invasive treatment for chronic pain; however, its effectiveness in individuals with TMD has not been thoroughly investigated. This study aimed to evaluate the immediate and sustained (over seven consecutive days) effects of a single session of active rTMS compared to sham stimulation on pain intensity and pain unpleasantness in individuals with TMD. METHODS A randomised, double-blind, sham-controlled trial enrolled 41 female participants with chronic TMD. Pain intensity and pain unpleasantness were assessed immediately pre- and post-intervention, as well as twice daily for 21 days using electronic diaries. Secondary outcomes included pain interference, sleep quality, positive and negative affect and pain catastrophizing. Adverse effects were monitored. Repeated measures ANOVA and multilevel modelling regression analyses were employed for data analysis. RESULT Active rTMS demonstrated a significant immediate mild reduction in pain intensity and pain unpleasantness compared to sham stimulation. However, these effects were not sustained over the 7-day post-intervention period. No significant differences were observed between interventions for pain interference, sleep quality and negative affect. A minority of participants reported minor and transient side effects, including headaches and fatigue. CONCLUSION A single session of active rTMS was safe and led to immediate mild analgesic effects in individuals with TMD compared to sham stimulation. However, no significant differences were observed between interventions over the 7-day post-intervention period. Based on this study, rTMS stimulation appears to be a promising safe approach to be tested in TMD patients with longer stimulation protocols.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Catherine Provost
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Camille Charlebois-Plante
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Beatrice P De Koninck
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Amelie Apinis-Deshaies
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Gilles J Lavigne
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Marc O Martel
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sacre-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Zolezzi DM, Larsen DB, McPhee M, Graven-Nielsen T. Effects of pain on cortical homeostatic plasticity in humans: a systematic review. Pain Rep 2024; 9:e1141. [PMID: 38444774 PMCID: PMC10914232 DOI: 10.1097/pr9.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 03/07/2024] Open
Abstract
Homeostatic plasticity (HP) is a negative feedback mechanism that prevents excessive facilitation or depression of cortical excitability (CE). Cortical HP responses in humans have been investigated by using 2 blocks of noninvasive brain stimulation with a no-stimulation block in between. A healthy HP response is characterized by reduced CE after 2 excitatory stimulation blocks and increased CE when using inhibitory stimulation. Conversely, impaired HP responses have been demonstrated in experimental and chronic pain conditions. Therefore, this systematic review aimed to provide an overview of the effect of pain on cortical HP in humans. Scopus, Embase, and PubMed were searched from inception until November 20, 2023. The included studies (1) compared experimental or clinical pain conditions with healthy controls, (2) induced HP using 2 blocks of stimulation with a no-stimulation interval, and (3) evaluated CE measures such as motor-evoked potentials. Four studies were included, consisting of 5 experiments and 146 participants, of whom 63 were patients with chronic pain and 48 were subjected to an experimental pain model. This systematic review found support for an HP impairment in pain compared with that in pain-free states, reflected by a lack of CE reduction after excitatory-excitatory HP induction over the primary motor cortex. Inhibitory-inhibitory HP induction did not produce a consistent HP response across studies, independent of pain or pain-free states. Standardization of HP induction protocols and outcome calculations is needed to ensure reproducibility and study comparison. Future HP studies may consider investigating sensory domains including nociception, which would further our understanding of abnormal HP regulation in pain conditions.
Collapse
Affiliation(s)
- Daniela M. Zolezzi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis B. Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Megan McPhee
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Wittkopf PG, Boye Larsen D, Gregoret L, Graven-Nielsen T. Disrupted Cortical Homeostatic Plasticity Due to Prolonged Capsaicin-induced Pain. Neuroscience 2023; 533:1-9. [PMID: 37774909 DOI: 10.1016/j.neuroscience.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Homeostatic plasticity (HP) regulates cortical excitability (CE) stability but is disrupted in persistent pain conditions. This study investigated how prolonged experimental pain affects HP and if pain relief modulates disrupted HP. Twenty-four healthy participants were randomised into a PainRelief or NoPainRelief group and attended four sessions; two sessions on consecutive days, separated by two weeks. Transcranial magnetic stimulation motor-evoked potentials reflecting CE and quantitative sensory testing (QST) measures were recorded. A capsaicin (pain condition) or placebo (control condition) patch was applied to the hand. HP was induced by cathodal-cathodal transcranial direct current stimulation (HP1) with CE assessment before and after. The PainRelief group had ice applied to the patch, while the NoPainRelief group waited for five minutes; subsequently another HP induction (HP2) and CE assessment were performed. After 24 h with the patch on, HP induction (HP3), QST, and CE recordings were repeated. Capsaicin reduced CE and the pain condition showed disrupted homeostatic responses at all time points (HP1: showed CE inhibition instead of facilitation; HP2 & HP3: lack of CE facilitation). Conversely, homeostatic responses were induced at all time points for the placebo condition. Capsaicin pain disrupts HP which is not restored by ice-induced pain relief. Future research may explore the prevention of HP disruption by targeting capsaicin-induced nociception but not pain perception.
Collapse
Affiliation(s)
- Priscilla Geraldine Wittkopf
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Dennis Boye Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Luisina Gregoret
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark.
| |
Collapse
|
7
|
Seymour B, Crook RJ, Chen ZS. Post-injury pain and behaviour: a control theory perspective. Nat Rev Neurosci 2023; 24:378-392. [PMID: 37165018 PMCID: PMC10465160 DOI: 10.1038/s41583-023-00699-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Injuries of various types occur commonly in the lives of humans and other animals and lead to a pattern of persistent pain and recuperative behaviour that allows safe and effective recovery. In this Perspective, we propose a control-theoretic framework to explain the adaptive processes in the brain that drive physiological post-injury behaviour. We set out an evolutionary and ethological view on how animals respond to injury, illustrating how the behavioural state associated with persistent pain and recuperation may be just as important as phasic pain in ensuring survival. Adopting a normative approach, we suggest that the brain implements a continuous optimal inference of the current state of injury from diverse sensory and physiological signals. This drives the various effector control mechanisms of behavioural homeostasis, which span the modulation of ongoing motivation and perception to drive rest and hyper-protective behaviours. However, an inherent problem with this is that these protective behaviours may partially obscure information about whether injury has resolved. Such information restriction may seed a tendency to aberrantly or persistently infer injury, and may thus promote the transition to pathological chronic pain states.
Collapse
Affiliation(s)
- Ben Seymour
- Institute for Biomedical Engineering, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - Zhe Sage Chen
- Departments of Psychiatry, Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
8
|
Maguire AD, Friedman TN, Villarreal Andrade DN, Haq F, Dunn J, Pfeifle K, Tenorio G, Buro K, Plemel JR, Kerr BJ. Sex differences in the inflammatory response of the mouse DRG and its connection to pain in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:20995. [PMID: 36470947 PMCID: PMC9722825 DOI: 10.1038/s41598-022-25295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with notable sex differences. Women are not only more likely to develop MS but are also more likely than men to experience neuropathic pain in the disease. It has been postulated that neuropathic pain in MS can originate in the peripheral nervous system at the level of the dorsal root ganglia (DRG), which houses primary pain sensing neurons (nociceptors). These nociceptors become hyperexcitable in response to inflammation, leading to peripheral sensitization and eventually central sensitization, which maintains pain long-term. The mouse model experimental autoimmune encephalomyelitis (EAE) is a good model for human MS as it replicates classic MS symptoms including pain. Using EAE mice as well as naïve primary mouse DRG neurons cultured in vitro, we sought to characterize sex differences, specifically in peripheral sensory neurons. We found sex differences in the inflammatory profile of the EAE DRG, and in the TNFα downstream signaling pathways activated intracellularly in cultured nociceptors. We also found increased cell death with TNFα treatment. Given that TNFα signaling has been shown to initiate intrinsic apoptosis through mitochondrial disruption, this led us to investigate sex differences in the mitochondria's response to TNFα. Our results demonstrate that male sensory neurons are more sensitive to mitochondrial stress, making them prone to neuronal injury. In contrast, female sensory neurons appear to be more resistant to mitochondrial stress and exhibit an inflammatory and regenerative phenotype that may underlie greater nociceptor hyperexcitability and pain. Understanding these sex differences at the level of the primary sensory neuron is an important first step in our eventual goal of developing sex-specific treatments to halt pain development in the periphery before central sensitization is established.
Collapse
Affiliation(s)
- Aislinn D. Maguire
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Timothy N. Friedman
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Dania N. Villarreal Andrade
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Fajr Haq
- grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| | - Jacob Dunn
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Keiana Pfeifle
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Gustavo Tenorio
- grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| | - Karen Buro
- grid.418296.00000 0004 0398 5853Department of Mathematics and Statistics, MacEwan University, Edmonton, AB T5J 2P2 Canada
| | - Jason R. Plemel
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Bradley J. Kerr
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XDepartment of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7 Canada ,grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| |
Collapse
|
9
|
Mechanisms and manifestations in musculoskeletal pain: from experimental to clinical pain settings. Pain 2022; 163:S29-S45. [PMID: 35984370 DOI: 10.1097/j.pain.0000000000002690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
|