1
|
Schwabe AL, Naibauer SK, McGlaughlin ME, Gilbert AN. Human olfactory discrimination of genetic variation within Cannabis strains. Front Psychol 2022; 13:942694. [PMID: 36389460 PMCID: PMC9651054 DOI: 10.3389/fpsyg.2022.942694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis sativa L. is grown and marketed under a large number of named strains. Strains are often associated with phenotypic traits of interest to consumers, such as aroma and cannabinoid content. Yet genetic inconsistencies have been noted within named strains. We asked whether genetically inconsistent samples of a commercial strain also display inconsistent aroma profiles. We genotyped 32 samples using variable microsatellite regions to determine a consensus strain genotype and identify genetic outliers (if any) for four strains. Results were used to select 15 samples for olfactory testing. A genetic outlier sample was available for all but one strain. Aroma profiles were obtained by 55 sniff panelists using quantitative sensory evaluation of 40 odor descriptors. Within a strain, aroma descriptor frequencies for the genetic outlier were frequently at odds with those of the consensus samples. It appears that within-strain genetic differences are associated with differences in aroma profile. Because these differences were perceptible to untrained panelists, they may also be noticed by retail consumers. Our results could help the cannabis industry achieve better control of product consistency.
Collapse
Affiliation(s)
- Anna L. Schwabe
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
- *Correspondence: Anna L. Schwabe,
| | - Samantha K. Naibauer
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
| | | | | |
Collapse
|
2
|
Gunasekera B, Davies C, Blest-Hopley G, Veronese M, Ramsey NF, Bossong MG, Radua J, Bhattacharyya S. Task-independent acute effects of delta-9-tetrahydrocannabinol on human brain function and its relationship with cannabinoid receptor gene expression: A neuroimaging meta-regression analysis. Neurosci Biobehav Rev 2022; 140:104801. [PMID: 35914625 DOI: 10.1016/j.neubiorev.2022.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
The neurobiological mechanisms underlying the effects of delta-9-tetrahydrocannabinol (THC) remain unclear. Here, we examined the spatial acute effect of THC on human regional brain activation or blood flow (hereafter called 'activation signal') in a 'core' network of brain regions from 372 participants, tested using a within-subject repeated measures design under experimental conditions. We also investigated whether the neuromodulatory effects of THC are related to the local expression of the cannabinoid-type-1 (CB1R) and type-2 (CB2R) receptors. Finally, we investigated the dose-response relationship between THC and key brain substrates. These meta-analytic findings shed new light on the localisation of the effects of THC in the human brain, suggesting that THC has neuromodulatory effects in regions central to many cognitive tasks and processes, related to dose, with greater effects in regions with higher levels of CB1R expression.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Centre for Neuroimaging Sciences, King's College London, UK; Department of Information Engineering, University of Padua, Italy
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| |
Collapse
|
3
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
4
|
Haghshenas Bilehsavar S, Batouli SA, Soukhtanlou M, Alavi S, Oghabian M. Different Olfactory Perception in Heroin Addicts Using Functional Magnetic Resonance Imaging. Basic Clin Neurosci 2022; 13:257-268. [PMID: 36425954 PMCID: PMC9682317 DOI: 10.32598/bcn.12.6.2210.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Addiction is a mental disorder that has many adverse effects on brain health. It alters brain structure and deteriorates brain functionality. Impairment of brain cognition in drug addiction is illustrated in many previous works; however, olfactory perception in addiction and, in particular, its neuronal mechanisms have rarely been studied. METHODS In this experiment, we recruited 20 heroin addicts and 20 normal controls of the same sex, age, handedness, and socioeconomic status and compared their brain function while perceiving non-craving odors during the functional magnetic resonance imaging (fMRI). We intended to define the default olfactory system performance in addicts compared to healthy people. RESULTS Our study showed an overall larger activation in addicts when processing olfactory stimuli. In particular, and when comparing the two groups, the right anterior cingulate and right superior frontal gyrus had higher activations than normal, whereas the left lingual gyrus and left cerebellum showed stronger activations in the addicts. CONCLUSION The result of this study can unveil the missing components in addiction brain circuitry. This information is helpful in better understanding the neural mechanisms of addiction and may be advantageous in designing programs for addiction prevention or clinical treatment. HIGHLIGHTS Addiction is a mental disorder with cognitive, clinical, and social adverse effects.Drugs affect the functional brain networks by altering the level of neurotransmitters or by over-exciting the brain's reward system.Addiction could be in the form of drug dependency or behaviors. PLAIN LANGUAGE SUMMARY Addiction is a mental disorder that has many adverse effects on brain. It alters brain structure and deteriorates brain functionality. Impairment of brain cognition in many previous works. We intended to define the default olfactory system performance in addicts compared to healthy people. Our study showed an overall larger activation in addicts when processing olfactory stimuli. In particular, and when comparing the two groups, the right anterior cingulate and right superior frontal gyrus had higher activations than normal, whereas the left lingual gyrus and left cerebellum showed stronger activations in the addicts. Addiction could be in the form of drug dependency or behaviors such as gambling or gaming. Addictive disorders is so vast that sometimes an impulse control disorder, such as pathologic gambling, could also be included.
Collapse
Affiliation(s)
| | - Seyed Amirhossein Batouli
- Department of Neuroimaging and Analysis, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soukhtanlou
- Department of Psychology and Education, Alborz Campus, University of Tehran, Tehran, Iran
| | - Sasan Alavi
- Department of Addiction, School of Behavioural Sciences and Mental Health (Institute of Tehran Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Oghabian
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gunasekera B, Davies C, Martin-Santos R, Bhattacharyya S. The Yin and Yang of Cannabis: A Systematic Review of Human Neuroimaging Evidence of the Differential Effects of Δ 9-Tetrahydrocannabinol and Cannabidiol. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:636-645. [PMID: 33414100 DOI: 10.1016/j.bpsc.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have been the most investigated cannabinoids at the human and preclinical levels, although the neurobiological mechanisms underlying their effects remain unclear. Human experimental evidence complemented by observational studies suggests that THC may have psychotogenic effects while CBD may have antipsychotic effects. However, whether their effects on brain function are consistent with their opposing behavioral effects remains unclear. To address this, here we synthesize neuroimaging evidence investigating the acute effects of THC and CBD on human brain function using a range of neuroimaging techniques, with an aim to identify the key brain substrates where THC and CBD have opposing effects. After a systematic search, a review of the available studies indicated marked heterogeneity. However, an overall pattern of opposite effect profiles of the two cannabinoids was evident with some degree of consistency, primarily attributed to the head-to-head challenge studies of THC and CBD. While head-to-head comparisons are relatively few, collectively the evidence suggests that opposite effects of THC and CBD may be present in the striatum, parahippocampus, anterior cingulate/medial prefrontal cortex, and amygdala, with opposite effects less consistently identified in other regions. Broadly, THC seems to increase brain activation and blood flow, whereas CBD seems to decrease brain activation and blood flow. Given the sparse evidence, there is a particular need to understand the mechanisms underlying their opposite behavioral effects because it may not only offer insights into the underlying pathophysiological mechanisms of psychotic disorders but also suggest potentially novel targets and biomarkers for drug discovery.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Rocio Martin-Santos
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
6
|
A systematic review of neuroimaging and acute cannabis exposure in age-of-risk for psychosis. Transl Psychiatry 2021; 11:217. [PMID: 33850098 PMCID: PMC8044224 DOI: 10.1038/s41398-021-01295-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/06/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023] Open
Abstract
Acute exposure to cannabis has been associated with an array of cognitive alterations, increased risk for neuropsychiatric illness, and other neuropsychiatric sequelae including the emergence of acute psychotic symptoms. However, the brain alterations associating cannabis use and these behavioral and clinical phenotypes remains disputed. To this end, neuroimaging can be a powerful technique to non-invasively study the impact of cannabis exposure on brain structure and function in both humans and animal models. While chronic exposure studies provide insight into how use may be related to long-term outcomes, acute exposure may reveal interesting information regarding the immediate impact of use and abuse on brain circuits. Understanding these alterations could reveal the connection with symptom dimensions in neuropsychiatric disorders and, more specifically with psychosis. The purpose of the present review is to: 1) provide an update on the findings of pharmacological neuroimaging studies examining the effects of administered cannabinoids and 2) focus the discussion on studies that examine the sensitive window for the emergence of psychosis. Current literature indicates that cannabis exposure has varied effects on the brain, with the principal compounds in cannabis (delta-9-tetrahydrocannabinol and cannabidiol) altering activity across different brain regions. Importantly, we also discovered critical gaps in the literature, particularly regarding sex-dependent responses and long-term effects of chronic exposure. Certain networks often characterized as dysregulated in psychosis, like the default mode network and limbic system, were also impacted by THC exposure, identifying areas of particular interest for future work investigating the potential relationship between the two.
Collapse
|
7
|
Terral G, Marsicano G, Grandes P, Soria-Gómez E. Cannabinoid Control of Olfactory Processes: The Where Matters. Genes (Basel) 2020; 11:E431. [PMID: 32316252 PMCID: PMC7230191 DOI: 10.3390/genes11040431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction has a direct influence on behavior and cognitive processes. There are different neuromodulatory systems in olfactory circuits that control the sensory information flowing through the rest of the brain. The presence of the cannabinoid type-1 (CB1) receptor, (the main cannabinoid receptor in the brain), has been shown for more than 20 years in different brain olfactory areas. However, only over the last decade have we started to know the specific cellular mechanisms that link cannabinoid signaling to olfactory processing and the control of behavior. In this review, we aim to summarize and discuss our current knowledge about the presence of CB1 receptors, and the function of the endocannabinoid system in the regulation of different olfactory brain circuits and related behaviors.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, CEDEX, 33077 Bordeaux, France; (G.T.); (G.M.)
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, CEDEX, 33077 Bordeaux, France; (G.T.); (G.M.)
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Walter C, Oertel BG, Felden L, Nöth U, Deichmann R, Lötsch J. Delta-9-tetrahydrocannabinol reduces the performance in sensory delayed discrimination tasks. A pharmacological-fMRI study in healthy volunteers. IBRO Rep 2019; 7:117-128. [PMID: 31828232 PMCID: PMC6889084 DOI: 10.1016/j.ibror.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cannabis proofed to be effective in pain relief, but one major side effect is its influence on memory in humans. Therefore, the role of memory on central processing of nociceptive information was investigated in healthy volunteers. METHODS In a placebo-controlled cross-over study including 22 healthy subjects, the effect of 20 mg oral Δ9-tetrahydrocannabinol (THC) on memory involving nociceptive sensations was studied, using a delayed stimulus discrimination task (DSDT). To control for nociceptive specificity, a similar DSDT-based study was performed in a subgroup of thirteen subjects, using visual stimuli. RESULTS For each nociceptive stimulus pair, the second stimulus was associated with stronger and more extended brain activations than the first stimulus. These differences disappeared after THC administration. The THC effects were mainly located in two clusters comprising the insula and inferior frontal cortex in the right hemisphere, and the caudate nucleus and putamen bilaterally. These cerebral effects were accompanied in the DSDT by a significant reduction of correct ratings from 41.61% to 37.05% after THC administration (rm-ANOVA interaction "drug" by "measurement": F (1,21) = 4.685, p = 0.042). Rating performance was also reduced for the visual DSDT (69.87% to 54.35%; rm-ANOVA interaction of "drug" by "measurement": F (1,12) = 13.478, p = 0.003) and reflected in a reduction of stimulus-related brain deactivations in the bilateral angular gyrus. CONCLUSIONS Results suggest that part of the effect of THC on pain may be related to memory effects. THC reduced the performance in DSDT of nociceptive and visual stimuli, which was accompanied by significant effects on brain activations. However, a pain specificity of these effects cannot be deduced from the data presented.
Collapse
Affiliation(s)
- Carmen Walter
- Institute of Clinical Pharmacology, Goethe – University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology – Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor – Stern – Kai 7, 60590, Frankfurt am Main, Germany
| | - Bruno G. Oertel
- Institute of Clinical Pharmacology, Goethe – University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology – Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor – Stern – Kai 7, 60590, Frankfurt am Main, Germany
| | - Lisa Felden
- Institute of Clinical Pharmacology, Goethe – University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe – University, Schleusenweg 2 – 16, 60528, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe – University, Schleusenweg 2 – 16, 60528, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe – University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology – Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor – Stern – Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|