1
|
Peng Y, Bramlett HM, Dietrich WD, Marcillo A, Sanchez-Molano J, Furones-Alonso O, Cao JJ, Huang J, Li AA, Feng JQ, Bauman WA, Qin W. Administration of low intensity vibration and a RANKL inhibitor, alone or in combination, reduces bone loss after spinal cord injury-induced immobilization in rats. Bone Rep 2024; 23:101808. [PMID: 39429803 PMCID: PMC11489065 DOI: 10.1016/j.bonr.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
We previously reported an ability of low-intensity vibration (LIV) to improve selected biomarkers of bone turnover and gene expression and reduce osteoclastogenesis but lacking of evident bone accrual. In this study, we demonstrate that a prolonged course of LIV that initiated at 2 weeks post-injury and continued for 8 weeks can protect against bone loss after SCI in rats. LIV stimulates bone formation and improves osteoblast differentiation potential of bone marrow stromal stem cells while inhibiting osteoclast differentiation potential of marrow hematopoietic progenitors to reduce bone resorption. We further demonstrate that the combination of LIV and RANKL antibody reduces SCI-related bone loss more than each intervention alone. Our findings that LIV is efficacious in maintaining sublesional bone mass suggests that such physical-based intervention approach would be a noninvasive, simple, inexpensive and practical intervention to treat bone loss after SCI. Because the combined administration of LIV and RANKL inhibition better preserved sublesional bone after SCI than either intervention alone, this work provides the impetus for the development of future clinical protocols based on the potential greater therapeutic efficacy of combining non-pharmacological (e.g., LIV) and pharmacological (e.g., RANKL inhibitor or other agents) approaches to treat osteoporosis after SCI or other conditions associated with severe immobilization.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
| | - Helen M. Bramlett
- Bruce W. Carter Miami VA Medical Center, Miami, Florida, USA
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. Dalton Dietrich
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alex Marcillo
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ofelia Furones-Alonso
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jay J. Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | | | | | - Jian Q. Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - William A. Bauman
- Departments of Medicine, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
- Departments of Medicine, USA
| |
Collapse
|
2
|
Qin Y, Zhao W, Jia Z, Bauman WA, Peng Y, Guo XE, Chen Z, He Z, Cardozo CP, Wang D, Qin W. Neuroprotective macromolecular methylprednisolone prodrug nanomedicine prevents glucocorticoid-induced muscle atrophy and osteoporosis in a rat model of spinal cord injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102773. [PMID: 38960364 PMCID: PMC11513243 DOI: 10.1016/j.nano.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a N-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.
Collapse
Affiliation(s)
- Yiwen Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; GCM Grosvenor, New York, USA
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zihao Chen
- Departments of Biotechnology, Brown University, Providence, RI, USA
| | - Zhiming He
- College of Dentistry, New York University, NY, New York, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
3
|
Zhao W, Jia Z, Bauman WA, Qin Y, Peng Y, Chen Z, Cardozo CP, Wang D, Qin W. Targeted-delivery of nanomedicine-enabled methylprednisolone to injured spinal cord promotes neuroprotection and functional recovery after acute spinal cord injury in rats. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102761. [PMID: 38871068 PMCID: PMC11447764 DOI: 10.1016/j.nano.2024.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
To date, no therapy has been proven to be efficacious in fully restoring neurological functions after spinal cord injury (SCI). Systemic high-dose methylprednisolone (MP) improves neurological recovery after acute SCI in both animal and human. MP therapy remains controversial due to its modest effect on functional recovery and significant adverse effects. To overcome the limitation of MP therapy, we have developed a N-(2-hydroxypropyl) methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP) that can selectively deliver MP to the SCI lesion when administered systemically in a rat model of acute SCI. Our in vivo data reveal that Nano-MP is significantly more effective than free MP in attenuating secondary injuries and neuronal apoptosis. Nano-MP is superior to free MP in improving functional recovery after acute SCI in rats. These data support Nano-MP as a promising neurotherapeutic candidate, which may provide potent neuroprotection and accelerate functional recovery with improved safety for patients with acute SCI.
Collapse
Affiliation(s)
- Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yiwen Qin
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; GCM Grosvenor, New York, USA
| | - Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Zihao Chen
- Departments of Biotechnology, Brown University, Providence, RI, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
4
|
Echevarria-Cruz E, McMillan DW, Reid KF, Valderrábano RJ. Spinal Cord Injury Associated Disease of the Skeleton, an Unresolved Problem with Need for Multimodal Interventions. Adv Biol (Weinh) 2024:e2400213. [PMID: 39074256 DOI: 10.1002/adbi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Spinal cord injury is associated with skeletal unloading, sedentary behavior, decreases in skeletal muscle mass, and exercise intolerance, which results in rapid and severe bone loss. To date, monotherapy with physical interventions such as weight-bearing in standing frames, computer-controlled electrically stimulated cycling and ambulation exercise, and low-intensity vibration are unsuccessful in maintaining bone density after SCI. Strategies to maintain bone density with commonly used osteoporosis medications also fail to provide a significant clinical benefit, potentially due to a unique pathology of bone deterioration in SCI. In this review, the available data is discussed on evaluating and monitoring bone loss, fracture, and physical and pharmacological therapeutic approaches to SCI-associated disease of the skeleton. The treatment of SCI-associated disease of the skeleton, the implications for clinical management, and areas of need are considered for future investigation.
Collapse
Affiliation(s)
- Evelyn Echevarria-Cruz
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, 1611 NW 12th ave, Office 2.141, Miami, FL, 33136, USA
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kieran F Reid
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
- Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Peng Y, Langermann S, Kothari P, Liu L, Zhao W, Hu Y, Chen Z, Moraes de Lima Perini M, Li J, Cao J, Guo XE, Chen L, Bauman WA, Qin W. Anti-Siglec-15 Antibody Prevents Marked Bone Loss after Acute Spinal Cord Injury-Induced Immobilization in Rats. JBMR Plus 2023; 7:e10825. [PMID: 38130761 PMCID: PMC10731123 DOI: 10.1002/jbm4.10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts. Anti-Siglec-15 antibody (Ab) has been shown to inhibit osteoclast maturation and bone resorption while maintaining osteoblast activity, which is distinct from current antiresorptive agents that inhibit the activity of both osteoclasts and osteoblasts. The goal of the present study is to test a Siglec-15 Ab (NP159) as a new treatment option to prevent bone loss in an acute SCI model. To this end, 4-month-old male Wistar rats underwent complete spinal cord transection and were treated with either vehicle or NP159 at 20 mg/kg once every 2 weeks for 8 weeks. SCI results in significant decreases in bone mineral density (BMD, -18.7%), trabecular bone volume (-43.1%), trabecular connectivity (-59.7%), and bone stiffness (-76.3%) at the distal femur. Treatment with NP159 almost completely prevents the aforementioned deterioration of bone after SCI. Blood and histomorphometric analyses revealed that NP159 is able to greatly inhibit bone resorption while maintaining bone formation after acute SCI. In ex vivo cultures of bone marrow cells, NP159 reduces osteoclastogenesis while increasing osteoblastogenesis. In summary, treatment with NP159 almost fully prevents sublesional loss of BMD and metaphysis trabecular bone volume and preserves bone strength in a rat model of acute SCI. Because of its unique ability to reduce osteoclastogenesis and bone resorption while promoting osteoblastogenesis to maintain bone formation, Siglec-15 Ab may hold greater promise as a therapeutic agent, compared with the exclusively antiresorptive or anabolic agents that are currently used, in mitigating the striking bone loss that occurs after SCI or other conditions associated with severe immobilization. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
| | | | | | | | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
| | - Yizhong Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Zihao Chen
- Department of BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | | | - Jiliang Li
- School of Science, Indiana University Purdue UniversityIndianapolisIndianaUSA
| | - Jay Cao
- USDA‐ARS Grand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - X. Edward Guo
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Lieping Chen
- NextCure, IncBeltsvilleMarylandUSA
- Cancer Research, Immunobiology and Medicine, The Yale University School of MedicineNew HavenConnecticutUSA
| | - William A. Bauman
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
- Departments of MedicineRehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
- Departments of MedicineRehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
6
|
Zhang L, Yin Y, Guo J, Jin L, Hou Z. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 2023; 14:1035186. [PMID: 37229453 PMCID: PMC10203702 DOI: 10.3389/fendo.2023.1035186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction As a common complication of spinal cord injury (SCI), most SCI patients suffer from osteoporosis. In our previous study, chronic intermittent hypobaric hypoxia (CIHH) could promote bone fracture healing. We speculated that it may act a role in the progression of osteoporosis. The current study purposed to explore the role of CIHH in the osteoporosis triggered by SCI in rats. Methods A SCI-induced SCI model was established by completed transection at T9-T10 spinal cord of Wistar rats. One week after SCI, the rats were conducted to CIHH treatment (PB = 404 mmHg, Po2 = 84 mmHg) 6 hours a day for continuously 7 weeks. Results The results of X-radiography and Micro-CT assessment demonstrated that compared with sham rats, the areal bone mineral density (BMD), bone volume to tissue volume, volumetric BMD, trabecular thickness, trabecular number, and trabecular connectivity were decreased. Trabecular bone pattern factor, trabecular separation, as well as structure model index were increased at the distal femur and proximal tibia of SCI rats, which were effectively reversed by CIHH treatment. Histomorphometry showed that CIHH treatment increased bone formation of SCI rats, as evidenced by the increased osteoid formation, the decreased number and surface of TRAP-positive osteoclasts. Furthermore, ELISA and real time PCR results showed that the osteoblastogenesis-related biomarkers, such as procollagen type 1 N-terminal propeptide, osteocalcin in serum, as well as ALP and OPG mRNAs in bone tissue were decreased, while the osteoclastogenesis-related biomarkers, including scleorostin in serum and RANKL and TRAP mRNAs in bone tissue were increased in SCI rats. Importantly, the deviations of aforementioned biomarkers were improved by CIHH treatment. Mechanically, the protective effects of CIHH might be at least partly mediated by hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway. Conclusion The present study testified that CIHH treatment ameliorates osteoporosis after SCI by balancing osteoblast and osteoclast activities in rats.
Collapse
|
7
|
Shimonty A, Bonewald LF, Pin F. Role of the Osteocyte in Musculoskeletal Disease. Curr Osteoporos Rep 2023; 21:303-310. [PMID: 37084017 DOI: 10.1007/s11914-023-00788-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to summarize the role of the osteocyte in muscle atrophy in cancer patients, sarcopenia, spinal cord injury, Duchenne's muscular dystrophy, and other conditions associated with muscle deterioration. RECENT FINDINGS One type of bone cell, the osteocyte, appears to play a major role in muscle and bone crosstalk, whether physiological or pathological. Osteocytes are cells living within the bone-mineralized matrix. These cells are connected to each other by means of dendrites to create an intricately connected network. The osteocyte network has been shown to respond to different types of stimuli such as mechanical unloading, immobilization, aging, and cancer by producing osteocytes-derived factors. It is now becoming clear that some of these factors including sclerostin, RANKL, TGF-β, and TNF-α have detrimental effects on skeletal muscle. Bone and muscle not only communicate mechanically but also biochemically. Osteocyte-derived factors appear to contribute to the pathogenesis of muscle disease and could be used as a cellular target for new therapeutic approaches.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
9
|
Zhan J, Luo D, Zhao B, Chen S, Luan J, Luo J, Hou Y, Hou Y, Xu W, Yan W, Qi J, Li X, Zhang Q, Lin D. Polydatin administration attenuates the severe sublesional bone loss in mice with chronic spinal cord injury. Aging (Albany NY) 2022; 14:8856-8875. [DOI: 10.18632/aging.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jiheng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Bingde Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shudong Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Jiyao Luan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou 450046, China
| | - Junhua Luo
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yonghui Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Wenke Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wanying Yan
- National Quality Testing Center for Processed Food, Guangzhou Inspection and Testing Certification Group Company Limited, Guangzhou 511447, China
| | - Ji Qi
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xing Li
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Qing Zhang
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Spine, Wangjing Hospital of Chinese Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dingkun Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
10
|
Brent MB, Brüel A, Thomsen JS. Anti-sclerostin antibodies and abaloparatide have additive effects when used as a countermeasure against disuse osteopenia in female rats. Bone 2022; 160:116417. [PMID: 35398589 DOI: 10.1016/j.bone.2022.116417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Prolonged disuse and substantial mechanical unloading are particularly damaging to skeletal integrity. Preclinical studies in rodents and clinical studies have highlighted the need for potent bone anabolic drugs to counteract disuse-induced osteopenia. The aim of present study was to compare the efficacy of romosozumab (Scl-Ab) and abaloparatide (ABL), alone or in combination, to prevent botulinum toxin (BTX) induced bone loss in a rat model. Eighty female Wistar rats were divided into the following six groups: 1. Baseline (n = 12); 2. Control (Ctrl) (n = 12); 3. BTX (n = 12); 4. BTX + Scl-Ab (n = 16); 5. BTX + ABL (n = 12); and 6. BTX + Scl-Ab + ABL (n = 16). Disuse was achieved by injecting 4 IU BTX into the hind limb musculature at study start. Scl-Ab (25 mg/kg) was injected s.c. twice weekly, while ABL (80 μg/kg) was injected s.c. five days a week for four weeks. Hind limb disuse dramatically decreased muscle mass and skeletal integrity and deteriorated the cortical morphology and trabecular microstructure. Treatment with Scl-Ab alone prevented most of the adverse cortical and trabecular effects of disuse, while ABL monotherapy mainly attenuated the disuse-induced loss of femoral areal bone mineral density (aBMD). Moreover, the combination of Scl-Ab and ABL not only counteracted most of the negative skeletal effects of unloading, but also increased aBMD (+10% and +20%), epiphyseal trabecular bone volume fraction (BV/TV) (+25% and +73%), and metaphyseal bone strength (+18% and +30%) significantly above that of Scl-Ab or ABL monotherapy, respectively. The potent and additive osteoanabolic effect of Scl-Ab and ABL, when given in combination, is highly intriguing and underlines that an osteoanabolic bone gain can be maximized by utilizing two pharmaceuticals targeting different cellular signaling pathways. From a clinical perspective, a combination treatment may be warranted in patients where the osteoanabolic effect of either monotherapy is not sufficient, or if a dose-reduction is required due to adverse effects.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Orthopedic Surgery, Aalborg University Hospital, Aalborg, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
11
|
Lee JH, Cho JH, Lee DG. Sclerostin Concentration and Bone Biomarker Trends in Patients with Spinal Cord Injury: A Prospective Study. Healthcare (Basel) 2022; 10:healthcare10060983. [PMID: 35742035 PMCID: PMC9222769 DOI: 10.3390/healthcare10060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Patients with spinal cord injury (SCI) experience a high osteoporosis incidence, which increases fracture risk. Recently, a sclerostin antibody was introduced as a target biomarker to treat osteoporosis. We aimed to determine the serum concentration of sclerostin and factors affecting its concentration over time. This was a prospective cross-sectional study. The inclusion criteria were (1) SCI patients with a grade 3 modified functional ambulatory category score (FAC—patients requiring firm continuous support) and (2) patients whose injury occurred >1 month ago. The exclusion criterion was a history of osteoporosis medication administration within 6 months. The collected data included bone biomarkers (carboxy-terminal collagen crosslinks (CTX), procollagen type 1 intact N-terminal propeptide, and sclerostin), clinical data (FAC, lower extremity motor score), body mass index, SCI duration, and hip bone mineral density (BMD). This study recruited 62 patients with SCI. Sclerostin levels significantly correlated with age, CTX level, and hip BMD. SCI duration was negatively correlated with sclerostin levels. Lower extremity motor scores were not significantly correlated with sclerostin levels. The acute SCI state showed a higher sclerostin level than the chronic SCI state. Sclerostin showed a significant relationship with CTX. In conclusion, age and BMD affect sclerostin concentration in patients with SCI.
Collapse
Affiliation(s)
- Jong Ho Lee
- Department of Laboratory Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jang Hyuk Cho
- Department of Rehabilitation Medicine, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu 42601, Korea;
| | - Dong Gyu Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-3829
| |
Collapse
|
12
|
Alostaz H, Cai L. Biomarkers from Secondary Complications in Spinal Cord Injury. CURRENT PHARMACOLOGY REPORTS 2022; 8:20-30. [PMID: 36147780 PMCID: PMC9491488 DOI: 10.1007/s40495-021-00268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
PURPOSE OF REVIEW In the USA, spinal cord injury (SCI) occurs in 40 people per million every year due to events such as car accidents, falls, violence, or sports injury. Secondary complications that arise from SCI are life-threatening and should be treated as early as possible. In some cases, it is not completely obvious what complication a patient may have until it is too late. Therefore, biomarkers are required to assess the levels of secondary complications after SCI. As there are several complications that pose different warning signs, different biomarkers may be beneficial in early detection, maintenance, and long-term care for patients with SCI. RECENT FINDINGS Numerous studies have been conducted on biomarkers in various SCI and its related complications, such as neuropathic pain and deep vein thrombosis. In recent years, research has expanded with biomarkers discovered by cellular and molecular, genome-wide transcriptomic analysis, bioinformatics, and clinical studies. Biomarkers have allowed early prediction of the severity of secondary complications due to SCI. SUMMARY In this review, we summarize recent studies on the common biomarkers for the secondary complications related to SCI. We highlight the reliable biomarkers that have been tested, e.g., sclerostin, NGF, D-dimer, oncostatin M (OSM), microbiota, and C-reactive protein, which are valuable and with clinical importance. This review also emphasizes continuing research in biomarkers as they can provide valuable cellular and molecular insight into secondary complications after SCI.
Collapse
Affiliation(s)
- Hani Alostaz
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Peng Y, Zhao W, Hu Y, Guo XE, Wang J, Hao K, He Z, Toro C, Bauman WA, Qin W. Administration of High-Dose Methylprednisolone Worsens Bone Loss after Acute Spinal Cord Injury in Rats. Neurotrauma Rep 2022; 2:592-602. [PMID: 35018361 PMCID: PMC8742306 DOI: 10.1089/neur.2021.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The administration of high-dose methylprednisolone (MP) for 24–48 h after traumatic spinal cord injury (SCI) has been shown to improve functional recovery. The known adverse effects of MP on skeletal muscle and the immune system, though, have raised clinically relevant safety concerns. However, the effect of MP administration on SCI-induced bone loss has not been evaluated to date. This study examined the adverse effects of high-dose MP administration on skeletal bone after acute SCI in rodents. Male rats underwent spinal cord transection at T3–T4, which was followed by an intravenous injection of MP and subsequent infusion of MP for 24 h. At 2 days, animals were euthanized and hindlimb bone samples were collected. MP significantly reduced bone mineral density (−6.7%) and induced deterioration of bone microstructure (trabecular bone volume/tissue volume, −18.4%; trabecular number, −19.4%) in the distal femur of SCI rats. MP significantly increased expression in the hindlimb bones of osteoclastic genes receptor activator of nuclear factor-κB ligand (RANKL; +402%), triiodothyronine receptor auxiliary protein (+32%), calcitonin receptor (+41%), and reduced osteoprotegerin/RANKL ratio (−72%) compared to those of SCI-vehicle animals. Collectively, 1 day of high-dose MP at a dose comparable to the dosing regimen prescribed to patients who qualify to receive this treatment approach with acute SCI increased loss of bone mass and integrity below the level of lesion than that of animals that had SCI alone, and was associated with further elevation in the expression of genes involved in pathways associated with osteoclastic bone resorption than that observed in SCI animals.
Collapse
Affiliation(s)
- Yuanzhen Peng
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Wei Zhao
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhiming He
- College of Dentistry, New York University, New York, New York, USA
| | - Carlos Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- *Address correspondence to: Weiping Qin, MD, PhD, James J. Peters Veteran Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| |
Collapse
|
14
|
Sutor TW, Kura J, Mattingly AJ, Otzel DM, Yarrow JF. The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury. Int J Mol Sci 2022; 23:608. [PMID: 35054791 PMCID: PMC8775843 DOI: 10.3390/ijms23020608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/04/2023] Open
Abstract
Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.g., neuromuscular or functional electrical stimulation cycling, rowing, or resistance training, as well as other standing, walking, or partial weight-bearing interventions) that reload the paralyzed limbs and promote muscle recovery and use-dependent neuroplasticity. However, only sparse and relatively inconsistent evidence supports the ability of these physical rehabilitation regimens to influence bone metabolism or to increase bone mineral density (BMD) at the most fracture-prone sites in persons with severe SCI. This review discusses the pathophysiology and cellular/molecular mechanisms that influence bone loss after SCI, describes studies evaluating bone turnover and BMD responses to ABPTs during acute versus chronic SCI, identifies factors that may impact the bone responses to ABPT, and provides recommendations to optimize ABPTs for bone recovery.
Collapse
Affiliation(s)
- Tommy W. Sutor
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Jayachandra Kura
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
| | - Alex J. Mattingly
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Joshua F. Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Singhania P, Bhattacharjee R. Letter to the Editor Regarding "Durability and Delayed Treatment Effects of Zoledronic Acid on Bone Loss After Spinal Cord Injury: A Randomized, Controlled Trial". J Bone Miner Res 2022; 37:167-168. [PMID: 34542188 DOI: 10.1002/jbmr.4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Pankaj Singhania
- Department of Endocrinology and Metabolism, IPGME&R and SSKM Hospital, Kolkata, India
| | - Rana Bhattacharjee
- Department of Endocrinology and Metabolism, IPGME&R and SSKM Hospital, Kolkata, India
| |
Collapse
|
16
|
Bauman WA. Pharmacological approaches for bone health in persons with spinal cord injury. Curr Opin Pharmacol 2021; 60:346-359. [PMID: 34534754 DOI: 10.1016/j.coph.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) results in rapid, marked skeletal deterioration below the level of neurological lesion. Ideally, the most effective therapeutic approach would prevent loss of bone mass and architecture shortly after paralysis. Bisphosphonates preserve bone mineral density at the hip but not at the knee, which is the anatomical site most prone to fracture in the SCI population. Denosumab has recently been reported to prevent bone loss in persons with acute SCI but should be continued for an as yet indeterminate time because discontinuation will result in rapid bone loss. Several other novel approaches to preserving bone at the time of acute SCI should be tested, as well as approaches to reverse bone loss in individuals with chronic SCI.
Collapse
Affiliation(s)
- William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Internal Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA; Departments of Medicine & Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Shams R, Banik NL, Haque A. Implications of enolase in the RANKL-mediated osteoclast activity following spinal cord injury. ACTA ACUST UNITED AC 2021; 45:1453-1457. [PMID: 34539043 PMCID: PMC8445338 DOI: 10.32604/biocell.2021.017659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spinal Cord Injury (SCI) is a debilitating condition characterized by damage to the spinal cord, resulting in loss of function, mobility, and sensation. Although increasingly prevalent in the US, no FDA-approved therapy exists due to the unfortunate complexity of the condition, and the difficulties of SCI may be furthered by the development of SCI-related complications, such as osteoporosis. SCI demonstrates two crucial stages for consideration: the primary stage and the secondary stage. While the primary stage is suggested to be immediate and irreversible, the secondary stage is proposed as a promising window of opportunity for therapeutic intervention. Enolase, a metabolic enzyme upregulated after SCI, performs non-glycolytic functions, promoting inflammatory events via extracellular degradative actions and increased production of inflammatory cytokines and chemokines. Neuron-specific enolase (NSE) serves as a biomarker of functional damage to neurons following SCI, and the inhibition of NSE has been demonstrated to reduce signs of secondary injury of SCI and to ameliorate dysfunction. This Viewpoint article involves enolase activation in the regulation of RANK-RANKL pathway and summarizes succinctly the mechanisms influencing osteoclast-mediated resorption of bone in SCI. Our laboratory proposes that inhibition of enolase activation may reduce SCI-induced inflammatory response and decrease osteoclast activity, limiting the chances of skeletal tissue loss in SCI.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Zhao W, Peng Y, Hu Y, Guo XE, Li J, Cao J, Pan J, Feng JQ, Cardozo C, Jarvis J, Bauman WA, Qin W. Electrical stimulation of hindlimb skeletal muscle has beneficial effects on sublesional bone in a rat model of spinal cord injury. Bone 2021; 144:115825. [PMID: 33348128 PMCID: PMC7868091 DOI: 10.1016/j.bone.2020.115825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI. Notably, ES or ES + TE resulted in the increased mass of the EDL muscles. ES or ES + TE significantly decreased mRNA levels of muscle atrophy markers (e.g., MAFbx and MurF1) in the EDL. Significant decreases in bone mineral density (BMD) (-27%) and trabecular bone volume (-49.3%) at the distal femur were observed in animals 6 weeks post injury. TE, ES and ES + TE treatment significantly increased BMD by +6.4%, +5.4%, +8.5% and bone volume by +22.2%, and +56.2% and+ 60.2%, respectively. Notably, ES alone or ES + TE resulted in almost complete restoration of cortical stiffness estimated by finite element analysis in SCI animals. Osteoblastogenesis was evaluated by colony-forming unit-fibroblastic (CFU-F) staining using bone marrow mesenchymal stem cells obtained from the femur. SCI decreased the CFU-F+ cells by -56.8% compared to sham animals. TE or ES + TE treatment after SCI increased osteoblastogenesis by +74.6% and +67.2%, respectively. An osteoclastogenesis assay revealed significantly increased TRAP+ multinucleated cells (+34.8%) in SCI animals compared to sham animals. TE, ES and TE + ES treatment following SCI markedly decreased TRAP+ cells by -51.3%, -40.3% and -46.9%, respectively. Each intervention greatly reduced the ratio of RANKL to OPG mRNA of sublesional long bone. Collectively, our findings demonstrate that after neurologically complete paralysis, dynamic muscle resistance exercise by ES reduced muscle atrophy, downregulated genes involved in muscle wasting, and restored mechanical loading to sublesional bone to a degree that allowed for the preservation of bone by inhibition of bone resorption and/or by facilitating bone formation.
Collapse
Affiliation(s)
- Wei Zhao
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jiliang Li
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jay Cao
- United States Department of Agriculture Agricultural Research Service Human Nutrition Research Center, Grand Forks, ND, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jian Q Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - William A Bauman
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Qin
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Cirnigliaro CM, La Fountaine MF, Parrott JS, Kirshblum SC, McKenna C, Sauer SJ, Shapses SA, Hao L, McClure IA, Hobson JC, Spungen AM, Bauman WA. Administration of Denosumab Preserves Bone Mineral Density at the Knee in Persons With Subacute Spinal Cord Injury: Findings From a Randomized Clinical Trial. JBMR Plus 2020; 4:e10375. [PMID: 33134767 PMCID: PMC7587457 DOI: 10.1002/jbm4.10375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Persons with neurologically motor-complete spinal cord injury (SCI) have a marked loss of bone mineral density (BMD) of the long bones of the lower extremities, predisposing them to fragility fractures, especially at the knee. Denosumab, a commercially available human monoclonal IgG antibody to receptor activator of nuclear factor-κB ligand (RANKL), may provide an immunopharmacological solution to the rapid progressive deterioration of sublesional bone after SCI. Twenty-six SCI participants with subacute motor-complete SCI were randomized to receive either denosumab (60 mg) or placebo at baseline (BL), 6, and 12 months. Areal bone mineral density (aBMD) by dual energy x-ray absorptiometry (DXA) at 18 months at the distal femur was the primary outcome and aBMD of the proximal tibia and hip were the secondary outcomes analyzed in 18 of the 26 participants (denosumab, n = 10 and placebo, n = 8). The metrics of peripheral QCT (pQCT) were the exploratory outcomes analyzed in a subsample of the cohort (denosumab, n = 7 and placebo n = 7). The mean aBMD (±95% CI) for the denosumab versus the placebo groups demonstrated a significant group × time interactions for the following regions of interest at BL and 18 months: distal femoral metaphysis = mean aBMD 1.187; 95% CI, 1.074 to 1.300 and mean aBMD 1.202; 95% CI, 1.074 to 1.329 versus mean aBMD 1.162; 95% CI, 0.962 to 1.362 and mean aBMD 0.961; 95% CI, 0.763 to 1.159, respectively (p < 0.001); distal femoral epiphysis = mean aBMD 1.557; 95% CI, 1.437 to 1.675 and mean aBMD 1.570; 95% CI, 1.440 to 1.700 versus mean aBMD 1.565; 95% CI, 1.434 to 1.696 and mean aBMD 1.103; 95% CI, 0.898 to 1.309, respectively (p = 0.002); and proximal tibial epiphysis = mean aBMD 1.071; 95% CI, 0.957 to 1.186 and mean aBMD 1.050; 95% CI, 0.932 to 1.168 versus mean aBMD 0.994; 95% CI, 0.879 to 1.109 and mean aBMD 0.760; 95% CI, 0.601 to 0.919, respectively (p < 0.001). Analysis of pQCT imaging revealed a continued trend toward significantly greater loss in total volumetric BMD (vBMD) and trabecular vBMD at the 4% distal tibia region, with a significant percent loss for total bone mineral content. Thus, at 18 months after acute SCI, our findings show that denosumab maintained aBMD at the knee region, the site of greatest clinical relevance in the SCI population. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA
| | - Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA.,Department of Physical Therapy, School of Health and Medical Sciences Seton Hall University South Orange NJ USA.,Departments of Medical Sciences and Neurology Hackensack Meridian School of Medicine at Seton Hall University Nutley NJ USA
| | - J Scott Parrott
- Department of Interdisciplinary Studies School of Health Professions, Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Steven C Kirshblum
- Kessler Institute for Rehabilitation West Orange NJ USA.,Kessler Foundation West Orange NJ USA.,Department of Physical Medicine and Rehabilitation Rutgers New Jersey Medical School Newark NJ USA
| | - Cristin McKenna
- Kessler Institute for Rehabilitation West Orange NJ USA.,Kessler Foundation West Orange NJ USA
| | - Susan J Sauer
- Kessler Institute for Rehabilitation West Orange NJ USA
| | - Sue A Shapses
- Department of Nutritional Sciences, School of Environmental and Biological Sciences Rutgers University New Brunswick NJ USA
| | - Lihong Hao
- Department of Nutritional Sciences, School of Environmental and Biological Sciences Rutgers University New Brunswick NJ USA
| | - Isa A McClure
- Kessler Institute for Rehabilitation West Orange NJ USA
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology University of Delaware Newark DE USA
| | - Ann M Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA.,Departments of Medicine and Rehabilitation and Human Performance Icahn School of Medicine at Mount Sinai New York NY USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury James J. Peters Veterans Affairs Medical Center Bronx NY USA.,Departments of Medicine and Rehabilitation and Human Performance Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
20
|
Zamarioli A, de Andrade Staut C, Volpon JB. Review of Secondary Causes of Osteoporotic Fractures Due to Diabetes and Spinal Cord Injury. Curr Osteoporos Rep 2020; 18:148-156. [PMID: 32147752 DOI: 10.1007/s11914-020-00571-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to gain a better understanding of osteoporotic fractures and the different mechanisms that are driven in the scenarios of bone disuse due to spinal cord injury and osteometabolic disorders due to diabetes. RECENT FINDINGS Despite major advances in understanding the pathogenesis, prevention, and treatment of osteoporosis, the high incidence of impaired fracture healing remains an important complication of bone loss, leading to marked impairment of the health of an individual and economic burden to the medical system. This review underlines several pathways leading to bone loss and increased risk for fractures. Specifically, we addressed the different mechanisms leading to bone loss after a spinal cord injury and diabetes. Finally, it also encompasses the changes responsible for impaired bone repair in these scenarios, which may be of great interest for future studies on therapeutic approaches to treat osteoporosis and osteoporotic fractures.
Collapse
Affiliation(s)
- Ariane Zamarioli
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - José B Volpon
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Peng Y, Zhao W, Hu Y, Li F, Guo XE, Wang D, Bauman WA, Qin W. Rapid bone loss occurs as early as 2 days after complete spinal cord transection in young adult rats. Spinal Cord 2020; 58:309-317. [PMID: 31664187 PMCID: PMC7869834 DOI: 10.1038/s41393-019-0371-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVE This study examined how soon after spinal cord injury (SCI) bone loss occurs, and investigated the underlying molecular mechanism. METHODS Eight-week-old male Wistar rats underwent complete transection of the thoracic spinal cord at T3-4 or sham operation (n = 10-12 per group). Blood, hindlimb bone samples, and bone marrows were collected at 2 and 7 days after SCI. RESULTS The neurologically motor-complete SCI causes loss of bone mass and deterioration of trabecular bone microstructure as early as 2 days after injury; these skeletal defects become more evident at 7 days. These changes are associated with a dramatic increase in levels of bone resorption maker CTX in blood. Alternations of gene expression in hindlimb bone tissues and bone marrow cells at the first week after SCI were examined. Gene expressions responsible for both bone resorption and formation are increased at 2 days post-SCI, and the associated bone loss and bone deterioration are likely the result of higher levels of osteoclastic resorption over osteoblastic formation, as may be extrapolated from findings at molecular levels. CONCLUSIONS Rapid bone loss occurs as early as 2 days after motor-complete SCI and interventions for inhibiting bone resorption and prompting bone formation should start as soon as possible after the injury to prevent bone loss.
Collapse
Affiliation(s)
- Yuanzhen Peng
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Wei Zhao
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fei Li
- Yantaishan Hospital, Yantai, Shandong, China
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Wei Q, Wang B, Hu H, Xie C, Ling L, Gao J, Cao Y. Icaritin promotes the osteogenesis of bone marrow mesenchymal stem cells via the regulation of sclerostin expression. Int J Mol Med 2020; 45:816-824. [PMID: 31985018 PMCID: PMC7015123 DOI: 10.3892/ijmm.2020.4470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Icaritin, a metabolite of icariin, is a potent promoter of bone marrow-derived mesenchymal stem cells (BMSCs) osteogenesis, but the underlying mechanisms remain unclear. To examine the effects of icaritin on osteogenic differentiation, BMSCs were exposed to osteogenic induction medium with or without icaritin pretreatment in the present study. It was identified that icaritin (0.01-1 µM) exhibited no cytotoxicity on the proliferative abilities of the BMSCs. Icaritin at 1 µM increased alkaline phosphatase activity, mineral deposition and osteoblast-specific gene expression. Treatment with 1 µM Icaritin upregulated osteocalcin, RUNX family transcription factor 2, tissue-nonspecific alkaline phosphatase and β-catenin, and suppressed sclerostin (SOST) gene expression in different stages of osteogenic differentiation. It was also demonstrated that SOST over-expression inhibited icaritin-induced osteogenesis. The western blot analysis data suggested that ICI 182780, which causes estrogen receptor α (ERα) degradation, reversed the icaritin-induced decrease in SOST expression, which was inconsistent with the results of immunofluorescence analysis. In conclusion, icaritin was demonstrated to promote the osteogenesis of hBMSCs by downregulating SOST expression, and icaritin-induced suppression of SOST was regulated in part via the Wnt/β-catenin/ERα axis.
Collapse
Affiliation(s)
- Qiushi Wei
- Hip Preserving Ward, No. 3 Orthopedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Bin Wang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Hailan Hu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Chuhai Xie
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Long Ling
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Jianliang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yanming Cao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
23
|
Invernizzi M, de Sire A, Renò F, Cisari C, Runza L, Baricich A, Carda S, Fusco N. Spinal Cord Injury as a Model of Bone-Muscle Interactions: Therapeutic Implications From in vitro and in vivo Studies. Front Endocrinol (Lausanne) 2020; 11:204. [PMID: 32351450 PMCID: PMC7174687 DOI: 10.3389/fendo.2020.00204] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injuries (SCIs) represent a variety of conditions related to the damage of the spinal cord with consequent musculoskeletal repercussions. The bone and muscle tissues share several catabolic pathways that lead to variable degrees of disability in SCI patients. In this review article, we provide a comprehensive characterization of the available treatment options targeting the skeleton and the bone in the setting of SCI. Among the pharmacological intervention, bisphosphonates, anti-sclerostin monoclonal antibodies, hydrogen sulfide, parathyroid hormone, and RANKL pathway inhibitors represent valuable options for treating bone alterations. Loss phenomena at the level of the muscle can be counteracted with testosterone, anabolic-androgenic steroids, and selective androgen receptor modulators. Exercise and physical therapy are valuable strategies to increase bone and muscle mass. Nutritional interventions could enhance SCI treatment, particularly in the setting of synergistic and multidisciplinary interventions, but there are no specific guidelines available to date. The development of multidisciplinary recommendations is required for a proper clinical management of SCI patients.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- *Correspondence: Marco Invernizzi
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rehabilitation Unit, “Mons. L. Novarese” Hospital, Vercelli, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Baricich
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Stefano Carda
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neuroscience. Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nicola Fusco
- Division of Pathology, IEO - European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Butezloff MM, Volpon JB, Ximenez JPB, Astolpho K, Correlo VM, Reis RL, Silva RB, Zamarioli A. Gene expression changes are associated with severe bone loss and deficient fracture callus formation in rats with complete spinal cord injury. Spinal Cord 2019; 58:365-376. [PMID: 31700148 DOI: 10.1038/s41393-019-0377-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Animal study. OBJECTIVES To investigate the effects of SCI on bone quality and callus formation. SETTING University and hospital-based research center, Ribeirão Preto Medical School, Brazil. METHODS Rats sustaining a complete SCI for 10 days received a fracture at the femoral diaphysis and were followed-up for 14 days. Bone callus and contralateral nonfractured tibia were assessed by DXA, µCT, ELISA, histomorphometry, immunohistochemistry, biomechanical test, and gene expression. RESULTS SCI downregulated osteoblastic-related gene expression in the nonfractured tibias, associated with a twofold increase in osteoclasts and overexpression of RANK/RANKL, which resulted in lower bone mass, impaired microarchitecture, and weaker bones. On day 14 postfracture, we revealed early and increased trabecular formation in the callus of SCI rats, despite a marked 75% decrease in OPG-positive cells, and 41% decrease in density. Furthermore, these calluses showed higher porosity and thinner newly formed trabeculae, leading to lower strength and angle failure. CONCLUSIONS SCI-induced bone loss resulted from increased bone resorption and decreased bone formation. We also evidenced accelerated bone healing in the SCI rats, which may be attributed to the predominant intramembranous ossification. However, the newly formed bone was thinner, less dense, and more porous than those in the non-SCI rats. As a result, these calluses are weaker and tolerate lesser torsion deformation than the controls, which may result in recurrent fractures and characterizes a remarkable feature that may severely impair life quality.
Collapse
Affiliation(s)
- Mariana M Butezloff
- School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - José B Volpon
- School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - João P B Ximenez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kelly Astolpho
- School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Braga, Portugal
| | - Raquel B Silva
- School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ariane Zamarioli
- School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Osteoporosis in Veterans with Spinal Cord Injury: an Overview of Pathophysiology, Diagnosis, and Treatments. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-019-09265-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Otzel DM, Conover CF, Ye F, Phillips EG, Bassett T, Wnek RD, Flores M, Catter A, Ghosh P, Balaez A, Petusevsky J, Chen C, Gao Y, Zhang Y, Jiron JM, Bose PK, Borst SE, Wronski TJ, Aguirre JI, Yarrow JF. Longitudinal Examination of Bone Loss in Male Rats After Moderate-Severe Contusion Spinal Cord Injury. Calcif Tissue Int 2019; 104:79-91. [PMID: 30218117 PMCID: PMC8349506 DOI: 10.1007/s00223-018-0471-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Christine F Conover
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Fan Ye
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Ean G Phillips
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Taylor Bassett
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Russell D Wnek
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Micah Flores
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Andrea Catter
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Payal Ghosh
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Alexander Balaez
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Jason Petusevsky
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Cong Chen
- Department of Orthopedics and Rehabilitation, University of Florida, PO Box 112727, Gainesville, FL, 32611, USA
| | - Yongxin Gao
- University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Yi Zhang
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
| | - Prodip K Bose
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, HSC PO Box 100236, Gainesville, FL, 32610, USA
| | - Stephen E Borst
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL, 32611, USA
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, PO Box 100144, Gainesville, FL, 32610, USA
| | - Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Research 151, Gainesville, FL, 32608, USA.
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL, 32610, USA.
| |
Collapse
|