1
|
Sapoznikov L, Humphrey M. Progress in Dentin-Derived Bone Graft Materials: A New Xenogeneic Dentin-Derived Material with Retained Organic Component Allows for Broader and Easier Application. Cells 2024; 13:1806. [PMID: 39513913 PMCID: PMC11544873 DOI: 10.3390/cells13211806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The optimal repair of rigid mineralized tissues, such as bone, in cases of fracture, surgical resection, or prosthetic placement, is a complex process often necessitating the use of bone graft materials. Autogenous bone from the patient is generally the gold standard in terms of outcomes but also has disadvantages, which have resulted in extensive research in the field of tissue engineering to develop better and more convenient alternatives. In the dental field, several initiatives have demonstrated that the dentin material derived from extracted teeth produces excellent results in terms of repairing bone defects and supporting dental implants. Dentin is acellular and thus, in contrast to autogenous bone, cannot provide osteoblasts or other cellular elements to the grafted region, but it does contain growth and differentiation factors, and has other properties that make it an impressive material for bone repair. In this review, the beneficial properties of dentin and the ways it interacts with the host bone are described in the context of bone graft materials. Autogenous tooth material has limitations, particularly in terms of the need for tooth extraction and the limited amount available, which currently restrict its use to particular dental procedures. The development of a xenograft dentin-derived material, which retains the properties of autogenous dentin, is described. Such a material could potentially enable the use of dentin-derived material more widely, particularly in orthopedic indications where its properties may be advantageous.
Collapse
|
2
|
Sarfi S, Azaryan E, Naseri M. Immune System of Dental Pulp in Inflamed and Normal Tissue. DNA Cell Biol 2024; 43:369-386. [PMID: 38959180 DOI: 10.1089/dna.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular, and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
4
|
Børsting T, Venkatraman V, Fagerhaug TN, Skeie MS, Stafne SN, Feuerherm AJ, Sen A. Systematic assessment of salivary inflammatory markers and dental caries in children: an exploratory study. Acta Odontol Scand 2022; 80:338-345. [PMID: 34875210 DOI: 10.1080/00016357.2021.2011400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate associations between a wide panel of salivary inflammatory markers and the presence of dental caries among children. MATERIAL AND METHODS In this exploratory, cross-sectional study, 176 children, aged 7-9, underwent a dental examination. Information on the children's oral health habits and lifestyles was collected from their mothers. In addition, saliva samples were collected and analyzed using a multiplex immunoassay. Of 92 inflammatory markers measured, 56 were included in the statistical analyses. To identify potential inflammatory markers associated with caries, we applied low to advanced statistical analyses. First, we performed traditional logistic regression analysis followed by Bonferroni corrections. Thereafter, a more robust and less conservative statistical approach, i.e. Least Absolute Shrinkage and Selection Operator (LASSO), was applied. The models were adjusted for potential confounders. RESULTS Of the 176 children in the study, 22.2% were affected by caries. Among the 56 salivary inflammatory markers, only macrophage colony-stimulating factor 1 (CSF1) was selected by the LASSO and found to be positively associated with the presence of caries. CONCLUSIONS The observed association between CSF1 and the presence of caries may be of clinical value in caries risk management and early diagnosis. Larger studies are warranted to assess the replicability of our findings.
Collapse
Affiliation(s)
- Torunn Børsting
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone Natland Fagerhaug
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Slåttelid Skeie
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Signe Nilssen Stafne
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Service, Trondheim University Hospital (St. Olavs hospital), Trondheim, Norway
| | | | - Abhijit Sen
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Zamperini CA, Aydin B, Sroussi HY, Bedran-Russo AK. In vitro Study of the Role of Human Neutrophil Enzymes on Root Caries Progression. Caries Res 2021; 55:99-107. [PMID: 33582660 DOI: 10.1159/000512482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022] Open
Abstract
The role of the host immune system in caries progression is mainly speculative, and it is believed that it entails the enzymatic degradation of the dentin organic matrix. The aim of this study was to evaluate the proteolytic effect of human neutrophil enzymes on root caries progression. For this, specimens of bovine root dentin were divided into 4 groups (n = 30): caries (C), caries + neutrophils (C + N), no caries (Control), and no caries + neutrophils (Control + N). Streptococcus mutans biofilm (105 CFU/mL) was grown on the root surface to artificially induce root carious lesions (C and C + N groups). Specimens were then exposed to neutrophils (5 × 106 cells/mL) for 48 h (C + N and Control + N groups). Caries development and neutrophil exposures were repeated a 2nd and 3rd time. Caries depth (CD) and dentin demineralization (DD) were assessed by infiltration of rhodamine B using fluorescence microscopy. Collagen fibril ultrastructure was characterized under a polarized microscope with Picrosirius red staining. There were no significant differences (p > 0.05) in CD and DD between the C and C + N groups for 1, 2, and 3 caries-neutrophil exposures. Immature collagen was significantly less present in the carious groups (C, p = 0.003; C + N, p = 0.01) than in the noncarious groups in the most superficial 200 µm. We thus concluded that human neutrophil enzymes did not influence short-term root caries progression, and immature collagen fibrils were more susceptible to degradation during S. mutans-induced root caries progression.
Collapse
Affiliation(s)
- Camila A Zamperini
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA,
| | - Berdan Aydin
- Department of Endodontics and Operative Dentistry, RAKCODS, Ras al Khaimah, United Arab Emirates
| | - Herve Y Sroussi
- Department of Surgery, Brigham and Women's Hospital and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Ana Karina Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Chung MP, Richardson C, Kirakossian D, Orandi AB, Saketkoo LA, Rider LG, Schiffenbauer A, von Mühlen CA, Chung L. Calcinosis Biomarkers in Adult and Juvenile Dermatomyositis. Autoimmun Rev 2020; 19:102533. [PMID: 32234404 PMCID: PMC7225028 DOI: 10.1016/j.autrev.2020.102533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Dermatomyositis (DM) is a rare idiopathic inflammatory myopathy characterized by muscle weakness and cutaneous manifestations in adults and children. Calcinosis, a complication of DM, is the abnormal deposition of insoluble calcium salts in tissues, including skin, subcutaneous tissue, tendons, fascia, and muscle. Calcinosis is more commonly seen in juvenile DM (JDM), but also develops in adult DM. Although the mechanism of calcinosis remains unclear, several pathogenic hypotheses have been proposed, including intracellular accumulation of calcium secondary to an alteration of the cellular membrane by trauma and inflammation, local vascular ischemia, dysregulation of mechanisms controlling the deposition and solubility of calcium and phosphate, and mitochondrial damage of muscle cells. Identifying calcinosis biomarkers is important for early disease detection and risk assessment, and may lead to novel therapeutic targets for the prevention and treatment of DM-associated calcinosis. In this review, we summarize myositis autoantibodies associated with calcinosis in DM, histopathology and chemical composition of calcinosis, genetic and inflammatory markers that have been studied in adult DM and JDM-associated calcinosis, as well as potential novel biomarkers.
Collapse
Affiliation(s)
- Melody P Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carrie Richardson
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - David Kirakossian
- Department of Internal Medicine, Kaiser Permanente Santa Clara, Santa Clara, CA, USA
| | - Amir B Orandi
- Division of Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lesley A Saketkoo
- Louisiana State University School of Medicine, Tulane University School of Medicine, New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A von Mühlen
- Consultant in Rheumatology and Clinical Pathology, San Diego, USA; Brazilian Society of Autoimmunity, Porto Alegre, Brazil
| | - Lorinda Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA; VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Fawzy El-Sayed KM, Elsalawy R, Ibrahim N, Gadalla M, Albargasy H, Zahra N, Mokhtar S, El Nahhas N, El Kaliouby Y, Dörfer CE. The Dental Pulp Stem/Progenitor Cells-Mediated Inflammatory-Regenerative Axis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:445-460. [DOI: 10.1089/ten.teb.2019.0106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | - Nehal Zahra
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | | | | | | | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
8
|
da Rosa WLO, Piva E, da Silva AF. Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 2018; 51:829-846. [DOI: 10.1111/iej.12906] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- W. L. O. da Rosa
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - E. Piva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - A. F. da Silva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| |
Collapse
|
9
|
Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in Oral Inflammatory Diseases: Apical Periodontitis and Periodontal Disease. J Dent Res 2016; 86:306-19. [PMID: 17384024 DOI: 10.1177/154405910708600403] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The inflammatory oral diseases are characterized by the persistent migration of polymorphonuclear leukocytes, monocytes, lymphocytes, plasma and mast cells, and osteoblasts and osteoclasts. In the last decade, there has been a great interest in the mediators responsible for the selective recruitment and activation of these cell types at inflammatory sites. Of these mediators, the chemokines have received particular attention in recent years. Chemokine messages are decoded by specific receptors that initiate signal transduction events, leading to a multitude of cellular responses, including chemotaxis and activation of inflammatory and bone cells. However, little is known about their role in the pathogenesis of inflammatory oral diseases. The purpose of this review is to summarize the findings regarding the role of chemokines in periapical and periodontal tissue inflammation, and the integration, into experimental models, of the information about the role of chemokines in human diseases.
Collapse
Affiliation(s)
- T A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
10
|
De Rossi A, Fukada SY, De Rossi M, da Silva RAB, Queiroz AM, Nelson-Filho P, da Silva LAB. Cementocytes Express Receptor Activator of the Nuclear Factor Kappa-B Ligand in Response to Endodontic Infection in Mice. J Endod 2016; 42:1251-7. [DOI: 10.1016/j.joen.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/26/2016] [Accepted: 05/14/2016] [Indexed: 10/21/2022]
|
11
|
Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediators Inflamm 2015; 2015:230251. [PMID: 26538821 PMCID: PMC4619960 DOI: 10.1155/2015/230251] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023] Open
Abstract
Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.
Collapse
|
12
|
Márton IJ, Kiss C. Overlapping Protective and Destructive Regulatory Pathways in Apical Periodontitis. J Endod 2014; 40:155-63. [DOI: 10.1016/j.joen.2013.10.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/26/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023]
|
13
|
Sriarj W, Aoki K, Ohya K, Takahashi M, Takagi Y, Shimokawa H. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro. Odontology 2013; 103:9-18. [PMID: 24366403 DOI: 10.1007/s10266-013-0140-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/20/2013] [Indexed: 01/03/2023]
Abstract
Previously, we have demonstrated that the extracellular matrix from dentin affects osteoclastic activity in co-culture between osteoclast and osteoblast-rich fraction from mouse marrow cells. In the present study, we aimed to investigate the mechanisms of dentin matrix extract-induced osteoclastogenesis in mouse bone marrow macrophages (BMMs). Dentin proteins were extracted from bovine incisor root dentin using 0.6 M HCl. BMMs were cultured in α-MEM containing macrophage colony-stimulating factor/receptor activator of nuclear factor kappa-B ligand in the presence or absence of dentin matrix extract. Tartrate-resistant acid phosphatase (TRAP)-positive cell number, total TRAP activity, and the mRNA levels of osteoclast-related genes, assayed by real-time RT-PCR, were determined as markers of osteoclastogenesis. A neutralizing antibody against transforming growth factor-β1 (TGF-β1), SB431542, a TGF-β receptor inhibitor, and ELISA were used to determine the role of TGF-β1. We observed increases in TRAP-positive cell number, TRAP activity, and the mRNA levels of osteoclast-related genes of BMMs cultured with dentin extract. The use of a neutralizing antibody against TGF-β1 or SB431542 inhibited the inductive effect of dentin extract, suggesting TGF-β1 involvement. The addition of exogenous TGF-β1, but not bone morphogenic protein-2, also increased osteoclastogenesis, corresponding to the ELISA determination of TGF-β1 in the dentin extract. In conclusion, our results indicate that proteins from dentin matrix have an inductive effect in osteoclastogenesis, which is mediated, in part, by TGF-β1.
Collapse
Affiliation(s)
- Wannakorn Sriarj
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, 34, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand,
| | | | | | | | | | | |
Collapse
|
14
|
Domain of dentine sialoprotein mediates proliferation and differentiation of human periodontal ligament stem cells. PLoS One 2013; 8:e81655. [PMID: 24400037 PMCID: PMC3882282 DOI: 10.1371/journal.pone.0081655] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/15/2013] [Indexed: 01/05/2023] Open
Abstract
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application.
Collapse
|
15
|
Cooper PR, Smith AJ. Molecular mediators of pulp inflammation and regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/etp.12036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012; 57:109-21. [DOI: 10.1016/j.archoralbio.2011.07.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 01/13/2023]
|
17
|
Graunaite I, Lodiene G, Maciulskiene V. Pathogenesis of apical periodontitis: a literature review. J Oral Maxillofac Res 2012; 2:e1. [PMID: 24421998 PMCID: PMC3886078 DOI: 10.5037/jomr.2011.2401] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/03/2011] [Indexed: 05/29/2023]
Abstract
OBJECTIVES This review article discusses the host response in apical periodontitis with the main focus on cytokines, produced under this pathological condition and contributing to the degradation of periradicular tissues. The pace of research in this field has greatly accelerated in the last decade. Here we provide an analysis of studies published in this area during this period. MATERIAL AND METHODS Literature was selected through a search of PubMed electronic database. The keywords used for search were pathogenesis of apical periodontitis cytokines, periapical granuloma cytokines, inflammatory infiltrate apical periodontitis. The search was restricted to English language articles, published from 1999 to December 2010. Additionally, a manual search in the cytokine production, cytokine functions and periapical tissue destruction in the journals and books was performed. RESULTS In total, 97 literature sources were obtained and reviewed. The topics covered in this article include cellular composition of an inflammatory infiltrate in the periapical lesions, mechanisms of the formation of the innate and specific immune response. Studies which investigated cytokine secretion and functions were identified and cellular and molecular interactions in the course of apical periodontitis described. CONCLUSIONS The abundance and interactions of various inflammatory and anti-inflammatory molecules can influence and alter the state and progression of the disease. Therefore, periapical inflammatory response offers a model, suited for the study of many facets of pathogenesis, biocompatibility of different materials to periapical tissues and development of novel treatment methods, based on the regulation of cytokines expression.
Collapse
Affiliation(s)
- Indre Graunaite
- Department of Dental and Oral Pathology, Faculty of Odontology, Lithuanian University of Health SciencesLithuania.
| | - Greta Lodiene
- Department of Dental and Oral Pathology, Faculty of Odontology, Lithuanian University of Health SciencesLithuania.
| | - Vita Maciulskiene
- Department of Dental and Oral Pathology, Faculty of Odontology, Lithuanian University of Health SciencesLithuania.
| |
Collapse
|
18
|
Abd-Elmeguid A, Yu DC, Kline LW, Moqbel R, Vliagoftis H. Dentin Matrix Protein-1 Activates Dental Pulp Fibroblasts. J Endod 2012; 38:75-80. [DOI: 10.1016/j.joen.2011.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/04/2011] [Accepted: 10/16/2011] [Indexed: 11/25/2022]
|
19
|
Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation–regeneration interplay in the dentine–pulp complex. J Dent 2010; 38:687-97. [DOI: 10.1016/j.jdent.2010.05.016] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/26/2010] [Accepted: 05/14/2010] [Indexed: 11/30/2022] Open
|
20
|
Cardoso CL, Rodrigues MTV, Ferreira Júnior O, Garlet GP, de Carvalho PSP. Clinical concepts of dry socket. J Oral Maxillofac Surg 2010; 68:1922-32. [PMID: 20537783 DOI: 10.1016/j.joms.2009.09.085] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 08/25/2009] [Accepted: 09/24/2009] [Indexed: 10/19/2022]
Abstract
Dry socket is one of the most studied complications in dentistry, and a great number of studies have searched for an effective and safe method for its prevention and treatment. One of the great clinical challenges since the first case was reported has been the inconsistency and differences in the various definitions of dry socket and the criteria used for diagnosis. The pathophysiology, etiology, prevention, and treatment of dry socket are very important in the practice of oral surgery. The aim of the present report was to review and discuss each aspect.
Collapse
Affiliation(s)
- Camila Lopes Cardoso
- Department of Oral Surgery, University of São Paulo Bauru School of Dentistry, Bauru, SP, Brazil.
| | | | | | | | | |
Collapse
|
21
|
CCR2 Deficiency Results in Increased Osteolysis in Experimental Periapical Lesions in Mice. J Endod 2010; 36:244-50. [DOI: 10.1016/j.joen.2009.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/08/2009] [Accepted: 09/12/2009] [Indexed: 11/19/2022]
|
22
|
Phenotype and behaviour of dental pulp cells during expansion culture. Arch Oral Biol 2009; 54:898-908. [DOI: 10.1016/j.archoralbio.2009.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 01/09/2023]
|
23
|
Urganus AL, Zhao YD, Pachman LM. Juvenile dermatomyositis calcifications selectively displayed markers of bone formation. ARTHRITIS AND RHEUMATISM 2009; 61:501-8. [PMID: 19333978 PMCID: PMC2741135 DOI: 10.1002/art.24391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine the presence of small integrin-binding ligand N-linked glycoprotein (SIBLING) and bone components in juvenile dermatomyositis (DM) pathologic calcifications. METHODS Calcifications were removed from 4 girls with juvenile DM symptoms for mean +/- SD 36.9 +/- 48.3 months and were stained for SIBLING proteins: full-length osteopontin (OPN), bone sialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin phosphoprotein (DPP), and matrix extracellular phosphoglycoprotein (MEPE); bone markers: osteocalcin (OC), core-binding factor alpha 1 (CBFalpha1), and alkaline phosphatase (AP) for osteoblasts; tartrate-resistant acid phosphatase (TRAP) for osteoclasts; and the mineral regulators osteonectin (ON) and matrix Gla protein (MGP). The deposit center, periphery, adjacent connective tissue, and vascular endothelial cells were examined. RESULTS Alizarin red stained calcified deposits that did not localize with collagen, like bone, under polarized light. Hematoxylin and eosin stain revealed a paucity of connective tissue and absence of bone-like structures. The deposits, connective tissue, and vascular endothelial cells were positive for BSP, DPP, DMP1, and AP; MEPE was not detected. OC, ON, and MGP were present in the deposits and vascular endothelial cells; OPN and CBFalpha1 were present in deposits and connective tissue. TRAP-positive osteoclasts were localized to the calcification periphery. CONCLUSION The disorganized juvenile DM calcifications differ in structure, composition, and protein content from bone, suggesting that they may not form through an osteogenic pathway. Osteoclasts at the deposit surface represent an attempt to initiate its resolution.
Collapse
Affiliation(s)
- Annette L. Urganus
- Molecular and Cellular Pathobiology Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University
| | - Yong-Dong Zhao
- Molecular and Cellular Pathobiology Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University
| | - Lauren M. Pachman
- Molecular and Cellular Pathobiology Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University
- Department of Pediatrics, Division of Rheumatology, The Children's Memorial Hospital, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
24
|
Gomes AC, Filho JEG, de Oliveira SHP. MTA-induced neutrophil recruitment: a mechanism dependent on IL-1β, MIP-2, and LTB4. ACTA ACUST UNITED AC 2008; 106:450-6. [DOI: 10.1016/j.tripleo.2008.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 10/21/2022]
|
25
|
Bailleul-Forestier I, Molla M, Verloes A, Berdal A. The genetic basis of inherited anomalies of the teeth. Eur J Med Genet 2008; 51:273-91. [PMID: 18499550 DOI: 10.1016/j.ejmg.2008.02.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/03/2008] [Indexed: 01/10/2023]
|
26
|
Mechanism of calcium hydroxide–induced neutrophil migration into air-pouch cavity. ACTA ACUST UNITED AC 2008; 105:814-21. [DOI: 10.1016/j.tripleo.2007.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 07/23/2007] [Accepted: 12/09/2007] [Indexed: 11/15/2022]
|
27
|
Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine 2008; 42:330-5. [PMID: 18406624 DOI: 10.1016/j.cyto.2008.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/31/2008] [Accepted: 03/05/2008] [Indexed: 12/20/2022]
Abstract
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1alpha/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides.
Collapse
|
28
|
Gonçalves PF, Gurgel BCV, Pimentel SP, Sallum EA, Sallum AW, Casati MZ, Nociti FH. Root Cementum Modulates Periodontal Regeneration in Class III Furcation Defects Treated by the Guided Tissue Regeneration Technique: A Histometric Study in Dogs. J Periodontol 2006; 77:976-82. [PMID: 16734571 DOI: 10.1902/jop.2006.050243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Because the possibility of root cementum preservation as an alternative approach for the treatment of periodontal disease has been demonstrated, this study aimed to histometrically evaluate the effect of root cementum on periodontal regeneration. METHODS Bilateral Class III furcation defects were created in dogs, and each dog was randomly assigned to receive one of the following treatments: control (group A): scaling and root planing with the removal of root cementum; or test (group B): removal of soft microbial deposits by polishing the root surface with rubber cups and polishing paste, aiming at maximum cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. RESULTS Four months after treatment, a superior length of new cementum (3.59 +/- 1.67 mm versus 6.20 +/- 2.26 mm; P = 0.008) and new bone (1.86 +/- 1.76 mm versus 4.62 +/- 3.01 mm; P = 0.002) and less soft tissue along the root surface (2.77 +/- 0.79 mm versus 1.10 +/- 1.48 mm; P = 0.020) was observed for group B. Additionally, group B presented a larger area of new bone (P = 0.004) and a smaller area of soft tissue (P = 0.008). CONCLUSION Within the limits of this study, root cementum may modulate the healing pattern obtained by guided tissue regeneration in Class III furcation defects.
Collapse
Affiliation(s)
- Patricia F Gonçalves
- Division of Periodontics, School of Dentistry at Piracicaba, State University of Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Silva TA, Lara VS, Silva JS, Oliveira SHP, Butler WT, Cunha FQ. Macrophages and mast cells control the neutrophil migration induced by dentin proteins. J Dent Res 2005; 84:79-83. [PMID: 15615881 DOI: 10.1177/154405910508400114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), the major dentin proteins, have been shown to induce neutrophil migration through release of IL-1beta, TNF-alpha, MIP-2, and KC. However, the sources of these mediators were not determined. Here, the roles of macrophages and mast cells (MC) in dentin-induced neutrophil accumulation were investigated. Peritoneal MC depletion or the enhancement of macrophage population increased DSP- and DPP-induced neutrophil extravasation. Moreover, supernatants from DSP- and DPP-stimulated macrophages caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages was inhibited by dexamethasone or the supernatant of DSP-treated MC. Consistently, dexamethasone and the MC supernatant inhibited the production of IL-1beta, TNF-alpha, and MIP-2 by macrophages. This inhibitory activity of the DSP-stimulated MC was neutralized by anti-IL-4 and anti-IL-10 antibodies. These results indicate that dentin induces the release of the neutrophil chemotactic substance(s) by macrophages, which are down-modulated by MC-derived IL-4 and IL-10.
Collapse
Affiliation(s)
- T A Silva
- Department of Stomatology, Faculty of Dentistry of Bauru, University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|