1
|
Gobron B, Couchot M, Irwin N, Legrand E, Bouvard B, Mabilleau G. Development of a First-in-Class Unimolecular Dual GIP/GLP-2 Analogue, GL-0001, for the Treatment of Bone Fragility. J Bone Miner Res 2023; 38:733-748. [PMID: 36850034 DOI: 10.1002/jbmr.4792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Due to aging of the population, bone frailty is dramatically increasing worldwide. Although some therapeutic options exist, they do not fully protect or prevent against the occurrence of new fractures. All current drugs approved for the treatment of bone fragility target bone mass. However, bone resistance to fracture is not solely due to bone mass but relies also on bone extracellular matrix (ECM) material properties, i.e., the quality of the bone matrix component. Here, we introduce the first-in-class unimolecular dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-2 (GIP/GLP-2) analogue, GL-0001, that activates simultaneously the glucose-dependent insulinotropic polypeptide receptor (GIPr) and the glucagon-like peptide-2 receptor (GLP-2r). GL-0001 acts synergistically through a cyclic adenosine monophosphate-lysyl oxidase pathway to enhance collagen maturity. Furthermore, bilateral ovariectomy was performed in 32 BALB/c mice at 12 weeks of age prior to random allocation to either saline, dual GIP/GLP-2 analogues (GL-0001 or GL-0007) or zoledronic acid groups (n = 8/group). Treatment with dual GIP/GLP-2 analogues was initiated 4 weeks later for 8 weeks. At the organ level, GL-0001 modified biomechanical parameters by increasing ultimate load, postyield displacement, and energy-to-fracture of cortical bone. GL-0001 also prevented excess trabecular bone degradation at the appendicular skeleton and enhanced bone ECM material properties in cortical bone through a reduction of the mineral-to-matrix ratio and augmentation in enzymatic collagen cross-linking. These results demonstrate that targeting bone ECM material properties is a viable option to enhance bone strength and opens an innovative pathway for the treatment of patients suffering from bone fragility. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benoit Gobron
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Malory Couchot
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,SATT Ouest Valorisation, Nantes, France
| | - Nigel Irwin
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Coleraine, UK
| | - Erick Legrand
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers, France
| |
Collapse
|
2
|
Effects of type 2 diabetes on the viscoelastic behavior of human trabecular bone. Med Eng Phys 2022; 104:103810. [DOI: 10.1016/j.medengphy.2022.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
|
3
|
Hartmann MA, Blouin S, Misof BM, Fratzl-Zelman N, Roschger P, Berzlanovich A, Gruber GM, Brugger PC, Zwerina J, Fratzl P. Quantitative Backscattered Electron Imaging of Bone Using a Thermionic or a Field Emission Electron Source. Calcif Tissue Int 2021; 109:190-202. [PMID: 33837801 PMCID: PMC8273060 DOI: 10.1007/s00223-021-00832-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about [Formula: see text] to [Formula: see text] times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 μm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to [Formula: see text] wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.
Collapse
Affiliation(s)
- Markus A. Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Barbara M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Science, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria
| | - Gerlinde M. Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Peter C. Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Währingerstrasse 13, 1090 Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Brent MB, Brüel A, Thomsen JS. A Systematic Review of Animal Models of Disuse-Induced Bone Loss. Calcif Tissue Int 2021; 108:561-575. [PMID: 33386477 DOI: 10.1007/s00223-020-00799-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Several different animal models are used to study disuse-induced bone loss. This systematic review aims to give a comprehensive overview of the animal models of disuse-induced bone loss and provide a detailed narrative synthesis of each unique animal model. METHODS PubMed and Embase were systematically searched for animal models of disuse from inception to November 30, 2019. In addition, Google Scholar and personal file archives were searched for relevant publications not indexed in PubMed or Embase. Two reviewers independently reviewed titles and abstracts for full-text inclusion. Data were extracted using a predefined extraction scheme to ensure standardization. RESULTS 1964 titles and abstracts were screened of which 653 full-text articles were included. The most common animal species used to model disuse were rats (59%) and mice (30%). Males (53%) where used in the majority of the studies and genetically modified animals accounted for 7%. Twelve different methods to induce disuse were identified. The most frequently used methods were hindlimb unloading (44%), neurectomy (15%), bandages and orthoses (15%), and botulinum toxin (9%). The median time of disuse was 21 days (quartiles: 14 days, 36 days) and the median number of animals per group subjected to disuse was 10 (quartiles: 7, 14). Random group allocation was reported in 43% of the studies. Fewer than 5% of the studies justified the number of animals per group by a sample size calculation to ensure adequate statistical power. CONCLUSION Multiple animal models of disuse-induced bone loss exist, and several species of animals have successfully been studied. The complexity of disuse-induced bone loss warrants rigid research study designs. This systematic review emphasized the need for standardization of animal disuse research and reporting.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
5
|
Wei H, Pan L, Li C, Zhao P, Li J, Zhang R, Bao J. Dietary Soybean Oil Supplementation Affects Keel Bone Characters and Daily Feed Intake but Not Egg Production and Quality in Laying Hens Housed in Furnished Cages. Front Vet Sci 2021; 8:657585. [PMID: 33816591 PMCID: PMC8017272 DOI: 10.3389/fvets.2021.657585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
To evaluate dietary soybean oil supplementation on production performance, egg quality, and keel bone health in laying hens. Two hundred and four laying hens at 20 weeks of age (WOA) were distributed into 12 cages containing 17 birds each. Birds were either fed a commercial diet (control group, CON) or a diet supplemented with 3% of soybean oil (SO group). Experiments lasted 17 weeks. Body weight, daily feed intake, production performance and egg quality were measured at 25, 29, 33, and 37 WOA. Birds were subsequently assessed for keel bone status by palpation, and keel was excised to measure bone length, microstructure, bone mineral density (BMD), elements contents, and the expression of osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), collagen type II alpha 1 (COL2α1), periostin (POSTN), and sclerostin (SOST). The results showed that dietary SO supplementation did not affect production performance and egg quality (P > 0.05), but improved body weight of hens at 29 and 37 WOA (P < 0.05), and decreased daily feed intake at 33 and 37 WOA (P < 0.05). Incidence of keel bone damage (especially fracture) was higher in hens of SO group. Keel bone length in birds of SO group was significantly decreased compared to CON (P < 0.05). Keel bone of supplemented hens showed increased trabecular separation at 29 WOA and higher levels of V, Mn, Fe, Se, and Ba at 33 WOA (P < 0.05). Moreover, decreased BMD, trabecular number and thickness were observed in keel bone of laying hens receiving supplementation at 29 and 37 WOA (P < 0.05); decreased levels of Li, Ca, Hg, and TI at 33 WOA and trabecular thickness at 37 WOA (P < 0.05) were also identified. mRNA levels of SOST and RANKL and the ratio of RANKL/OPG mRNA levels were increased in birds fed a SO-supplemented diet (P < 0.05); COL2α1, OPG, and POSTN were downregulated at all sampling points (P < 0.05). Taken together, results indicate that feeding laying hens a diet supplemented with soybean oil can decrease daily feed intake and impair keel bone health but not influence production performance and egg quality.
Collapse
Affiliation(s)
- Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lei Pan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chun Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Peng Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
6
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
7
|
Vyavahare SS, Mieczkowska A, Flatt PR, Chappard D, Irwin N, Mabilleau G. GIP analogues augment bone strength by modulating bone composition in diet-induced obesity in mice. Peptides 2020; 125:170207. [PMID: 31765668 DOI: 10.1016/j.peptides.2019.170207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022]
Abstract
Receptors to glucose-dependent insulinotropic polypeptide (GIP), have been identified on bone and GIP receptor (GIPr) knockout mice exhibit reduced bone strength and quality. Despite this, little is known on the potential beneficial bone effects of exogenous GIP on bone physiology. The aim of the present study was to assess whether stable GIP analogues were capable of ameliorating bone strength in mice with diet-induced obesity. The stable GIP analogue (D-Ala²)-GIP, and (D-Ala²)-GIP-Tag, a specific GIP analogue homing exclusively to bone, were employed. In vitro studies were used to assess effects of (D-Ala²)-GIP and (D-Ala²)-GIP-Tag on bone mineralization, lysyl oxidase activity, collagen maturity as well as osteoclast formation and activity. Subsequent in vivo studies employed obese-prediabetic Swiss NIH mice subjected to a 42-day period of daily administration of saline, (D-Ala²)-GIP or (D-Ala²)-GIP-Tag. In vitro studies confirmed that (D-Ala²)-GIP and (D-Ala²)-GIP-Tag had similar beneficial biological effects on bone cells. Administration of (D-Ala²)-GIP and (D-Ala²)-GIP-Tag resulted in lower blood glucose levels without any effects on body weight. Both GIP analogues augmented bone strength to a similar extent. Trabecular or cortical bone microarchitecture were not changed over the time course of the study. However, (D-Ala²)-GIP and (D-Ala²)-GIP-Tag augmented enzymatic collagen crosslinking as well as the heterogeneity of enzymatic collagen crosslinking, mineral-to-matrix ratio and significantly reduced the heterogeneity in mineral bone crystallite size. This study demonstrates that activation of skeletal GIPr by stable GIP analogues enhance bone strength in prediabetes and suggest that these analogues may be beneficial in the treatment of bone disease.
Collapse
Affiliation(s)
- Sagar S Vyavahare
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Aleksandra Mieczkowska
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Daniel Chappard
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Service commun d'imageries et d'analyses microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Bone Pathology Unit, Angers University Hospital, 49933 Angers Cedex, France
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Guillaume Mabilleau
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Service commun d'imageries et d'analyses microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Bone Pathology Unit, Angers University Hospital, 49933 Angers Cedex, France.
| |
Collapse
|
8
|
Gobron B, Bouvard B, Legrand E, Chappard D, Mabilleau G. GLP-2 administration in ovariectomized mice enhances collagen maturity but did not improve bone strength. Bone Rep 2020; 12:100251. [PMID: 32071954 PMCID: PMC7013338 DOI: 10.1016/j.bonr.2020.100251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis and bone fragility are progressing worldwide. Previous published literature reported a possible beneficial role of gut hormones, and especially glucagon-like peptide-2 (GLP-2), in modulating bone remodeling. As now (Gly2)GLP-2 is approved in the treatment of short bowel syndrome, we thought to investigate whether such molecule could be beneficial in bone fragility. MC3T3 and Raw 264.7 were cultured in presence of ascending concentrations of (Gly2)GLP-2. Collagen crosslinks, maturity, lysyl oxidase activity and osteoclastogenesis were then analyzed. Furthermore, (Gly2)GLP-2, at the clinical approved dose of 50 μg/kg/day, was also administered to ovariectomized Balb/c mice for 8 weeks. Hundred μg/kg zoledronic acid (once iv) was also used as a positive comparator. Bone strength, microarchitectures and bone tissue composition were analyzed by 3-point bending, compression test, microCT and Fourier transform infrared imaging, respectively. In vitro, (Gly2)GLP-2 was potent in enhancing bone matrix gene expression but also to dose-dependently enhanced collagen maturation and post-processing. (Gly2)GLP-2 was also capable of reducing dose-dependently the number of newly generated osteoclasts. However, in vivo, (Gly2)GLP-2 was not capable of improving neither bone strength, at the femur diaphysis or lumbar vertebrae, nor bone microarchitecture. On the other hand, at the tissue material level, (Gly2)GLP-2 significantly enhances collagen maturity and reduce phosphate/amide ratio. Overall, this study highlights that despite modification of bone tissue composition, (Gly2)GLP-2, at the clinical approved dose of 50 μg/kg/day, did not provide real beneficial effects in improving bone strength in a mouse model of bone fragility. Further studies are recommended to validate the best dose and regimen of administration to significantly enhance bone strength. In vitro, (Gly2)GLP-2 enhances dose-dependently bone matrix deposition and quality. In vitro, (Gly2)GLP-2 reduces dose-dependently osteoclast formation. In vivo, (Gly2)GLP-2 failed to improve bone strength in ovariectomy-induced bone loss. In vivo, (Gly2)GLP-2 failed to improve bone microarchitecture. In vivo, (Gly2)GLP-2 increased collagen maturity and phosphate/amide ratios.
Collapse
Affiliation(s)
- B Gobron
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service de Rhumatologie, CHU d'Angers, 49933 Angers cedex, France
| | - B Bouvard
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service de Rhumatologie, CHU d'Angers, 49933 Angers cedex, France
| | - E Legrand
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service de Rhumatologie, CHU d'Angers, 49933 Angers cedex, France
| | - D Chappard
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service commun d'imageries et d'analyses microscopiques, SCIAM, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,UF de Pathologie osseuse, CHU d'Angers, 49933 Angers cedex, France
| | - G Mabilleau
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service commun d'imageries et d'analyses microscopiques, SCIAM, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,UF de Pathologie osseuse, CHU d'Angers, 49933 Angers cedex, France
| |
Collapse
|
9
|
Sanchez-Rodriguez E, Benavides-Reyes C, Torres C, Dominguez-Gasca N, Garcia-Ruiz AI, Gonzalez-Lopez S, Rodriguez-Navarro AB. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult Sci 2020; 98:5215-5225. [PMID: 31265108 PMCID: PMC6771771 DOI: 10.3382/ps/pez363] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022] Open
Abstract
Broiler chickens have an extreme physiology (rapid growth rates) that challenges the correct bone mineralization, being an interesting animal model for studying the development of bone pathologies. This work studies in detail how the mineralization, chemistry, and structural organization of tibiae bone in broiler chickens change with age during the first 5 wk (37 D) from hatching until acquiring the final weight for slaughter. During the early growth phase (first 2 wk), the rapid addition of bone tissue does not allow for bone organic matrix to fully mineralize and mature, and seems to be a critical period for bone development at which bone mineralization cannot keep pace with the rapid growth of bones. The low degree of bone mineralization and large porosity of cortical bone at this period might be responsible of leg deformation and/or other skeletal abnormalities commonly observed in these birds. Later, cortical bone porosity gradually decreases and the cortical bone became fully mineralized (65%) at 37 D of age. At the same time, bone mineral acquires the composition of mature bone tissue (decreased amount of carbonate, higher crystallinity, Ca/P = 1.68). However, the mineral part was still poorly organized even at 37 D. The oriented fraction was about 0.45 which means that more than half of apatite crystals within the mineral are randomly oriented. Mineral organization (crystal orientation) had an important contribution to bone-breaking strength. Nevertheless, locally determined (at tibia mid-shaft) bone properties (i.e., cortical thickness, crystal orientation) has only a moderate correlation (R2 = 0.33) with bone breaking strength probably due to large and highly heterogeneous porosity of bone that acts as structural defects. On the other hand, the total amount of mineral (a global property) measured by total ash content was the best predictor for breaking strength (R2 = 0.49). Knowledge acquired in this study could help in designing strategies to improve bone quality and reduce the incidence of skeletal problems in broiler chickens that have important welfare and economic implications.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain
| | - Cristina Benavides-Reyes
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain.,Departamento de Estomatología, Universidad de Granada, Campus Universitario de Cartuja, Colegio Máximo s/n, Granada 18071, Spain
| | - Cibele Torres
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, Toledo 45950, Spain
| | - Nazaret Dominguez-Gasca
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain
| | - Ana I Garcia-Ruiz
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, Toledo 45950, Spain
| | - Santiago Gonzalez-Lopez
- Departamento de Estomatología, Universidad de Granada, Campus Universitario de Cartuja, Colegio Máximo s/n, Granada 18071, Spain
| | | |
Collapse
|
10
|
Mansur SA, Mieczkowska A, Flatt PR, Chappard D, Irwin N, Mabilleau G. The GLP-1 Receptor Agonist Exenatide Ameliorates Bone Composition and Tissue Material Properties in High Fat Fed Diabetic Mice. Front Endocrinol (Lausanne) 2019; 10:51. [PMID: 30809192 PMCID: PMC6380209 DOI: 10.3389/fendo.2019.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has recently been recognized as a significant risk factor for bone fragility. Careful investigations of bone mechanical properties in human studies suggested possible alterations of bone composition, although this axis has poorly been investigated. The main aim of this study was to evaluate the impact of high fat diet-induced diabetes and therapy using the clinically approved GLP-1 receptor agonist, exenatide, on tissue bone mechanical properties and compositional parameters. Male mice had free access to high fat diet for 16 weeks to induce diabetes prior to commencement of the study. Exenatide was administered twice daily by i.p. injection at a dose of 25 nmol/kg for 52 days. Normal and high fat diet fed (HFD) mice injected with saline were used as controls. Bone mechanical properties was assessed at the organ level by 3-point bending and at the tissue level by nanoindentation. Bone microarchitecture was investigated by microcomputed tomography and bone composition was evaluated by Fourier transform infrared imaging. HFD mice exhibited profound alterations of bone mechanical properties at both the organ and tissue level. Collagen maturity as well as trabecular and cortical bone microarchitectures were abnormal. Administration of exenatide, led to clear ameliorations in bone mechanical properties at the organ and tissue levels by modifications of both cortical microarchitecture and bone compositional parameters (collagen maturity, mineral crystallinity, carbonate/phosphate ratio, acid phosphate content). These results bring new light on the mode of action of exenatide in bone physiology and demonstrate the value of GLP-1 mimetics in the treatment of fragility fractures in diabetes.
Collapse
Affiliation(s)
- Sity Aishah Mansur
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Aleksandra Mieczkowska
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France
| | - Peter R. Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Daniel Chappard
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France
- Service commun d'imageries et d'analyses microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France
- Bone Pathology Unit, Angers University Hospital, Angers, France
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Guillaume Mabilleau
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France
- Service commun d'imageries et d'analyses microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France
- Bone Pathology Unit, Angers University Hospital, Angers, France
- *Correspondence: Guillaume Mabilleau
| |
Collapse
|
11
|
Mabilleau G, Gobron B, Mieczkowska A, Perrot R, Chappard D. Efficacy of targeting bone-specific GIP receptor in ovariectomy-induced bone loss. J Endocrinol 2018; 239:215-227. [PMID: 30121578 DOI: 10.1530/joe-18-0214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has been recognized in the last decade as an important contributor of bone remodelling and is necessary for optimal bone quality. However, GIP receptors are expressed in several tissues in the body and little is known about the direct vs indirect effects of GIP on bone remodelling and quality. The aims of the present study were to validate two new GIP analogues, called [d-Ala2]-GIP-Tag and [d-Ala2]-GIP1-30, which specifically target either bone or whole-body GIP receptors, respectively; and to ascertain the beneficial effects of GIP therapy on bone in a mouse model of ovariectomy-induced bone loss. Both GIP analogues exhibited similar binding capacities at the GIP receptor and intracellular responses as full-length GIP1-42. Furthermore, only [d-Ala2]-GIP-Tag, but not [d-Ala2]-GIP1-30, was undoubtedly found exclusively in the bone matrix and released at acidic pH. In ovariectomized animals, [d-Ala2]-GIP1-30 but not [d-Ala2]-GIP-Tag ameliorated bone stiffness at the same magnitude than alendronate treatment. Only [d-Ala2]-GIP1-30 treatment led to significant ameliorations in cortical microarchitecture. Although alendronate treatment increased the hardness of the bone matrix and the type B carbonate substitution in the hydroxyapatite crystals, none of the GIP analogues modified bone matrix composition. Interestingly, in ovariectomy-induced bone loss, [d-Ala2]-GIP-Tag failed to alter bone strength, microarchitecture and bone matrix composition. Overall, this study shows that the use of a GIP analogue that target whole-body GIP receptors might be useful to improve bone strength in ovariectomized animals.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Groupe d'Etudes Remodelage Osseux et bioMatériaux, GEROM, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers Cedex, France
- Bone Pathology Unit, Angers University Hospital, Angers Cedex, France
| | - Benoit Gobron
- Groupe d'Etudes Remodelage Osseux et bioMatériaux, GEROM, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers Cedex, France
- Rheumatology Department, Angers University Hospital, Angers Cedex, France
| | - Aleksandra Mieczkowska
- Groupe d'Etudes Remodelage Osseux et bioMatériaux, GEROM, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers Cedex, France
| | - Rodolphe Perrot
- Service Commun d'Imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers Cedex, France
| | - Daniel Chappard
- Groupe d'Etudes Remodelage Osseux et bioMatériaux, GEROM, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers Cedex, France
- Bone Pathology Unit, Angers University Hospital, Angers Cedex, France
- Service Commun d'Imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Angers Cedex, France
| |
Collapse
|
12
|
Borvon A, Guintard C, Monchot H. A case of bone fracture with callus on the right femur of a chicken (Gallus gallus domesticus, L. 1758) from the ancient site of Dharih, Jordan. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 22:135-139. [PMID: 30096630 DOI: 10.1016/j.ijpp.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Archaeozoology provides bones, which quite regularly present traces of fractures. These fractures are more or less at an advanced level of healing and bear witness to traumas or pathologies. These cases of palaeopathology are not always the subject of publications, which further restricts our knowledge about them. This short note allows the scientific community to be aware of an original case from an archaeological context in Jordan of a fracture on a hen's femur, consolidated by a callus and with displacement of the distal ends. Beyond the "anecdotal" aspect, and without imagining the circumstances in which the fracture occurred, the animal survived.
Collapse
Affiliation(s)
- Aurélia Borvon
- UMR 7041 Équipe Archéologie Environnementale, 21 allée de l'Université, 92000 Nanterre, France; Unité d'Anatomie Comparée, Département des Sciences Cliniques, École Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes-Atlantique ONIRIS, route de Gachet, CS 40706, 44307 Nantes Cedex 03, France.
| | - Claude Guintard
- Unité d'Anatomie Comparée, Département des Sciences Cliniques, École Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes-Atlantique ONIRIS, route de Gachet, CS 40706, 44307 Nantes Cedex 03, France; Groupe d'Études Remodelage osseux et bioMatériaux (GEROM), Université d'Angers, Unité INSERM 922, LHEA/IRIS-IBS, 4 rue Larrey, CHU d'Angers, Angers, France.
| | - Hervé Monchot
- Labex Resmed, UMR 8167 Orient & Méditerranée, Sorbonne Universités, 1 place Victor Cousin, 75005 Paris, France.
| |
Collapse
|
13
|
Rodriguez-Navarro AB, McCormack HM, Fleming RH, Alvarez-Lloret P, Romero-Pastor J, Dominguez-Gasca N, Prozorov T, Dunn IC. Influence of physical activity on tibial bone material properties in laying hens. J Struct Biol 2017; 201:36-45. [PMID: 29109023 DOI: 10.1016/j.jsb.2017.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/22/2023]
Abstract
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as cortical and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. These differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.
Collapse
Affiliation(s)
- A B Rodriguez-Navarro
- Departamento de Mineralogía y Petrologia, Universidad de Granada, 18002 Granada, Spain.
| | - H M McCormack
- The Roslin Institute, University of Edinburgh, EH25 9PS Scotland, UK
| | - R H Fleming
- The Roslin Institute, University of Edinburgh, EH25 9PS Scotland, UK
| | - P Alvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Oviedo, Spain
| | - J Romero-Pastor
- Departamento de Mineralogía y Petrologia, Universidad de Granada, 18002 Granada, Spain
| | - N Dominguez-Gasca
- Departamento de Mineralogía y Petrologia, Universidad de Granada, 18002 Granada, Spain
| | - Tanya Prozorov
- Ames Laboratory, Iowa State University, Ames, IA 50100, USA
| | - I C Dunn
- The Roslin Institute, University of Edinburgh, EH25 9PS Scotland, UK
| |
Collapse
|
14
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|