1
|
Schaafsma FL, Flores H, David CL, Castellani G, Sakinan S, Meijboom A, Niehoff B, Cornils A, Hildebrandt N, Schmidt K, Snoeijs-Leijonmalm P, Ehrlich J, Ashjian CJ. Insights into the diet and feeding behavior of immature polar cod (Boreogadus saida) from the under-ice habitat of the central Arctic Ocean. JOURNAL OF FISH BIOLOGY 2024; 105:907-930. [PMID: 38922867 DOI: 10.1111/jfb.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under-ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immature B. saida and the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth of B. saida in this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immature B. saida may be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival of B. saida will not depend on prey presence alone, but also on prey catchability, digestibility, and energy content.
Collapse
Affiliation(s)
| | - Hauke Flores
- Department of Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Carmen L David
- Marine Animal Ecology Group, Wageningen University, Wageningen, The Netherlands
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Giulia Castellani
- Department of Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | | | | | - Barbara Niehoff
- Department of Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Astrid Cornils
- Department of Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Nicole Hildebrandt
- Department of Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | | | - Julia Ehrlich
- Department of Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Centre for Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Carin J Ashjian
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Manno C, Carlig E, Falco PP, Castagno P, Budillon G. Life strategy of Antarctic silverfish promote large carbon export in Terra Nova Bay, Ross Sea. Commun Biol 2024; 7:450. [PMID: 38605093 PMCID: PMC11009349 DOI: 10.1038/s42003-024-06122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Antarctic silverfish Pleuragramma antarcticum is the most abundant pelagic fish in the High Antarctic shelf waters of the Southern Ocean, where it plays a pivotal role in the trophic web as the major link between lower and higher trophic levels. Despite the ecological importance of this species, knowledge about its role in the biogeochemical cycle is poor. We determine the seasonal contribution of Antarctic silverfish to carbon flux in terms of faeces and eggs, from samples collected in the Ross Sea. We find that eggs and faeces production generate a flux accounting for 41% of annual POC flux and that the variability of this flux is modulated by spawning strategy. This study shows the important role of this organism as a vector for carbon flux. Since Antarctic silverfish are strongly dependent on sea-ice, they might be especially sensitive to climatic changes. Our results suggest that a potential decrease in the biomass of this organism is likely to impact marine biogeochemical cycles, and this should be factored in when assessing Southern Ocean carbon budget.
Collapse
Affiliation(s)
- Clara Manno
- British Antarctic Survey, Natural Environment Research Council, NERC, Cambridge, UK.
| | - Erica Carlig
- National Research Council (CNR) of Italy, Institute for the study of the Anthropic impacts and the Sustainability of the marine environment (IAS), Genoa, Italy
| | - Pier Paolo Falco
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Pasquale Castagno
- Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Messina, Italy
| | - Giorgio Budillon
- Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
3
|
Biuw M, Lindstrøm U, Jackson JA, Baines M, Kelly N, McCallum G, Skaret G, Krafft BA. Estimated summer abundance and krill consumption of fin whales throughout the Scotia Sea during the 2018/2019 summer season. Sci Rep 2024; 14:7493. [PMID: 38553485 PMCID: PMC10980806 DOI: 10.1038/s41598-024-57378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Among large cetaceans in the Southern Hemisphere, fin whales were the most heavily exploited in terms of numbers taken during the period of intense industrial whaling. Recent studies suggest that, whilst some humpback whale populations in the Southern Hemisphere appears to have almost completely recovered to their estimated pre-whaling abundance, much less is known about the status of Southern Hemisphere fin whales. Circumpolar estimates in the 1990s suggest an abundance of about 5500 animals south of 60° S, while the IDCR/SOWER-2000 survey for the Scotia Sea and Antarctic Peninsula areas estimated 4670 fin whales within this region in the year 2000. More recent studies in smaller regions indicate higher densities, suggesting that previous estimates are overly conservative and/or that fin whales are undergoing a substantial increase. Here we report findings from a recent multi-vessel single-platform sightings survey carried out as part of the 2019 Area 48 Survey for Antarctic krill. While fin whales were encountered throughout the entire survey area, which covered the majority of CCAMLR Management Area 48, they were particularly abundant around the South Orkney Islands and the eastern Bransfield Strait. Large feeding aggregations were also encountered within the central Scotia Sea between South Orkney Islands and South Georgia. Distance sampling analyses suggest an average fin whale density throughout the Scotia Sea of 0.0256 ( CV = 0.149 ) whales per km2, which agrees well with recent density estimates reported from smaller sub-regions within the Scotia Sea. Design-based distance sampling analyses resulted in an estimated total fin whale abundance of 53,873 (CV = 0.15, 95% CI 40,233-72,138), while a density surface model resulted in a slightly lower estimate of 50,837 (CV: 0.136, 95% CI 38,966-66,324). These estimates are at least an order of magnitude greater than the previous estimate from the same region based on the IDCR/SOWER-2000 data, suggesting that fin whales are undergoing a substantial abundance increase in the South Atlantic. This may have important implications for the assessment of cetacean population trends, but also for CCAMLRs spatial overlap analysis process and efforts to implement a Feedback Management system for Antarctic krill. Our abundance estimate suggests an annual summer krill consumption by fin whales in the Antarctic Peninsula and Scotia Sea area of 7.97 (95% CI 4.94-11.91) million tonnes, which would represent around 20 times the total krill catch taken by the commercial fishery in Area 48 in the same season, or about 12.7% of the 2019 summer krill standing stock estimated from data collected during the same survey. This highlights the crucial importance of including cetacean krill predators in assessment and management efforts for living marine resources in the Southern Ocean, and particularly stresses the urgent need for a re-appraisal of abundance, distribution and ecological role of Southern Hemisphere fin whales.
Collapse
Affiliation(s)
- Martin Biuw
- Institute of Marine Research, Fram Centre, P.O. Box 6606, Stakkevollan, NO-9296, Tromsø, Norway.
| | - Ulf Lindstrøm
- Institute of Marine Research, Fram Centre, P.O. Box 6606, Stakkevollan, NO-9296, Tromsø, Norway
| | | | - Mick Baines
- Wildscope, Los Helechos 49, El Cuartón, Tarifa, Cádiz, Spain
| | - Nat Kelly
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, TAS, 7050, Australia
| | - George McCallum
- Whalephoto Marine Photography, Grünheiderstrasse 7, 17291, Oberuckersee, Germany
| | - Georg Skaret
- Institute of Marine Research, Nordnes, Bergen, P.O. Box 1870, Norway
| | - Bjørn A Krafft
- Institute of Marine Research, Nordnes, Bergen, P.O. Box 1870, Norway
| |
Collapse
|
4
|
Lazo-Andrade J, Barría P, Urzúa Á. Bioenergetic status of swordfish (Xiphias gladius) during the El Niño Southern Oscillation (ENSO) in the Southeast Pacific Ocean: An interannual scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170354. [PMID: 38307276 DOI: 10.1016/j.scitotenv.2024.170354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
The bioenergetic status of fishes has been used to study their physiological responses to temporal changes at interannual scales. We evaluated the physiological responses of swordfish at an interannual scale from the El Niño Southern Oscillation (ENSO): warm phase "El Niño" in 2015 to the cold phase "La Niña" in 2017 and under neutral conditions as well in 2019. Herein, muscle samples from females and males were analyzed to evaluate the bioenergetic status from their biochemical constituents (L: lipids, P: proteins and G: glucose, E: total energy, and FAs: fatty acid profile), elemental composition (C: carbon, N: nitrogen, H: hydrogen), and nutritional indices (L:P, C:N, DHA/C18:1n-3, DHA/C16:0 and ω3/ω6 FAs). The physiological response of swordfish showed an interaction between the year and sex. Herein, the L and E showed similar trends, with the lowest female values found in 2015 and the highest in 2019. Contrary, males showed their highest values in 2015 and lowest in 2019. FA profile differed among years and highlighted significant differences between females and males in 2019. Although the female L:P and C:N ratios were lower in 2015 than in 2017, a decreasing trend in these ratios was found from 2017 to 2019. Moreover, DHA/C18:1n-3, DHA/C16:0 and ω3/ω6 showed higher ratios in females than males in 2019. Our results coincide with the beginning of the ENSO phases; it is therefore likely that the swordfish diet changed in response to the disturbances in environmental conditions. Furthermore, the degree of individual dietary specialization found under the neutral conditions could indicate differences in the feeding behaviors of males vs. females, which may be an adaptive strategy in this species. These findings will aid in understanding the bioenergetic status of swordfish under different climatic scenarios and the current global warming, providing relevant information for the management of this resource.
Collapse
Affiliation(s)
- Jorge Lazo-Andrade
- Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | | | - Ángel Urzúa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| |
Collapse
|
5
|
Browning TJ, Al-Hashem AA, Achterberg EP, Carvalho PC, Catry P, Matthiopoulos J, Miller JAO, Wakefield ED. The role of seabird guano in maintaining North Atlantic summertime productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165309. [PMID: 37406699 DOI: 10.1016/j.scitotenv.2023.165309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Nutrients supplied via seabird guano increase primary production in some coastal ecosystems. A similar process may occur in the open ocean. To investigate this directly, we first measured bulk and leachable nutrient concentrations in guano sampled in the North Atlantic. We found that guano was strongly enriched in phosphorus, which was released as phosphate in solution. Nitrogen release was dominated by reduced forms (ammonium and urea) whilst release of nitrate was relatively low. A range of trace elements, including the micronutrient iron, were released. Using in-situ bioassays, we then showed that supply of fresh guano to ambient seawater increases phytoplankton biomass and photochemical efficiencies. Based on these results, modelled seabird distributions, and known defecation rates, we estimate that on annual scales guano is a minor source of nutrients for the surface North Atlantic. However, on shorter timescales in late spring/summer it could be much more important: Estimates of upper-level depositions of phosphorus by seabirds were three orders of magnitude higher than modelled aerosol deposition and comparable to diffusion from deeper waters.
Collapse
Affiliation(s)
- Thomas J Browning
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Kiel, Germany.
| | - Ali A Al-Hashem
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Kiel, Germany
| | - Eric P Achterberg
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Kiel, Germany
| | - Paloma C Carvalho
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Paulo Catry
- Marine and Environmental Sciences Centre (MARE) / Aquatic Research Network (ARNET), ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal
| | - Jason Matthiopoulos
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Julie A O Miller
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Ewan D Wakefield
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, United Kingdom; Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
6
|
Lazo-Andrade J, Guzmán-Rivas FA, Barría P, Urzúa Á. Variability in the energy reserves of swordfish (Xiphias gladius) of the southeastern Pacific Ocean: A temporal and intra-individual perspective. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106081. [PMID: 37433241 DOI: 10.1016/j.marenvres.2023.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
The temporal dynamics of energy reserves are associated with the physiological processes (i.e., reproduction) in marine fishes, in which storage organs play a key role for efficient energy investment. We evaluated the temporal (i.e., seasons) and intra-individual (i.e., organs) dynamics of adult female swordfish (Xiphias gladius) during its feeding period off the Chilean coast in the southeastern Pacific Ocean (SEPO). The biochemical composition (i.e., lipids, proteins, and glucose), energy content and fatty acid profile of the muscle, liver and gonad were evaluated during the austral autumn, winter, and spring. Our results showed principally an intra-individual effect in both the muscle and liver in the autumn and spring. Herein, a trend of higher amounts of lipids and total energy were found in the muscle, while the liver showed greater protein and glucose contents. Consequently, the muscle showed a higher saturated, monounsaturated, and polyunsaturated fatty acid contents than the liver. Although the gonad showed no significant temporal effect in the lipids and proteins contents, an increasing trend of each biochemical constituent, fatty acid group and gonadosomatic index were found from autumn to winter. Consistently, the glucose and total energy content as well Fulton's condition factor were significantly higher in winter. These findings reflect the spatial-temporal physiological dynamic of swordfish based on the storage of energy reserves in different organs during its feeding period. In this way, the products obtained from swordfish could have an added value depending on the season and capture zone, which could benefit the exploitation and regulation measures of this resource under an ecological approach of conservation and sustainability in the SEPO.
Collapse
Affiliation(s)
- Jorge Lazo-Andrade
- Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Fabián A Guzmán-Rivas
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | | | - Ángel Urzúa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| |
Collapse
|
7
|
Lin D, Zang N, Zhu K, Li G, Chen X. Energy acquisition strategy for reproduction in a semelparous squid. Front Zool 2022; 19:28. [DOI: 10.1186/s12983-022-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Energy demand for reproduction leads to a wide diversity of foraging and life-history strategy among wild animals, linking to a common objective to maximize reproductive success. Semelparous squid species in particular can use up to 50% of the total energy intake for reproduction. However, the energy acquisition strategy for reproduction is still a controversial issue regarding whether the squid shift in diet ontogenetically. Here we used Argentinean shortfin squid (Illex argentinus) as a case study to investigate the strategy of energy acquisition for reproduction, by analyzing energy density of the squid’s reproductive tissues including ovary, nidamental glands and oviduct eggs, and stable isotopes and fatty acids of the squid’s ovary.
Results
The reproductive energy (the sum of the energy accumulated in ovary, nidamental glands and oviduct eggs) increased significantly with maturation. The ovary nitrogen stable isotopes (δ15N) showed a significant increase with maturation, but the increase by maturity stage was not equal to the typical enrichment of about 3‰ per trophic level. Isotopic niche width showed an increasing trend with maturation, and isotopic niche space exhibited greater overlap at advanced maturity stages. The relative amounts of 16:0, 20:5n3 and 20:4n6 in the ovary, tracing for carnivores and top predators, increased after the onset of maturation. The overall fatty acid profiles of the ovary showed significant differences among maturity stages, but obvious overlaps were found for mature squids. Mixed-effects model results revealed that reproductive energy was positively correlated with δ15N values. The reproductive energy was also positively related to the relative amounts of 18:0 and 20:4n6, respectively tracing for herbivores and top predators.
Conclusions
Our results validate that the squid shifts to feed on higher trophic prey for reproduction as energy demand increases once maturation commences. However, the squid does not shift feeding habits at a trophic level but instead broadens prey spectrum, coupled with increasing intake of higher trophic prey items, to meet the energy demand for reproduction. Such energy acquisition strategy may be selected by the squid to maximize reproductive success by balancing energy intake and expenditure from foraging, warranting future studies that aim to clarify such strategy for reproduction among semelparous species.
Collapse
|
8
|
Abstract
AbstractDespite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
Collapse
|
9
|
Hubot N, Giering SLC, Lucas CH. Similarities between the biochemical composition of jellyfish body and mucus. JOURNAL OF PLANKTON RESEARCH 2022; 44:337-344. [PMID: 35356360 PMCID: PMC8962712 DOI: 10.1093/plankt/fbab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 05/31/2023]
Abstract
Recognition of the importance of jellyfish in marine ecosystems is growing. Yet, the biochemical composition of the mucus that jellyfish constantly excrete is poorly characterized. Here we analyzed the macromolecular (proteins, lipids and carbohydrates) and elemental (carbon and nitrogen) composition of the body and mucus of five scyphozoan jellyfish species (Aurelia aurita, Chrysaora fulgida, Chrysaora pacifica, Eupilema inexpectata and Rhizostoma pulmo). We found that the relative contribution of the different macromolecules and elements in the jellyfish body and mucus was similar across all species, with protein being the major component in all samples (81 ± 4% of macromolecules; 3.6 ± 3.1% of dry weight, DW) followed by lipids (13 ± 4% of macromolecules; 0.5 ± 0.4%DW) and carbohydrates (6 ± 3% of macromolecules; 0.3 ± 0.4%DW). The energy content of the jellyfish matter ranged from 0.2 to 3.1 KJ g-1 DW. Carbon and nitrogen content was 3.7 ± 3.0 and 1.0 ± 0.8%DW, respectively. The average ratios of protein:lipid:carbohydrate and carbon:nitrogen for all samples were 14.6:2.3:1 and 3.8:1, respectively. Our study highlights the biochemical similarity between the jellyfish body and mucus and provides convenient and valuable ratios to support the integration of jellyfish into trophic and biogeochemical models.
Collapse
Affiliation(s)
| | - Sarah L C Giering
- National Oceanography Centre, Waterfront Campus, Southampton SO14 3ZH, UK
| | - Cathy H Lucas
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Waterfront Campus, Southampton SO14 3ZH, UK
| |
Collapse
|
10
|
Riccioni G, Stagioni M, Manfredi C, Tinti F, Piccinetti C, Libralato S. DNA metabarcoding suggests dietary niche partitioning in the Adriatic European hake. Sci Rep 2022; 12:1343. [PMID: 35079081 PMCID: PMC8789918 DOI: 10.1038/s41598-022-05346-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The Northern Adriatic Sea (FAO Geographical Sub-Area 17) is one of the most productive fishing areas of the Mediterranean Sea and it includes a broad diversity of habitats. In the Northern Adriatic basin, the Pomo Pit (200-273 m of depth) is one of the most important areas of aggregation for some demersal stocks shared in the Adriatic Sea and it is an important spawning/nursery area of the European hake (Merluccius merluccius). Through a metabarcoding approach we investigated the feeding habits of European hake, both inside and outside the Pomo Pit, and their temporal variability comparing samples collected in 2016 and 2014. Our analyses proved the presence of an ontogenetic shift from a diet based mainly on crustaceans in juveniles to a more piscivorous feeding behaviour in adult hakes and suggested the presence of a specific niche partitioning and food preferences between hakes living inside and outside the Pomo Pit. The main differences among adult hakes refer to the presence of molluscs in the stomachs of hakes collected within the Pomo Pit and the presence of high depth prey species (i.e., Micromesistius poutassou). Metabarcoding revealed the relevant ecological role played by the Pomo Pit in M. merluccius feeding behaviour and ontogenetic development, promoting a careful ecosystem-based management of fisheries in this area through focused conservation measures.
Collapse
Affiliation(s)
- Giulia Riccioni
- Department of Biological, Geological and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, viale Adriatico 1/n, 61032, Fano, Italy.
- BioDNA - Centro di Ricerca sulla Biodiversità e DNA Antico, Facoltà di scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza, Italy.
| | - Marco Stagioni
- Department of Biological, Geological and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, viale Adriatico 1/n, 61032, Fano, Italy
- Co.N.I.S.Ma- URL Fano, Laboratory of Marine Biology and Fisheries, viale Adriatico 1/n, 61032, Fano, Italy
| | - Chiara Manfredi
- Department of Biological, Geological and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, viale Adriatico 1/n, 61032, Fano, Italy
- Co.N.I.S.Ma- URL Fano, Laboratory of Marine Biology and Fisheries, viale Adriatico 1/n, 61032, Fano, Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Corrado Piccinetti
- Department of Biological, Geological and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, viale Adriatico 1/n, 61032, Fano, Italy
| | - Simone Libralato
- National Institute of Oceanography and Applied Geophysics - OGS, Via Beirut 2/4 (Ex-Sissa building), 34151, Trieste, Italy
| |
Collapse
|
11
|
Schaafsma FL, David CL, Kohlbach D, Ehrlich J, Castellani G, Lange BA, Vortkamp M, Meijboom A, Fortuna-Wünsch A, Immerz A, Cantzler H, Klasmeier A, Zakharova N, Schmidt K, Van de Putte AP, van Franeker JA, Flores H. Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species. Polar Biol 2022; 45:203-224. [PMID: 35210695 PMCID: PMC8827386 DOI: 10.1007/s00300-021-02984-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022]
Abstract
Allometric relationships between body properties of animals are useful for a wide variety of purposes, such as estimation of biomass, growth, population structure, bioenergetic modelling and carbon flux studies. This study summarizes allometric relationships of zooplankton and nekton species that play major roles in polar marine food webs. Measurements were performed on 639 individuals of 15 species sampled during three expeditions in the Southern Ocean (winter and summer) and 2374 individuals of 14 species sampled during three expeditions in the Arctic Ocean (spring and summer). The information provided by this study fills current knowledge gaps on relationships between length and wet/dry mass of understudied animals, such as various gelatinous zooplankton, and of animals from understudied seasons and maturity stages, for example, for the krill Thysanoessa macrura and larval Euphausia superba caught in winter. Comparisons show that there is intra-specific variation in length–mass relationships of several species depending on season, e.g. for the amphipod Themisto libellula. To investigate the potential use of generalized regression models, comparisons between sexes, maturity stages or age classes were performed and are discussed, such as for the several krill species and T. libellula. Regression model comparisons on age classes of the fish E. antarctica were inconclusive about their general use. Other allometric measurements performed on carapaces, eyes, heads, telsons, tails and otoliths provided models that proved to be useful for estimating length or mass in, e.g. diet studies. In some cases, the suitability of these models may depend on species or developmental stages.
Collapse
|
12
|
McCormack SA, Melbourne-Thomas J, Trebilco R, Griffith G, Hill SL, Hoover C, Johnston NM, Marina TI, Murphy EJ, Pakhomov EA, Pinkerton M, Plagányi É, Saravia LA, Subramaniam RC, Van de Putte AP, Constable AJ. Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graphical AbstractGraphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.
Collapse
|
13
|
Lauritano C, Roncalli V, Ambrosino L, Cieslak MC, Ianora A. First De Novo Transcriptome of the Copepod Rhincalanus gigas from Antarctic Waters. BIOLOGY 2020; 9:biology9110410. [PMID: 33266516 PMCID: PMC7700397 DOI: 10.3390/biology9110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Simple Summary Compared to more accessible sites, organisms inhabiting Antarctic waters have been poorly investigated. This study provides the first molecular resource (transcriptome from whole individual) for the eucalanoid copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. Sequence analyses identified possible adaptation strategies adopted by the organism to cope with cold environments. Among those, we identified in R. gigas transcriptome three predicted genes encoding for antifreeze proteins and gene duplication within the glutathione metabolism pathway. This new molecular resource, provided here, will be useful to study the physiology, ecology, and biology of R. gigas and it increases the information available for polar environments. Abstract Antarctic waters are the largest almost untapped diversified resource of our planet. Molecular resources for Antarctic organisms are very limited and mostly represented by sequences used for species genotyping. In this study, we present the first transcriptome for the copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. This transcriptome represents also the first molecular resource for an eucalanoid copepod. The transcriptome is of high quality and completeness. The presence of three predicted genes encoding antifreeze proteins and gene duplication within the glutathione metabolism pathway are suggested as possible adaptations to cope with this harsh environment. The R. gigas transcriptome represents a powerful new resource for investigating the molecular basis associated with polar biological processes and ecology.
Collapse
Affiliation(s)
- Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-5833-221
| | - Vittoria Roncalli
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Matthew C. Cieslak
- Pacific Biosciences Research Center, University of Hawai’i at Manoa, 1993 East-West Rd., Honolulu, HI 96822, USA;
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
14
|
Tarroux A, Cherel Y, Fauchald P, Kato A, Love OP, Ropert‐Coudert Y, Spreen G, Varpe Ø, Weimerskirch H, Yoccoz NG, Zahn S, Descamps S. Foraging tactics in dynamic sea‐ice habitats affect individual state in a long‐ranging seabird. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arnaud Tarroux
- Department of Arctic Ecology ‐ Tromsø Norwegian Institute for Nature Research Tromsø Norway
- Biodiversity Section Norwegian Polar Institute Tromsø Norway
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC) UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - Per Fauchald
- Department of Arctic Ecology ‐ Tromsø Norwegian Institute for Nature Research Tromsø Norway
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé (CEBC) UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - Oliver P. Love
- Department of Biological Sciences University of Windsor Windsor ON Canada
| | - Yan Ropert‐Coudert
- Centre d'Etudes Biologiques de Chizé (CEBC) UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - Gunnar Spreen
- Biodiversity Section Norwegian Polar Institute Tromsø Norway
- Institute of Environmental Physics University of Bremen Bremen Germany
| | - Øystein Varpe
- Department of Biological Sciences University of Bergen & Norwegian Institute for Nature Research Bergen Norway
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé (CEBC) UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - Nigel G. Yoccoz
- Department of Arctic and Marine Biology University of Tromsø ‐ The Arctic University of Norway Tromsø Norway
| | - Sandrine Zahn
- Institut Pluridisciplinaire Hubert Curien Université de StrasbourgUMR7178 CNRS Strasbourg France
| | | |
Collapse
|
15
|
The buoyancy-based biotope axis of the evolutionary radiation of Antarctic cryonotothenioid fishes. Polar Biol 2020. [DOI: 10.1007/s00300-020-02702-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Machovsky-Capuska GE, Raubenheimer D. The Nutritional Ecology of Marine Apex Predators. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:361-387. [PMID: 31487471 DOI: 10.1146/annurev-marine-010318-095411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apex predators play pivotal roles in marine ecosystems, mediated principally through diet and nutrition. Yet, compared with terrestrial animals, the nutritional ecology of marine predators is poorly understood. One reason is that the field has adhered to an approach that evaluates diet principally in terms of energy gain. Studies in terrestrial systems, by contrast, increasingly adopt a multidimensional approach, the nutritional geometry framework, that distinguishes specific nutrients and calories. We provide evidence that a nutritional approach is likewise relevant to marine apex predators, then demonstrate how nutritional geometry can characterize the nutrient and energy content of marine prey. Next, we show how this framework can be used to reconceptualize ecological interactions via the ecological niche concept, and close with a consideration of its application to problems in marine predator research.
Collapse
Affiliation(s)
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia;
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Diversified feeding strategies of Pleuragramma antarctica (Nototheniidae) in the Southern Ocean. Polar Biol 2019. [DOI: 10.1007/s00300-019-02579-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Hays GC, Doyle TK, Houghton JD. A Paradigm Shift in the Trophic Importance of Jellyfish? Trends Ecol Evol 2018; 33:874-884. [DOI: 10.1016/j.tree.2018.09.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
|