1
|
Lee YH, Yi HK, Pradhan PM, Kim TK, Jang S. Effect of c-Myb overexpression on osteoblastic-, odontoblastic-, and cementoblastic differentiation of primary human periodontal ligament cells. Eur J Oral Sci 2025; 133:e13040. [PMID: 39865493 DOI: 10.1111/eos.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured. c-Myb was transfected to PDL cells using replication-deficient adenoviral vector. Differentiation of the PDL cells was analyzed by immunoblot, alkaline phosphatase activity, Alizarin red stain, and immunofluorescence analysis. Cell viability on titanium surfaces was analyzed by crystal violet stain and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PDL cells cultured in osteogenic medium showed increased production of osteogenic and cementogenic molecules. Moreover, c-Myb-transfected cells showed increased production of dentinogenic molecules, in addition to the osteogenic and cementogenic molecules, even in normal culture condition. c-Myb-transfected cells also exhibited increased autophagy and type I collagen production under nutrient deprivation. When grown on a titanium surface, c-Myb-transfected cells showed increased production of osteogenesis-, dentinogenesis-, and cementogenesis-related molecules and cell viability. Thus, these results suggest that c-Myb might play an essential role during periodontal regeneration by improving the differentiation of PDL cells, and c-Myb can be utilized for enhancing the attachment of PDL cells to dental implant surfaces.
Collapse
Affiliation(s)
- Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Paras Man Pradhan
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Tae-Kun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| |
Collapse
|
2
|
Gerini G, Traversa A, Cece F, Cassandri M, Pontecorvi P, Camero S, Nannini G, Romano E, Marampon F, Venneri MA, Ceccarelli S, Angeloni A, Amedei A, Marchese C, Megiorni F. Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment. Cells 2025; 14:135. [PMID: 39851564 PMCID: PMC11763738 DOI: 10.3390/cells14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration.
Collapse
Affiliation(s)
- Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Alice Traversa
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy; (A.T.); (S.C.)
| | - Fabrizio Cece
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Matteo Cassandri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Simona Camero
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy; (A.T.); (S.C.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.N.); (A.A.)
| | - Enrico Romano
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.N.); (A.A.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| |
Collapse
|
3
|
Varadinkova S, Oralova V, Clarke M, Frampton J, Knopfova L, Lesot H, Bartos P, Matalova E. Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor. Front Cell Dev Biol 2023; 11:1168866. [PMID: 37701782 PMCID: PMC10493412 DOI: 10.3389/fcell.2023.1168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.
Collapse
Affiliation(s)
- S. Varadinkova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - V. Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - M. Clarke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - J. Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - L. Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - H. Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - P. Bartos
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - E. Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
4
|
Gonzalez Lopez M, Huteckova B, Lavicky J, Zezula N, Rakultsev V, Fridrichova V, Tuaima H, Nottmeier C, Petersen J, Kavkova M, Zikmund T, Kaiser J, Lav R, Star H, Bryja V, Henyš P, Vořechovský M, Tucker AS, Harnos J, Buchtova M, Krivanek J. Spatiotemporal monitoring of hard tissue development reveals unknown features of tooth and bone development. SCIENCE ADVANCES 2023; 9:eadi0482. [PMID: 37531427 PMCID: PMC10396306 DOI: 10.1126/sciadv.adi0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.
Collapse
Affiliation(s)
- Marcos Gonzalez Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Huteckova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikodem Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vendula Fridrichova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Haneen Tuaima
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Cita Nottmeier
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - Michaela Kavkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Rupali Lav
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Haza Star
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Henyš
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Miroslav Vořechovský
- Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Clin Exp Metastasis 2022; 39:375-390. [PMID: 34994868 DOI: 10.1007/s10585-021-10145-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.
Collapse
|
6
|
Takanche JS, Kim JE, Kim JS, Yi HK. Guided bone regeneration with a gelatin layer and adenoviral delivery of c-myb enhances bone healing in rat tibia. Regen Med 2020; 15:1877-1890. [PMID: 32893751 DOI: 10.2217/rme-2019-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Bone healing becomes problematic during certain states, such as trauma. This study verifies whether the application of c-myb with gelatin promotes bone healing during bone injuries. Materials & methods: A biodegradable membrane was modified with adenoviral vector c-myb (Ad/c-myb) and gelatin and applied in the bone injury site of rat tibia. Results: c-myb enhanced osteogenic differentiation and mineralization in bone marrow stromal cells after induction with osteogenic media. In vivo examination of rat tibia after application of the biodegradable membrane with Ad/c-myb and a gelatin layer demonstrated increased bone volume, bone mineral density, new bone formation and osteogenic molecules, compared with Ad/LacZ. Conclusion: c-myb has the potential to assist bone healing and may be applicable to the treatment of bone during injury.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ji-Eun Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Jeong-Seok Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ho-Keun Yi
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
7
|
miR-363-3p is activated by MYB and regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 2019; 55:376-386. [PMID: 31025251 DOI: 10.1007/s11626-019-00344-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
Osteoporosis results from the imbalance between osteogenesis and bone resorption mediated by osteoblasts and osteoclasts. During the disease process of osteoporosis, the alteration of gene expression occurs, which lead to the disease progression. MicroRNAs (miRNAs) have been previously demonstrated to be modulators for bone metabolism via regulation of osteoblast and osteoclast differentiation. In the present study, we detected the expression levels of five osteoporosis-related miRNAs in bone and serum samples of patient with or without osteoporosis. The downstream molecular mechanism of miR-363-3p was analyzed and detected by using bioinformatics analysis and mechanism experiment. The upstream transcription factor of miR-363-3p was analyzed by applying bioinformatics analysis and ChIP assay and luciferase reporter assay. The role of this pathway in osteoclastogenesis was demonstrated by functional assays. MiR-363-3p was significantly highly expressed in osteoporotic samples. Mechanistically, miR-363-3p promotes osteoclastogenesis and inhibits osteogenic differentiation by targeting PTEN and therefore activating PI3K/AKT signaling pathway. MiR-363-3p was activated by its upstream transcription activator MYB. This study revealed that MYB-induced upregulation of miR-363-3p regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway.
Collapse
|