1
|
Schulze M, Coghill D, Lux S, Philipsen A, Silk T. Assessing Brain Iron and Its Relationship to Cognition and Comorbidity in Children With Attention-Deficit/Hyperactivity Disorder With Quantitative Susceptibility Mapping. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00250-7. [PMID: 39218036 DOI: 10.1016/j.bpsc.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping is a neuroimaging technique that detects local changes in magnetic susceptibility induced by brain iron. Brain iron and the dopaminergic system are linked because iron is an important cofactor for dopamine synthesis. Attention-deficit/hyperactivity disorder (ADHD) is associated with dysregulation of dopaminergic transmission. Therefore, we applied quantitative susceptibility mapping on subcortical structures to study potential alterations in brain iron and its impact on cognition and mental health in children with ADHD. METHODS Quantitative susceptibility mapping data (3T) of 111 participants (nADHD = 58, mean [SD] age = 13.2 [0.63] years; nControl = 53, mean [SD] age = 13.2 [0.51] years) were analyzed. Subcortical regional brain iron values were extracted. Analysis of variance was used to examine group differences for each region of interest. For dimensional approaches, Pearson correlation analysis was performed across the cohort to examine the association of brain iron with symptoms, mental health, and cognition. RESULTS No significant differences were found in iron susceptibility between children with ADHD and control children, between children with persistent ADHD and those with remitted ADHD, or between medicated and medication-naïve children. An unexpected finding was that children with an internalizing disorder had significantly higher iron susceptibility, but the result did not survive multiple comparison correction. Higher brain iron was associated with sustained attention, but not inhibition, IQ, or working memory. CONCLUSIONS This is the first study to address brain iron susceptibility and its association with comorbidities and cognition in ADHD. Alterations in brain iron may not fully account for a diagnosis of ADHD but may be an indicator of internalizing problems in children. Alterations in brain iron content in children were linked to detrimental sustained attention and may represent developmental variation in cognition.
Collapse
Affiliation(s)
- Marcel Schulze
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - David Coghill
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Department of Mental Health, The Royal Children's Hospital, Parkville Victoria, Australia; Neurodevelopment and Disability Research, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tim Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Morandini HAE, Watson PA, Barbaro P, Rao P. Brain iron concentration in childhood ADHD: A systematic review of neuroimaging studies. J Psychiatr Res 2024; 173:200-209. [PMID: 38547742 DOI: 10.1016/j.jpsychires.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.
Collapse
Affiliation(s)
- Hugo A E Morandini
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia.
| | - Prue A Watson
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Parma Barbaro
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Pradeep Rao
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia; Telethon Kids Institute, Perth, Australia
| |
Collapse
|
3
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. Environ Health 2024; 23:27. [PMID: 38486233 PMCID: PMC10938747 DOI: 10.1186/s12940-024-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Patrick J Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Agnieszka Mlodnicka
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Julie B Schweitzer
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
| |
Collapse
|
4
|
MacDonald HJ, Ruitenberg MFL. Dopamine system involvement in impulse control. Exp Brain Res 2024:10.1007/s00221-023-06775-7. [PMID: 38260991 DOI: 10.1007/s00221-023-06775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Hayley J MacDonald
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | - Marit F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
5
|
Rosch KS, Batschelett MA, Crocetti D, Mostofsky SH, Seymour KE. Sex differences in atypical fronto-subcortical structural connectivity among children with attention-deficit/hyperactivity disorder: Associations with delay discounting. Behav Brain Res 2023; 452:114525. [PMID: 37271314 PMCID: PMC10527538 DOI: 10.1016/j.bbr.2023.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Atypical fronto-subcortical neural circuitry has been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD), including connections between prefrontal cortical regions involved in top-down cognitive control and subcortical limbic structures (striatum and amygdala) involved in bottom-up reward and emotional processing. The integrity of fronto-subcortical connections may also relate to interindividual variability in delay discounting, or a preference for smaller, immediate over larger, delayed rewards, which is associated with ADHD, with recent evidence of ADHD-related sex differences. METHODS We applied diffusion tensor imaging to compare the integrity of the white matter connections within fronto-subcortical tracts among 187 8-12 year-old children either with ADHD ((n = 106; 29 girls) or typically developing (TD) controls ((n = 81; 28 girls). Analyses focused on diagnostic group differences in fractional anisotropy (FA) within fronto-subcortical circuitry implicated in delay discounting, connecting subregions of the striatum (dorsal executive and ventral limbic areas) and amygdala with prefrontal regions of interest (dorsolateral [dlPFC], orbitofrontal [OFC] and anterior cingulate cortex [ACC]), and associations with two behavioral assessments of delay discounting. RESULTS Children with ADHD showed reduced FA in tracts connecting OFC with ventral striatum, regardless of sex, whereas reduced FA in the OFC-amygdala and ventral ACC-amygdala tracts were specific to boys with ADHD. Across diagnostic groups and sex, reduced FA in the dorsal ACC-executive striatum tract correlated with greater game time delay discounting. CONCLUSIONS These results suggest a potential neurobiological substrate of heightened delay discounting in children with ADHD and support the need for additional studies including larger sample sizes of girls with ADHD to further elucidate ADHD-related sex differences in these relationships.
Collapse
Affiliation(s)
- Keri S Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Neuropsychology Department, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, USA.
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, USA; Department of Neurology, Johns Hopkins University, USA
| | - Karen E Seymour
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, USA; Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|