1
|
Murovec B, Berti S, Yahya S, Spaniol J, Keshavarz B. Early cortical processing of coherent vs. non-coherent motion stimuli in younger and older adults: An event-related potential (ERP) study investigating visually induced vection. Neuropsychologia 2025; 212:109140. [PMID: 40209881 DOI: 10.1016/j.neuropsychologia.2025.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The neurophysiological basis of vection (i.e., the illusion of self-motion) is not well understood. Preliminary evidence suggests that neural predictors of vection can be identified through event-related potentials (ERPs) and that these markers may correlate with vection intensity. The current study examined age-related differences in neurocortical activity during the early stages of sensory processing of vection-inducing stimuli. Twenty-two younger (age range: 20-35 years) and 25 older adults (age range: 65-83) observed optokinetic stimuli in two blocks, a short (∼3s) presentation block and a long (35s) presentation block. In both types of blocks, the optokinetic stimuli varied in motion coherence (coherent vs. non-coherent motion). During the short presentation block, EEG was used to measure neural activity in the form of ERPs time-locked to the onset of visual motion, whereas subjective ratings of vection intensity, duration, and onset latency were collected during the long presentation block. Vection was significantly stronger following coherent vs. non-coherent motion for both age groups. ERP analyses revealed differences between coherent and non-coherent motion at parietal-occipital electrodes around 100-150 ms (P1) and 150-230 ms (P2), with greater area under the curve (AUC) during non-coherent vs. coherent motion. Neither vection ratings nor ERPs showed significant age differences for coherent visual motion; however, age differences in ERPs were observed during the processing of non-coherent visual motion. These findings indicate that the subjective experience of vection and the neurophysiological mechanisms underlying visual processing preceding vection remain relatively stable with age. However, they also reveal age-related differences in the processing of non-coherent motion.
Collapse
Affiliation(s)
- Brandy Murovec
- Toronto Metropolitan University, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - Stefan Berti
- Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susan Yahya
- Toronto Metropolitan University, Toronto, Canada
| | | | - Behrang Keshavarz
- Toronto Metropolitan University, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada.
| |
Collapse
|
2
|
EEG analysis of the visual motion activated vection network in left- and right-handers. Sci Rep 2022; 12:19566. [PMID: 36379961 PMCID: PMC9666650 DOI: 10.1038/s41598-022-21824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Visually-induced self-motion perception (vection) relies on interaction of the visual and vestibular systems. Neuroimaging studies have identified a lateralization of the thalamo-cortical multisensory vestibular network, with left-handers exhibiting a dominance of the left hemisphere and right-handers exhibiting a dominance of the right hemisphere. Using electroencephalography (EEG), we compare the early processing of a vection-consistent visual motion stimulus against a vection-inconsistent stimulus, to investigate the temporal activation of the vection network by visual motion stimulation and the lateralization of these processes in left- versus right-handers. In both groups, vection-consistent stimulation evoked attenuated central event-related potentials (ERPs) in an early (160-220 ms) and a late (260-300 ms) time window. Differences in estimated source activity were found across visual, sensorimotor, and multisensory vestibular cortex in the early window, and were observed primarily in the posterior cingulate, retrosplenial cortex, and precuneus in the late window. Group comparisons revealed a larger ERP condition difference (i.e. vection-consistent stimulation minus vection-inconsistent stimulation) in left-handers, which was accompanied by group differences in the cingulate sulcus visual (CSv) area. Together, these results suggest that handedness may influence ERP responses and activity in area CSv during vection-consistent and vection-inconsistent visual motion stimulation.
Collapse
|
3
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
4
|
Rina A, Papanikolaou A, Zong X, Papageorgiou DT, Keliris GA, Smirnakis SM. Visual Motion Coherence Responses in Human Visual Cortex. Front Neurosci 2022; 16:719250. [PMID: 35310109 PMCID: PMC8924467 DOI: 10.3389/fnins.2022.719250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/17/2022] [Indexed: 01/24/2023] Open
Abstract
Random dot kinematograms (RDKs) have recently been used to train subjects with cortical scotomas to perform direction of motion discrimination, partially restoring visual motion perception. To study the recovery of visual perception, it is important to understand how visual areas in normal subjects and subjects with cortical scotomas respond to RDK stimuli. Studies in normal subjects have shown that blood oxygen level-dependent (BOLD) responses in human area hV5/MT+ increase monotonically with coherence, in general agreement with electrophysiology studies in primates. However, RDK responses in prior studies were obtained while the subject was performing fixation, not a motion discrimination condition. Furthermore, BOLD responses were gauged against a baseline condition of uniform illumination or static dots, potentially decreasing the specificity of responses for the spatial integration of local motion signals (motion coherence). Here, we revisit this question starting from a baseline RDK condition of no coherence, thereby isolating the component of BOLD response due specifically to the spatial integration of local motion signals. In agreement with prior studies, we found that responses in the area hV5/MT+ of healthy subjects were monotonically increasing when subjects fixated without performing a motion discrimination task. In contrast, when subjects were performing an RDK direction of motion discrimination task, responses in the area hV5/MT+ remained flat, changing minimally, if at all, as a function of motion coherence. A similar pattern of responses was seen in the area hV5/MT+ of subjects with dense cortical scotomas performing direction of motion discrimination for RDKs presented inside the scotoma. Passive RDK presentation within the scotoma elicited no significant hV5/MT+ responses. These observations shed further light on how visual cortex responses behave as a function of motion coherence, helping to prepare the ground for future studies using these methods to study visual system recovery after injury.
Collapse
Affiliation(s)
- Andriani Rina
- Department of Neurology Brigham and Women’s Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, United States
- Visual and Cognitive Neuroscience, Faculty of Science, University of Tübingen, Tuebingen, Germany
| | - Amalia Papanikolaou
- Department of Experimental Psychology, Institute of Behavioral Neuroscience, University College London, London, United Kingdom
| | - Xiaopeng Zong
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Dorina T. Papageorgiou
- Department of Physical Medicine and Rehabilitation, Neuroscience, Psychiatry Baylor College of Medicine, Houston, TX, United States
- Department of Electrical and Computer Engineering, Neuroengineering Research Initiative and Applied Physics, Rice University, Houston, TX, United States
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- Max-Planck Institute for Biological Cybernetics, Physiology of Cognitive Processes, Tübingen, Germany
| | - Stelios M. Smirnakis
- Department of Neurology Brigham and Women’s Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI). Neuroimage Clin 2022; 32:102821. [PMID: 34628303 PMCID: PMC8501506 DOI: 10.1016/j.nicl.2021.102821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
Cerebral visual impairment (CVI) is associated with impaired global motion processing. Mean motion coherence thresholds was higher in individuals with CVI. fMRI responses in area hMT+ showed an aberrant response profile in CVI. White matter tract reconstruction revealed cortico-cortical dysmyelination in CVI.
Cerebral visual impairment (CVI) is associated with a wide range of visual perceptual deficits including global motion processing. However, the underlying neurophysiological basis for these impairments remain poorly understood. We investigated global motion processing abilities in individuals with CVI compared to neurotypical controls using a combined behavioral and multi-modal neuroimaging approach. We found that CVI participants had a significantly higher mean motion coherence threshold (determined using a random dot kinematogram pattern simulating optic flow motion) compared to controls. Using functional magnetic resonance imaging (fMRI), we investigated activation response profiles in functionally defined early (i.e. primary visual cortex; area V1) and higher order (i.e. middle temporal cortex; area hMT+) stages of motion processing. In area V1, responses to increasing motion coherence were similar in both groups. However, in the CVI group, activation in area hMT+ was significantly reduced compared to controls, and consistent with a surround facilitation (rather than suppression) response profile. White matter tract reconstruction obtained from high angular resolution diffusion imaging (HARDI) revealed evidence of increased mean, axial, and radial diffusivities within cortico-cortical (i.e. V1-hMT+), but not thalamo-hMT+ connections. Overall, our results suggest that global motion processing deficits in CVI may be associated with impaired signal integration and segregation mechanisms, as well as white matter integrity at the level of area hMT+.
Collapse
|
6
|
Pitzalis S, Hadj-Bouziane F, Dal Bò G, Guedj C, Strappini F, Meunier M, Farnè A, Fattori P, Galletti C. Optic flow selectivity in the macaque parieto-occipital sulcus. Brain Struct Funct 2021; 226:2911-2930. [PMID: 34043075 DOI: 10.1007/s00429-021-02293-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330-343, 2017, but see Fan et al. J Neurosci. 35:16303-16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411-424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139-141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy. .,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Giulia Dal Bò
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carole Guedj
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | | | - Martine Meunier
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Caron-Guyon J, Corbo J, Zennou-Azogui Y, Xerri C, Kavounoudias A, Catz N. Neuronal Encoding of Multisensory Motion Features in the Rat Associative Parietal Cortex. Cereb Cortex 2020; 30:5372-5386. [PMID: 32494803 DOI: 10.1093/cercor/bhaa118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Motion perception is facilitated by the interplay of various sensory channels. In rodents, the cortical areas involved in multisensory motion coding remain to be identified. Using voltage-sensitive-dye imaging, we revealed a visuo-tactile convergent region that anatomically corresponds to the associative parietal cortex (APC). Single unit responses to moving visual gratings or whiskers deflections revealed a specific coding of motion characteristics strikingly found in both sensory modalities. The heteromodality of this region was further supported by a large proportion of bimodal neurons and by a classification procedure revealing that APC carries information about motion features, sensory origin and multisensory direction-congruency. Altogether, the results point to a central role of APC in multisensory integration for motion perception.
Collapse
Affiliation(s)
| | - Julien Corbo
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France.,Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ 07102, USA
| | | | - Christian Xerri
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France
| | - Anne Kavounoudias
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France
| | - Nicolas Catz
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France
| |
Collapse
|
8
|
Berti S, Keshavarz B. Neuropsychological Approaches to Visually-Induced Vection: an Overview and Evaluation of Neuroimaging and Neurophysiological Studies. Multisens Res 2020; 34:153-186. [DOI: 10.1163/22134808-bja10035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
Abstract
Moving visual stimuli can elicit the sensation of self-motion in stationary observers, a phenomenon commonly referred to as vection. Despite the long history of vection research, the neuro-cognitive processes underlying vection have only recently gained increasing attention. Various neuropsychological techniques such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have been used to investigate the temporal and spatial characteristics of the neuro-cognitive processing during vection in healthy participants. These neuropsychological studies allow for the identification of different neuro-cognitive correlates of vection, which (a) will help to unravel the neural basis of vection and (b) offer opportunities for applying vection as a tool in other research areas. The purpose of the current review is to evaluate these studies in order to show the advances in neuropsychological vection research and the challenges that lie ahead. The overview of the literature will also demonstrate the large methodological variability within this research domain, limiting the integration of results. Next, we will summarize methodological considerations and suggest helpful recommendations for future vection research, which may help to enhance the comparability across neuropsychological vection studies.
Collapse
Affiliation(s)
- Stefan Berti
- 1Institute of Psychology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Behrang Keshavarz
- 2Kite-Toronto Rehabilitation Institute, University Health Network (UHN), 550 University Ave., Toronto, ON, M5G 2A2, Canada
- 3Department of Psychology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
9
|
McAssey M, Dowsett J, Kirsch V, Brandt T, Dieterich M. Different EEG brain activity in right and left handers during visually induced self-motion perception. J Neurol 2020; 267:79-90. [PMID: 32462347 PMCID: PMC7718188 DOI: 10.1007/s00415-020-09915-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023]
Abstract
Visually induced self-motion perception (vection) relies on visual-vestibular interaction. Imaging studies using vestibular stimulation have revealed a vestibular thalamo-cortical dominance in the right hemisphere in right handers and the left hemisphere in left handers. We investigated if the behavioural characteristics and neural correlates of vection differ between healthy left and right-handed individuals. 64-channel EEG was recorded while 25 right handers and 25 left handers were exposed to vection-compatible roll motion (coherent motion) and a matched, control condition (incoherent motion). Behavioural characteristics, i.e. vection presence, onset latency, duration and subjective strength, were also recorded. The behavioural characteristics of vection did not differ between left and right handers (all p > 0.05). Fast Fourier Transform (FFT) analysis revealed significant decreases in alpha power during vection-compatible roll motion (p < 0.05). The topography of this decrease was handedness-dependent, with left handers showing a left lateralized centro-parietal decrease and right handers showing a bilateral midline centro-parietal decrease. Further time-frequency analysis, time locked to vection onset, revealed a comparable decrease in alpha power around vection onset and a relative increase in alpha power during ongoing vection, for left and right handers. No effects were observed in theta and beta bands. Left and right-handed individuals show vection-related alpha power decreases at different topographical regions, possibly related to the influence of handedness-dependent vestibular dominance in the visual-vestibular interaction that facilitates visual self-motion perception. Despite this difference in where vection-related activity is observed, left and right handers demonstrate comparable perception and underlying alpha band changes during vection.
Collapse
Affiliation(s)
- Michaela McAssey
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany.
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
- Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany.
- RTG 2175, Perception in Context and its Neural Basis, Ludwig-Maximilians-Universität, Munich, Germany.
| | - James Dowsett
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Valerie Kirsch
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
- RTG 2175, Perception in Context and its Neural Basis, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
- RTG 2175, Perception in Context and its Neural Basis, Ludwig-Maximilians-Universität, Munich, Germany
- SyNergy, Munich Cluster of Systems Neurology, Munich, Germany
| |
Collapse
|
10
|
Vection induced by low-level motion extracted from complex animation films. Exp Brain Res 2019; 237:3321-3332. [DOI: 10.1007/s00221-019-05674-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
|
11
|
Pitzalis S, Serra C, Sulpizio V, Committeri G, de Pasquale F, Fattori P, Galletti C, Sepe R, Galati G. Neural bases of self- and object-motion in a naturalistic vision. Hum Brain Mapp 2019; 41:1084-1111. [PMID: 31713304 PMCID: PMC7267932 DOI: 10.1002/hbm.24862] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
To plan movements toward objects our brain must recognize whether retinal displacement is due to self-motion and/or to object-motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an event-related functional magnetic resonance imaging experiment, brain mapping techniques, and wide-field stimulation to study the responsivity of motion-sensitive areas to pure and combined self- and object-motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object-motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self-motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object- and self-motion were present. Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object-motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self-movements. We propose that these motion areas might be good candidates for the "flow parsing mechanism," that is the capability to extract object-motion information from retinal motion signals by subtracting out the optic flow components.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgia Committeri
- Laboratory of Neuropsychology and Cognitive Neuroscience, Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio, Chieti, Italy
| | - Francesco de Pasquale
- Laboratory of Neuropsychology and Cognitive Neuroscience, Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio, Chieti, Italy.,Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rosamaria Sepe
- Laboratory of Neuropsychology and Cognitive Neuroscience, Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio, Chieti, Italy
| | - Gaspare Galati
- Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Abstract
In this paper we present a tutorial introduction to two important senses for biological and robotic systems — inertial and visual perception. We discuss the fundamentals of these two sensing modalities from a biological and an engineering perspective. Digital camera chips and micro-machined accelerometers and gyroscopes are now commodities, and when combined with today's available computing can provide robust estimates of self-motion as well 3D scene structure, without external infrastructure. We discuss the complementarity of these sensors, describe some fundamental approaches to fusing their outputs and survey the field.
Collapse
Affiliation(s)
| | - Jorge Lobo
- Institute of Systems and Robotics University of Coimbra, Portugal,
| | - Jorge Dias
- Institute of Systems and Robotics University of Coimbra, Portugal,
| |
Collapse
|
13
|
Wada A, Sakano Y, Ando H. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation. Front Psychol 2016; 7:309. [PMID: 26973588 PMCID: PMC4777731 DOI: 10.3389/fpsyg.2016.00309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept.
Collapse
Affiliation(s)
- Atsushi Wada
- Multisensory Cognition and Computation Laboratory, Universal Communication Research Institute - National Institute of Information and Communications TechnologyKyoto, Japan; Brain Networks and Communication Laboratory, Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan; Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan
| | - Yuichi Sakano
- Multisensory Cognition and Computation Laboratory, Universal Communication Research Institute - National Institute of Information and Communications TechnologyKyoto, Japan; Brain Networks and Communication Laboratory, Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan; Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan
| | - Hiroshi Ando
- Multisensory Cognition and Computation Laboratory, Universal Communication Research Institute - National Institute of Information and Communications TechnologyKyoto, Japan; Brain Networks and Communication Laboratory, Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan; Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan
| |
Collapse
|
14
|
Palmisano S, Allison RS, Schira MM, Barry RJ. Future challenges for vection research: definitions, functional significance, measures, and neural bases. Front Psychol 2015; 6:193. [PMID: 25774143 PMCID: PMC4342884 DOI: 10.3389/fpsyg.2015.00193] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/07/2015] [Indexed: 11/25/2022] Open
Abstract
This paper discusses four major challenges facing modern vection research. Challenge 1 (Defining Vection) outlines the different ways that vection has been defined in the literature and discusses their theoretical and experimental ramifications. The term vection is most often used to refer to visual illusions of self-motion induced in stationary observers (by moving, or simulating the motion of, the surrounding environment). However, vection is increasingly being used to also refer to non-visual illusions of self-motion, visually mediated self-motion perceptions, and even general subjective experiences (i.e., “feelings”) of self-motion. The common thread in all of these definitions is the conscious subjective experience of self-motion. Thus, Challenge 2 (Significance of Vection) tackles the crucial issue of whether such conscious experiences actually serve functional roles during self-motion (e.g., in terms of controlling or guiding the self-motion). After more than 100 years of vection research there has been surprisingly little investigation into its functional significance. Challenge 3 (Vection Measures) discusses the difficulties with existing subjective self-report measures of vection (particularly in the context of contemporary research), and proposes several more objective measures of vection based on recent empirical findings. Finally, Challenge 4 (Neural Basis) reviews the recent neuroimaging literature examining the neural basis of vection and discusses the hurdles still facing these investigations.
Collapse
Affiliation(s)
- Stephen Palmisano
- School of Psychology, University of Wollongong Wollongong, NSW, Australia
| | - Robert S Allison
- Department of Electrical Engineering and Computer Science, York University Toronto, ON, Canada
| | - Mark M Schira
- School of Psychology, University of Wollongong Wollongong, NSW, Australia
| | - Robert J Barry
- School of Psychology, University of Wollongong Wollongong, NSW, Australia
| |
Collapse
|
15
|
Ajina S, Kennard C, Rees G, Bridge H. Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex. ACTA ACUST UNITED AC 2014; 138:164-78. [PMID: 25433915 PMCID: PMC4285193 DOI: 10.1093/brain/awu328] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently known about such alternative inputs to V5/MT+ and how they may drive and influence its activity. Using functional magnetic resonance imaging, the response of human V5/MT+ to increasing the proportion of coherent motion was measured in seven patients with unilateral V1 damage acquired during adulthood, and a group of healthy age-matched controls. When V1 was damaged, the typical V5/MT+ response to increasing coherence was lost. Rather, V5/MT+ in patients showed a negative trend with coherence that was similar to coherence-related activity in V1 of healthy control subjects. This shift to a response-pattern more typical of early visual cortex suggests that in the absence of V1, V5/MT+ activity may be shaped by similar direct subcortical input. This is likely to reflect intact residual pathways rather than a change in connectivity, and has important implications for blindsight function. It also confirms predictions that V1 is critically involved in normal V5/MT+ global motion processing, consistent with a convergent model of V1 input to V5/MT+. Historically, most attempts to model cortical visual responses do not consider the contribution of direct subcortical inputs that may bypass striate cortex, such as input to V5/MT+. We have shown that the signal change driven by these non-striate pathways can be measured, and suggest that models of the intact visual system may benefit from considering their contribution.
Collapse
Affiliation(s)
- Sara Ajina
- 1 FMRIB Centre, University of Oxford, UK 2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Geraint Rees
- 3 Wellcome Trust Centre for Neuroimaging, University College London, UK 4 Institute of Cognitive Neuroscience, University College London, UK
| | - Holly Bridge
- 1 FMRIB Centre, University of Oxford, UK 2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
16
|
Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galletti C, Galati G. Selectivity to translational egomotion in human brain motion areas. PLoS One 2013; 8:e60241. [PMID: 23577096 PMCID: PMC3618224 DOI: 10.1371/journal.pone.0060241] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/23/2013] [Indexed: 11/18/2022] Open
Abstract
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Motor, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pitzalis S, Fattori P, Galletti C. The functional role of the medial motion area V6. Front Behav Neurosci 2013; 6:91. [PMID: 23335889 PMCID: PMC3546310 DOI: 10.3389/fnbeh.2012.00091] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/19/2012] [Indexed: 11/13/2022] Open
Abstract
In macaque, several visual areas are devoted to analyze motion in the visual field, and V6 is one of these areas. In macaque, area V6 occupies the ventral part of the anterior bank of the parieto-occipital sulcus (POs), is retinotopically-organized and contains a point-to-point representation of the retinal surface. V6 is a motion sensitive area that largely represents the peripheral part of the visual field and whose cells are very sensitive to translational motion. Based on the fact that macaque V6 contains many real-motion cells, it has been suggested that V6 is involved in object-motion recognition. Recently, area V6 has been recognized also in the human brain by neuroimaging and electrophysiological methods. Like macaque V6, human V6 is located in the POs, is retinotopically organized, and represents the entire contralateral hemifield up to the far periphery. Human V6, like macaque V6, is a motion area that responds to unidirectional motion. It has a strong preference for coherent motion and a recent combined VEPs/fMRI work has shown that area V6 is even one of the most early stations coding the motion coherence. Human V6 is highly sensitive to flow field and is also able to distinguish between different 3D flow fields being selective to translational egomotion. This suggests that this area processes visual egomotion signals to extract information about the relative distance of objects, likely in order to act on them, or to avoid them. The view that V6 is involved in the estimation of egomotion has been tested also in other recent fMRI studies. Thus, taken together, human and macaque data suggest that V6 is involved in both object and self-motion recognition. Specifically, V6 could be involved in "subtracting out" self-motion signals across the whole visual field and in providing information about moving objects, particularly during self-motion in a complex and dynamically unstable environment.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Education in Sport and Human Movement, University of Rome "Foro Italico" Rome, Italy ; Laboratory of Neuropsychology, Santa Lucia Foundation Rome, Italy
| | | | | |
Collapse
|
18
|
Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME. Altered connectivity of the balance processing network after tongue stimulation in balance-impaired individuals. Brain Connect 2013; 3:87-97. [PMID: 23216162 PMCID: PMC3621359 DOI: 10.1089/brain.2012.0123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p ≤ 1E-5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network.
Collapse
Affiliation(s)
- Joe C Wildenberg
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | |
Collapse
|
19
|
Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F. Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 2012. [PMID: 23186916 DOI: 10.1016/j.neuroimage.2012.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MT+ and V6 are key motion areas of the dorsal visual stream in both macaque and human brains. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to find the electrophysiological correlates of V6 and to define its temporal relationship with the activity observed in MT+. We also determined the spatio-temporal profile of the motion coherency effect on visual evoked potentials (VEPs), and localized its neural generators. We found that area V6 participates in the very early phase of the coherent motion processing and that its electroencephalographic activity is almost simultaneous with that of MT+. We also found a late second activity in V6 that we interpret as a re-entrant feedback from extrastriate visual areas (e.g. area V3A). Three main cortical sources were differently modulated by the motion coherence: while V6 and MT+ showed a preference for the coherent motion, area V3A preferred the random condition. The response timing of these cortical sources indicates that motion signals flow in parallel from the occipital pole to the medial and lateral motion areas V6 and MT+, suggesting the view of a differential functional role.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Dept. of Education for Motor Activity and Sport, University of Roma Foro Italico, Roma, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Hu S, Li CSR. Neural processes of preparatory control for stop signal inhibition. Hum Brain Mapp 2011; 33:2785-96. [PMID: 21976392 DOI: 10.1002/hbm.21399] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/24/2011] [Accepted: 06/09/2011] [Indexed: 11/09/2022] Open
Abstract
This study investigated the preparatory control of motor inhibition and motor execution using a stop signal task (SST) and functional magnetic resonance imaging (fMRI). In the SST, a frequent "go" signal triggered a prepotent response and a less frequent "stop" signal prompted the inhibition of this response. Preparatory control of motor inhibition and execution in the stop signal trials were examined by contrasting brain activation between stop success and stop error trials during the fore-period, in which participants prepared to respond to go or to stop. Results from 91 healthy adults showed greater activation in the right prefrontal cortex and inferior parietal lobule during preparatory motor inhibition. Preparatory motor execution activated bilateral putamen, primary motor cortices, posterior cingulate cortex, ventromedial prefrontal cortex, and superior temporal/intraparietal sulci. Furthermore, the extents of these inhibition and execution activities were inversely correlated across subjects. On the basis of a median split of the stop signal reaction time (SSRT), subjects with short SSRT showed greater activity in the right orbital frontal cortex during preparatory inhibition. These new findings suggest that the go and stop processes interact prior to target presentation in the SST, in accord with recent computational models of stop signal inhibition.
Collapse
Affiliation(s)
- Sien Hu
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA
| | | |
Collapse
|
21
|
Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME. Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation. Brain Imaging Behav 2011; 4:199-211. [PMID: 20614202 DOI: 10.1007/s11682-010-9099-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This pilot study aimed to show that information-free stimulation of the tongue can improve behavioral measures and induce sustained neuromodulation of the balance-processing network in individuals with balance dysfunction. Twelve balance-impaired subjects received one week of cranial nerve non-invasive neuromodulation (CN-NINM). Before and after the week of stimulation, postural sway and fMRI activation were measured to monitor susceptibility to optic flow. Nine normal controls also underwent the postural sway and fMRI tests but did not receive CN-NINM. Results showed that before CN-NINM balance-impaired subjects swayed more than normal controls as expected (p ≤ 0.05), and that overall sway and susceptibility to optic flow decreased after CN-NINM (p ≤ 0.005 & p ≤ 0.05). fMRI showed upregulation of visual sensitivity to optic flow in balance-impaired subjects that decreased after CN-NINM. A region of interest analysis indicated that CN-NINM may induce neuromodulation by increasing activity within the dorsal pons (p ≤ 0.01).
Collapse
Affiliation(s)
- Joseph C Wildenberg
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
22
|
Urakawa T, Inui K, Kakigi R. Effects of stimulus field size and coherence of visual motion on cortical responses in humans: An MEG study. Neurosci Lett 2011; 488:294-8. [DOI: 10.1016/j.neulet.2010.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/27/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022]
|
23
|
Katsuyama N, Usui N, Nose I, Taira M. Perception of object motion in three-dimensional space induced by cast shadows. Neuroimage 2010; 54:485-94. [PMID: 20692350 DOI: 10.1016/j.neuroimage.2010.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 11/16/2022] Open
Abstract
Cast shadows can be salient depth cues in three-dimensional (3D) vision. Using a motion illusion in which a ball is perceived to roll in depth on the bottom or to flow in the front plane depending on the slope of the trajectory of its cast shadow, we investigated cortical mechanisms underlying 3D vision based on cast shadows using fMRI techniques. When modified versions of the original illusion, in which the slope of the shadow trajectory (shadow slope) was changed in 5 steps from the same one as the ball trajectory to the horizontal, were presented to participants, their perceived ball trajectory shifted gradually from rolling on the bottom to floating in the front plane as the change of the shadow slope. This observation suggests that the perception of the ball trajectory in this illusion is strongly affected by the motion of the cast shadow. In the fMRI study, cortical activity during observation of the movies of the illusion was investigated. We found that the bilateral posterior-occipital sulcus (POS) and right ventral precuneus showed activation related to the perception of the ball trajectory induced by the cast shadows in the illusion. Of these areas, it was suggested that the right POS may be involved in the inferring of the ball trajectory by the given spatial relation between the ball and the shadow. Our present results suggest that the posterior portion of the medial parietal cortex may be involved in 3D vision by cast shadows.
Collapse
Affiliation(s)
- Narumi Katsuyama
- Division of Applied System Neuroscience, Nihon University School of Medicine, Itabashi, Tokyo, Japan.
| | | | | | | |
Collapse
|
24
|
Haarmeier T, Kammer T. Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex 2010; 20:2234-43. [PMID: 20064941 DOI: 10.1093/cercor/bhp285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During smooth pursuit eye movements, we do not mistake the shift of the retinal image induced by the visual background for motion of the world around us but instead perceive a stable world. The goal of this study was to search for the neuronal substrates providing perceptual stability. To this end, pursuit eye movements across a background stimulus and perceptual stability were measured in the absence and presence, respectively, of transcranial magnetic stimulation (TMS) applied to 6 different brain regions, that is, primary visual cortex (V1), area MT+/V5, left and right temporoparietal junctions (TPJs), medial parieto-occipital cortex (POC), and the lateral cerebellum (LC). Stimulation of MT+/V5 and the cerebellum induced significant decreases in pursuit gain independent of background presentation, whereas stimulation of TPJ impaired the suppression of the optokinetic reflex induced by background stimulation. In contrast to changes in pursuit, only nonsignificant modifications in perceptual stability were observed. We conclude that MT+/V5, TPJ, and the LC contribute to pursuit eye movements and that TPJ supports the suppression of optokinesis. The lack of significant influences of TMS on perception suggests that motion perception invariance is not based on a localized but rather a highly distributed network featuring parallel processing.
Collapse
Affiliation(s)
- Thomas Haarmeier
- Department of Cognitive Neurology and Department of General Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.
| | | |
Collapse
|
25
|
Fattori P, Pitzalis S, Galletti C. The cortical visual area V6 in macaque and human brains. ACTA ACUST UNITED AC 2009; 103:88-97. [PMID: 19523515 DOI: 10.1016/j.jphysparis.2009.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single cell recording and neuro-anatomical techniques in the monkey have allowed to find a mosaic of visual areas in the temporo-parieto-occipital cortex. Thanks to neuroimaging methods, several of these areas have been mapped also in the human brain and named in humans based on homologies in their visuotopic organization with non-human primate areas. We have recently found a new, retinotopically-organized cortical visual area, that we have called V6. Area V6 was first described in the macaque monkey and then, recently, in the human. In both primates, it is located in the medial parieto-occipital region of the brain. Like the other extrastriate areas, V6 contains a retinotopic map of the entire contralateral hemifield, but unlike other extrastriate areas, V6 lacks an emphasis of the central visual field. In macaque, area V6 receives visual information directly from V1 and from other extrastriate areas of the occipital lobe, and sends visual information to several parietal areas, all belonging to the so called dorsal visual stream. The neurons of macaque V6 are very sensitive to the direction of motion of visual stimuli and act as real-motion detectors. It has been reported that patients with cortical damages which include the cortical region where human V6 is located are unable to recognize the direction of motion of visual stimuli, or to detect the visual motion per se. According to these data, we suggest that V6 is involved in the 'recognition' of movement in the visual field.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Human and General Physiology, University of Bologna, Italy.
| | | | | |
Collapse
|
26
|
Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C. Human v6: the medial motion area. Cereb Cortex 2009; 20:411-24. [PMID: 19502476 PMCID: PMC2803738 DOI: 10.1093/cercor/bhp112] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Cortical-surface-based functional Magnetic Resonance Imaging mapping techniques and wide-field retinotopic stimulation were used to verify the presence of pattern motion sensitivity in human area V6. Area V6 is highly selective for coherently moving fields of dots, both at individual and group levels and even with a visual stimulus of standard size. This stimulus is a functional localizer for V6. The wide retinotopic stimuli used here also revealed a retinotopic map in the middle temporal cortex (area MT/V5) surrounded by several polar-angle maps that resemble the mosaic of small areas found around macaque MT/V5. Our results suggest that the MT complex (MT+) may be specialized for the analysis of motion signals, whereas area V6 may be more involved in distinguishing object and self-motion.
Collapse
Affiliation(s)
- S Pitzalis
- Department of Education in Sport and Human Movement, University of Rome Foro Italico, 00194 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Becker HGT, Erb M, Haarmeier T. Differential dependency on motion coherence in subregions of the human MT+ complex. Eur J Neurosci 2008; 28:1674-85. [DOI: 10.1111/j.1460-9568.2008.06457.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Kovács G, Raabe M, Greenlee MW. Neural correlates of visually induced self-motion illusion in depth. ACTA ACUST UNITED AC 2007; 18:1779-87. [PMID: 18063566 DOI: 10.1093/cercor/bhm203] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.
Collapse
Affiliation(s)
- Gyula Kovács
- Institute of Psychology, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
29
|
Lindner A, Haarmeier T, Erb M, Grodd W, Thier P. Cerebrocerebellar circuits for the perceptual cancellation of eye-movement-induced retinal image motion. J Cogn Neurosci 2006; 18:1899-912. [PMID: 17069480 DOI: 10.1162/jocn.2006.18.11.1899] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite smooth pursuit eye movements, we are unaware of resultant retinal image motion. This example of perceptual invariance is achieved by comparing retinal image slip with an internal reference signal predicting the sensory consequences of the eye movement. This prediction can be manipulated experimentally, allowing one to vary the amount of self-induced image motion for which the reference signal compensates and, accordingly, the resulting percept of motion. Here we were able to map regions in CRUS I within the lateral cerebellar hemispheres that exhibited a significant correlation between functional magnetic resonance imaging signal amplitudes and the amount of motion predicted by the reference signal. The fact that these cerebellar regions were found to be functionally coupled with the left parieto-insular cortex and the supplementary eye fields points to these cortical areas as the sites of interaction between predicted and experienced sensory events, ultimately giving rise to the perception of a stable world despite self-induced retinal motion.
Collapse
Affiliation(s)
- Axel Lindner
- Hertie-Institut für Clinical Brain Research, Department of Cognitive Neurology, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
30
|
Händel B, Lutzenberger W, Thier P, Haarmeier T. Opposite dependencies on visual motion coherence in human area MT+ and early visual cortex. Cereb Cortex 2006; 17:1542-9. [PMID: 16940034 DOI: 10.1093/cercor/bhl063] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to understand the relationship between brain activity and visual motion perception, knowledge of the cortical areas participating in signal processing alone is insufficient. Rather knowledge on how responses vary with the characteristics of visual motion is necessary. In this study, we measured whole brain activity using magnetoencephalography in humans discriminating the global motion direction of a random dot kinematogram whose strength was systematically varied by the percentage of coherently moving dot elements. Spectral analysis revealed 2 components correlating with motion coherence. A first component in the low-frequency domain ( approximately 3 Hz), linearly increasing with motion coherence, could be attributed to visual cortex including human area middle temporal (MT) +. A second component oscillating in the alpha frequency range and emerging after stimulus offset showed the inverse dependence on motion coherence and arose from early visual cortex. Based on these results, we first of all conclude that motion coherence is reflected in the population response of human extrastriate cortex. Second, we suggest that the occipital alpha activity represents a gating mechanism protecting visual motion integration in later cortical areas from disturbing upcoming signals.
Collapse
Affiliation(s)
- Barbara Händel
- Department of General Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | | | | | | |
Collapse
|
31
|
Kim D, Wylie G, Pasternak R, Butler PD, Javitt DC. Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 2006; 82:1-8. [PMID: 16325377 PMCID: PMC2045640 DOI: 10.1016/j.schres.2005.10.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/27/2005] [Accepted: 10/03/2005] [Indexed: 11/26/2022]
Abstract
Patients with schizophrenia show impairments in motion processing, along with deficits in lower level processing primarily involving the magnocellular visual pathway. The present study investigates potential magnocellular contributions to impaired motion processing in schizophrenia using a combined neurophysiological and behavioral approach. As compared to prior motion studies in schizophrenia, thresholds were determined for both incoherent and coherent visual motion. In this study, velocity discrimination thresholds were measured for schizophrenia patients (n=14) and age-matched normal control subjects (n=16) using a staircase procedure. Early visual processing was evaluated using steady-state visual evoked potentials (ssVEP), with stimuli biased toward activation of either the magnocellular or parvocellular visual pathways through luminance contrast manipulation. Patients with schizophrenia showed poor velocity discrimination for both incoherent and coherent motion, with no significant group x task interaction. Further, when coherent motion performance was measured at individually determined incoherent motion thresholds, accuracy levels for patients were similar to controls, also indicating similarity of deficit for incoherent vs. coherent motion discrimination. Impairments in velocity discrimination correlated significantly with reduced amplitude of ssVEP elicited by magnocellular -- but not parvocellular -- selective stimuli. This study demonstrates that deficits in motion processing in schizophrenia are significantly related to reduced activation of the magnocellular visual system. Further, this study supports and extends prior reports of impaired motion processing in schizophrenia, and indicates significant bottom-up contributions to higher-order cognitive impairments.
Collapse
Affiliation(s)
- Dongsoo Kim
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, New York 10962, USA
| | | | | | | | | |
Collapse
|
32
|
Castelo-Branco M, Mendes M, Silva MF, Januário C, Machado E, Pinto A, Figueiredo P, Freire A. Specific retinotopically based magnocellular impairment in a patient with medial visual dorsal stream damage. Neuropsychologia 2006; 44:238-53. [PMID: 16005479 DOI: 10.1016/j.neuropsychologia.2005.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 11/21/2022]
Abstract
We report here retinotopically based magnocellular deficits in a patient with a unilateral parieto-occipital lesion. We applied convergent methodologies to study his dorsal stream processing, using psychophysics as well as structural and functional imaging. Using standard perimetry we found deficits involving the periphery of the left inferior quadrant abutting the horizontal meridian, suggesting damage of dorsal retinotopic representations beyond V1. Retinotopic damage was much more extensive when probed with frequency-doubling based contrast sensitivity measurements, which isolate processing within the magnocellular pathway: sensitivity losses now encroached on the visual central representation and did not respect the horizontal meridian, suggesting further damage to dorsal stream retinotopic areas that contain full hemi-field representations, such as human V3A or V6. Functional imaging revealed normal responses of human MT+ to motion contrast. Taken together, these findings are consistent with a recent proposal of two distinct magnocellular dorsal stream pathways: a latero-dorsal pathway passing to MT+ and concerned with the processing of coherent motion, and a medio-dorsal pathway that routes information from V3A to the human homologue of V6. Anatomical evidence was consistent with sparing of the latero-dorsal pathway in our patient, and was corroborated by his normal performance in speed, direction discrimination and motion coherence tasks with 2D and 3D objects. His pattern of dysfunction suggests damage only to the medio-dorsal pathway, an inference that is consistent with structural imaging data, which revealed a lesion encompassing the right parieto-occipital sulcus.
Collapse
Affiliation(s)
- Miguel Castelo-Branco
- Department of Biophysics and Center for Ophthalmology, IBILI-Faculty of Medicine, Az. de Sta Comba, 3000-354 Coimbra, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lui LL, Bourne JA, Rosa MGP. Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). ACTA ACUST UNITED AC 2005; 16:162-77. [PMID: 15858163 DOI: 10.1093/cercor/bhi094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The dorsomedial visual area (DM), a subdivision of extrastriate cortex located near the dorsal midline, is characterized by heavy myelination and a relative emphasis on peripheral vision. To date, DM remains the least understood of the three primary targets of projections from the striate cortex (V1) in New World monkeys. Here, we characterize the responses of DM neurons in anaesthetized marmosets to drifting sine wave gratings. Most (82.4%) cells showed bidirectional sensitivity, with only 6.9% being strongly direction selective. The distribution of orientation sensitivity was bimodal, with a distinct population (corresponding to over half of the sample) formed by neurons with very narrow selectivity. When compared with a sample of V1 units representing a comparable range of eccentricities, DM cells revealed a preference for much lower spatial frequencies, and higher speeds. End inhibition was extremely rare, and the responses of many cells summated over distances as large as 30 degrees. Our results suggest clear differences between DM and the two other main targets of V1 projections, the second (V2) and middle temporal (MT) areas, with cells in DM emphasizing aspects of visual information that are likely to be relevant for motor control.
Collapse
Affiliation(s)
- Leo L Lui
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | | | | |
Collapse
|
34
|
Schwarz U. Neuroophthalmology: a brief Vademecum. Eur J Radiol 2004; 49:31-63. [PMID: 14975493 DOI: 10.1016/j.ejrad.2003.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 09/08/2003] [Accepted: 09/09/2003] [Indexed: 11/17/2022]
Abstract
The stunning, intricate interaction between the visual, vestibular and optomotor systems--each a miracle on its own--ensures maintenance of orientation in space as well as visual recognition and target selection despite a host of sensory conflicts and adversary disturbances. Their main goals are to keep a target of interest on the fovea by either maintaining or shifting the direction of gaze in order to produce an accurate internal representation of the visual surroundings, in particular the selected target, and to continuously mirror the spatial relationship between these various visual elements and the self. Not surprising, the implementation of this host of elaborate neural networks encompasses almost every part of the brain, including the brainstem, cerebellum, extrapyramidal system and many areas of the cerebral cortex. Thus far, these systems are among the best investigated in brain research; and enormous knowledge was amassed over the last century employing a variety of techniques, including single cell recordings, eye movement studies, functional imaging and neuropsychological observations. In addition, this prolific line of research has enlightened many fundamental principles of neural and neuronal processing, which have subsequently enriched other fields of brain research as well as computational neuroscience, e.g. the discovery of receptive fields, which have now become a ubiquitous concept in many other areas of neurophysiology. This (improperly) brief, fractional and undoubtedly biased Vademecum is meant to accompany the reader into this marvellous field of neurophysiology and neurology. In particular, it stresses the clinical application of its functional neuroanatomy at the bedside, which, in many respects, is superior to other means of investigating a patient.
Collapse
Affiliation(s)
- Urs Schwarz
- Neurologische Klinik, Universitätsspital, Frauenklinikstrasse 26, CH 8091 Zürich, Switzerland.
| |
Collapse
|
35
|
Deutschländer A, Bense S, Stephan T, Schwaiger M, Dieterich M, Brandt T. Rollvection versus linearvection: comparison of brain activations in PET. Hum Brain Mapp 2004; 21:143-53. [PMID: 14755834 PMCID: PMC6871853 DOI: 10.1002/hbm.10155] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We conducted a PET study to directly compare the differential effects of visual motion stimulation that induced either rollvection about the line of sight or forward linearvection along this axis in the same subjects. The main question was, whether the areas that respond to vection are identical or separate and distinct for rollvection and linearvection. Eleven healthy volunteers were exposed to large-field (100 degrees x 60 degrees ) visual motion stimulation consisting of (1) dots accelerating from a focus of expansion to the edge of the screen (forward linearvection) and (2) dots rotating counterclockwise in the frontal plane (clockwise rollvection). These two stimuli, which induced apparent self-motion in all subjects, were compared to each other and to a stationary visual pattern. Linearvection and rollvection led to bilateral activations of visual areas including medial parieto-occipital (PO), occipito-temporal (MT/V5), and ventral occipital (fusiform gyri) cortical areas, as well as superior parietal sites. Activations in the polar visual cortex around the calcarine sulcus (BA 17, BA 18) were larger and more significant during linearvection. Temporo-parietal sites displayed higher activity levels during rollvection. Differential activation of PO or MT/V5 was not found. Both stimuli led to simultaneous deactivations of retroinsular regions (more pronounced during linearvection); this is compatible with an inhibitory interaction between the visual and the vestibular systems for motion perception.
Collapse
Affiliation(s)
- Angela Deutschländer
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Könönen M, Pääkkönen A, Pihlajamäki M, Partanen K, Karjalainen PA, Soimakallio S, Aronen HJ. Visual processing of coherent rotation in the central visual field: an fMRI study. Perception 2004; 32:1247-57. [PMID: 14700259 DOI: 10.1068/p3427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Functional magnetic resonance imaging was used to determine the brain areas that process coherent motion. To reduce the activity related to eye-movement planning and self-motion perception, rotation was used as coherent motion and the stimulus was restricted to the central visual field. Coherent rotation relative to incoherent random-dot motion resulted in consistent activation in the superior parietal lobule (SPL), in the lateral occipital gyrus (presumptive kinetic occipital region, KO), and in the fusiform gyrus (FG). The main novel finding in present study is the bilateral SPL activation, which has not been found in any previous study contrasting coherent and incoherent motion. It is suggested that the SPL activation is related to form-from-motion processing. The stimulus modification that prevented abrupt appearances of dots at the borders of the stimulus field increased the strength of rolling disk-like percept of the coherent stimulus. This perception of form may also be at least partly responsible for the activation in KO and FG. With this explanation, our three consistent activation areas are in line with previous findings. Furthermore, these results demonstrate that even delicate changes in some stimulus aspects can lead to significant changes in the activation of the brain.
Collapse
Affiliation(s)
- Mervi Könönen
- Department of Clinical Radiology, Kuopio University Hospital, POB 1777, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W. Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 2004; 21:593-600. [PMID: 14980561 DOI: 10.1016/j.neuroimage.2003.09.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 09/17/2003] [Accepted: 09/17/2003] [Indexed: 11/22/2022] Open
Abstract
We usually perceive a stationary, stable world despite coherent visual motion induced by eye movements. This astonishing example of perceptual invariance results from a comparison of visual information with internal reference signals (nonretinal signals) predicting the visual consequences of an eye movement. The important consequence of this concept is that our subjective percept of visual motion reflects the outcome of this comparison rather than retinal image slip. To localize the cortical networks underlying this comparison, we compared magnetoencephalography (MEG) responses under two conditions of pursuit-induced retinal image motion, which were identical physically but--due to different calibrational states of the nonretinal signal prompted under our experimental conditions--gave rise to different percepts of visual motion. This approach allows us to demonstrate that our perception of self-induced visual motion resides in comparably "late" parts of the cortical hierarchy of motion processing sparing the early stages up to cortical area MT/V5 but including cortex in and around the medial aspect of the parietooccipital cortex as one of its core elements.
Collapse
Affiliation(s)
- Alexander Tikhonov
- Department of Cognitive Neurology, University of Tübingen, D-72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
38
|
Dechent P, Frahm J. Characterization of the human visual V6 complex by functional magnetic resonance imaging. Eur J Neurosci 2003; 17:2201-11. [PMID: 12786987 DOI: 10.1046/j.1460-9568.2003.02645.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnetoencephalography of a visual area along the human parieto-occipital sulcus suggested that this region represents the human homologue of the monkey visual area V6 complex (visual area V6/visuomotor area V6A) involved in the integration of visual and somatomotor information. We used functional magnetic resonance imaging at 2.0 T and 2 x 2 x 3 mm3 resolution (16 sections) to characterize visual areas along the parieto-occipital sulcus in five healthy human subjects. Paradigms comprised a full-field checkerboard stimulation, a full-field luminance flicker as well as a foveal and peripheral luminance flicker using both a direct and differential design for comparing functional states. Along the parieto-occipital sulcus, and in contrast to primary visual areas, luminance stimulation evoked much larger activation volumes than checkerboard stimulation. Moreover, based on anatomic landmarks, luminance stimulation identified two functionally distinct regions of parieto-occipital sulcus activations: an inferior part (supposedly visual area V6) and a superior portion (supposedly visuomotor area V6A). With these assignments, foveal vs. peripheral luminance stimulation revealed a weaker foveal overrepresentation in visual area V6/visuomotor area V6A than in early visual areas, and only a mild tendency for a retinotopic organization in visual area V6. Further analyses of the functional coding of the human visual area V6 complex require functional magnetic resonance imaging at even higher spatial resolution.
Collapse
Affiliation(s)
- Peter Dechent
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| | | |
Collapse
|
39
|
Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W. Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 2003; 41:1757-68. [PMID: 14527539 DOI: 10.1016/s0028-3932(03)00177-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present report reviews a series of functional magnetic resonance imaging (fMRI) activation studies conducted in parallel in awake monkeys and humans using the same motion stimuli in both species. These studies reveal that motion stimuli engage largely similar cortical regions in the two species. These common regions include MT/V5 and its satellites, of which FST contributes more to the human motion complex than is generally assumed in human imaging. These results also establish a direct link between selectivity of MT/V5 neurons for speed gradients and functional activation of human MT/V5 by three-dimensional (3D) structure from motion stimuli. On the other hand, striking functional differences also emerged: in humans V3A and several regions in the intraparietal sulcus (IPS) are much more motion sensitive than their simian counterparts.
Collapse
Affiliation(s)
- Guy A Orban
- K.U. Leuven, Laboratorium voor Neuro- en Pyschofysiologie, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nishiike S, Nakagawa S, Nakagawa A, Uno A, Tonoike M, Takeda N, Kubo T. Magnetic cortical responses evoked by visual linear forward acceleration. Neuroreport 2002; 13:1805-8. [PMID: 12395128 DOI: 10.1097/00001756-200210070-00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cortical site processing the information of whole body linear acceleration has not yet been identified. In this study, neuromagnetic responses to visually induced linear forward acceleration were recorded in six healthy-right-handed adult subjects using a 122-channel whole cortex neuromagnetometer. Significant activation was estimated in the cortex around the posterior insula, which belongs to the vestibular cortex. Hence, it is suggested that the vestibular cortex not only receives vestibular input from the peripheral vestibular apparatus, but also processes the vestibular sensation from multi-modal information.
Collapse
Affiliation(s)
- Suetaka Nishiike
- Department of Otolaryngology, Suita Minicipal Hospital, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M. Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 2002; 16:92-103. [PMID: 11954059 PMCID: PMC6871812 DOI: 10.1002/hbm.10030] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Accepted: 12/07/2001] [Indexed: 11/12/2022] Open
Abstract
The patterns of regional cerebral blood flow (rCBF) increases and decreases in PET were compared for unimodal vestibular, unimodal visual, and for simultaneous vestibular and visual stimulation. Thirteen healthy volunteers were exposed to a) caloric vestibular stimulation, b) small-field visual motion stimulation in roll, c) simultaneous caloric vestibular and visual pattern stimulation. Unimodal vestibular stimulation led to activations of vestibular cortex areas, in particular the parieto-insular vestibular cortex (PIVC), and concurrent deactivations of visual cortical areas [Brodmann area (BA) 17-19]. Unimodal visual motion stimulation led to activations of the striate visual cortex and the motion-sensitive area in the middle temporal/middle occipital gyri (BA 19/37) with concurrent deactivations in the PIVC. Simultaneous bimodal stimulation resulted in activations of the cortical representation of both sensory modalities. In the latter condition activations and deactivations were significantly smaller compared to unimodal stimulation. The findings are consistent with the concept of an inhibitory reciprocal vestibulo-visual interaction in all three stimulus conditions.
Collapse
Affiliation(s)
- Angela Deutschländer
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Culham J, He S, Dukelow S, Verstraten FA. Visual motion and the human brain: what has neuroimaging told us? Acta Psychol (Amst) 2001; 107:69-94. [PMID: 11388143 DOI: 10.1016/s0001-6918(01)00022-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently, neuroimaging techniques have been applied to the study of human motion perception, complementing established techniques such as psychophysics, neurophysiology and neuropsychology. Because vision, particularly motion perception, has been studied relatively extensively, it provides an interesting case study to examine the contributions and limitations of neuroimaging to cognitive neuroscience. We suggest that in the domain of motion perception neuroimaging has: (1) revealed an extensive network of motion areas throughout the human brain, in addition to the well-studied motion complex (MT+); (2) verified and extended findings from other techniques; (3) suggested extensive top-down influences on motion perception; and (4) allowed experimenters to examine the neural correlates of awareness. We discuss these contributions, along with limitations and future directions for the neuroimaging of motion.
Collapse
Affiliation(s)
- J Culham
- Department of Psychology, University of Western Ontario, London, Ont., Canada N6A 5C2.
| | | | | | | |
Collapse
|
43
|
Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC. A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 2000; 3:1322-8. [PMID: 11100154 DOI: 10.1038/81860] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The continuously changing optic flow on the retina provides information about direction of heading and about the three-dimensional structure of the environment. Here we use functional magnetic resonance imaging (fMRI) to demonstrate that an area in human cortex responds selectively to components of optic flow, such as circular and radial motion. This area is within the region commonly referrred to as V5/MT complex, but is distinct from the part of this region that responds to translation. The functional properties of these two areas of the V5/MT complex are also different; the response to optic flow was obtained only with changing flow stimuli, whereas response to translation occurred during exposure to continuous motion.
Collapse
Affiliation(s)
- M C Morrone
- Istituto di Neurofisiologia del CNR, Via G. Moruzzi 1, 56127 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|