1
|
Sun M, Wu Y, Yuan C, Lyu J, Zhao X, Ruan YC, Guo J, Chen H, Huang WQ. Androgen-induced upregulation of CFTR in pancreatic β-cell contributes to hyperinsulinemia in PCOS model. Endocrine 2024; 83:242-250. [PMID: 37922092 DOI: 10.1007/s12020-023-03516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE Polycystic ovarian syndrome (PCOS) is an endocrine-metabolic condition affecting 5-10% of reproductive-aged women and characterized by hyperandrogenism, insulin resistance (IR), and hyperinsulinemia. CFTR is known to be regulated by steroid hormones, and our previous study has demonstrated an essential role of CFTR in β-cell function. This study aims to investigate the contribution of androgen and CFTR to hypersecretion of insulin in PCOS and the underlying mechanism. METHODS We established a rat PCOS model by subcutaneously implanting silicon tubing containing Dihydrotestosterone (DHT). Glucose tolerance test with insulin levels was performed at 9 weeks after implantation. A rat β-cell line RINm5F, a mouse β-cell line β-TC-6, and mouse islets were treated with DHT, and with or without the androgen antagonist flutamide for CFTR and insulin secretion-related functional assays or mRNA/protein expression measurement. The effect of CFTR inhibitors on DHT-promoted membrane depolarization, glucose-stimulated intracellular Ca2+ oscillation and insulin secretion were examined by membrane potential imaging, calcium imaging and ELISA, respectively. RESULTS The DHT-induced PCOS model showed increased body weight, impaired glucose tolerance, and higher blood glucose and insulin levels after glucose stimulation. CFTR was upregulated in islets of PCOS model and DHT-treated cells, which was reversed by flutamide. The androgen receptor (AR) could bind to the CFTR promoter region, which was enhanced by DHT. Furthermore, DHT-induced membrane depolarization, enhanced glucose-stimulated Ca2+ oscillations and insulin secretion, which could be abolished by CFTR inhibitors. CONCLUSIONS Excessive androgen enhances glucose-stimulating insulin secretion through upregulation of CFTR, which may contribute to hyperinsulinemia in PCOS.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yong Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Clinical Centre of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jingya Lyu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xinyi Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - Hui Chen
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Wen Qing Huang
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Habibullah MM. The role of CFTR channel in female infertility. HUM FERTIL 2023; 26:1228-1237. [PMID: 36576330 DOI: 10.1080/14647273.2022.2161427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/06/2022] [Indexed: 12/29/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated trans-membrane ATP gated anion channel present in most epithelia, which transports chloride and bicarbonate ions across the apical membrane. Mutations in the CFTR protein are known to result in defective expression or function, notably the inhibition of chloride and bicarbonate transport. This can result in cystic fibrosis (CF), a disorder characterised by thickness of the mucus lining of the epithelial cells of the alimentary and respiratory tracts, sweat ducts and reproductive organs. As a consequence, there is a reduction in fluid transport at the apical surface. While the most devastating effect of CF is mortality, about 98% of men with CF are infertile, consequent of early blockage of or failure to develop the mesonephrotic ducts as well as the vas deferens. The effect of CF of female fertility is less well-understood. This review highlights the genetics and pathophysiology as well as the mechanism of action of CF on female infertility.
Collapse
Affiliation(s)
- Mahmoud M Habibullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Zhu Y, Li D, Reyes-Ortega F, Chinnery HR, Schneider-Futschik EK. Ocular development after highly effective modulator treatment early in life. Front Pharmacol 2023; 14:1265138. [PMID: 37795027 PMCID: PMC10547496 DOI: 10.3389/fphar.2023.1265138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapies (HEMT), including elexacaftor-tezacaftor-ivacaftor, correct the underlying molecular defect causing CF. HEMT decreases general symptom burden by improving clinical metrics and quality of life for most people with CF (PwCF) with eligible CFTR variants. This has resulted in more pregnancies in women living with CF. All HEMT are known to be able pass through the placenta and into breast milk in mothers who continue on this therapy while pregnant and breast feeding. Toxicity studies of HEMT in young rats demonstrated infant cataracts, and case reports have reported the presence of congenital cataracts in early life exposure to HEMT. This article reviews the evidence for how HEMT influences the dynamic and interdependent processes of healthy and abnormal lens development in the context of HEMT exposure during pregnancy and breastfeeding, and raises questions that remain unanswered.
Collapse
Affiliation(s)
- Yimin Zhu
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Danni Li
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Felisa Reyes-Ortega
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Holly R. Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Roberts M, Yao S, Wei S, Jensen JT, Han L. Hormonal regulation of non-cystic fibrosis transmembrane conductance regulator ion channels in the endocervix. F&S SCIENCE 2023; 4:163-171. [PMID: 36907435 PMCID: PMC10355220 DOI: 10.1016/j.xfss.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE To characterize ion channel expression and localization in the endocervix under different hormonal conditions using a nonhuman primate primary endocervical epithelial cell model. DESIGN Experimental. SETTING University-based, translational science laboratory. INTERVENTIONS We cultured and treated conditionally reprogrammed primary rhesus macaque endocervix cells with estradiol and progesterone and measured gene expression changes for several known ion channel and ion channel regulators of mucus secreting epithelia. Using both rhesus macaque endocervical samples and human samples, we localized channels in the endocervix using immunohistochemistry. MAIN OUTCOME MEASURES The relative abundance of transcripts was evaluated using real-time polymerase chain reaction. Immunostaining results were evaluated qualitatively. RESULTS Compared with controls, we found that estradiol increased gene expression for ANO6, NKCC1, CLCA1, and PDE4D. Progesterone down-regulated gene expression for ANO6, SCNN1A, SCNN1B, NKCC1, and PDE4D (P≤.05). Immunohistochemistry confirmed endocervical cell membrane localization of ANO1, ANO6, KCNN4, LRR8CA, and NKCC1. CONCLUSIONS We found several ion channels and ion channel regulators that are hormonally sensitive in the endocervix. These channels, therefore, may play a role in the cyclic fertility changes in the endocervix and could be further investigated as targets for future fertility and contraceptive studies.
Collapse
Affiliation(s)
- Mackenzie Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, Oregon.
| | - Shan Yao
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, Oregon
| | - Shuhao Wei
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, Oregon
| | - Jeffrey T Jensen
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Leo Han
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Pereira R, Barbosa T, Cardoso AL, Sá R, Sousa M. Cystic fibrosis and primary ciliary dyskinesia: Similarities and differences. Respir Med 2023; 209:107169. [PMID: 36828173 DOI: 10.1016/j.rmed.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Cystic fibrosis (CF) and Primary ciliary dyskinesia (PCD) are both rare chronic diseases, inherited disorders associated with multiple complications, namely respiratory complications, due to impaired mucociliary clearance that affect severely patients' lives. Although both are classified as rare diseases, PCD has a much lower prevalence than CF, particularly among Caucasians. As a result, CF is well studied, better recognized by clinicians, and with some therapeutic approaches already available. Whereas PCD is still largely unknown, and thus the approach is based on consensus guidelines, expert opinion, and extrapolation from the larger evidence base available for patients with CF. Both diseases have some clinical similarities but are very different, necessitating different treatment by specialists who are familiar with the complexities of each disease.This review aims to provide an overview of the knowledge about the two diseases with a focus on the similarities and differences between both in terms of disease mechanisms, common clinical manifestations, genetics and the most relevant therapeutic options. We hoped to raise clinical awareness about PCD, what it is, how it differs from CF, and how much information is still lacking. Furthermore, this review emphasises the fact that both diseases require ongoing research to find better treatments and, in particular for PCD, to fill the medical and scientific gaps.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Telma Barbosa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Ana Lúcia Cardoso
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| |
Collapse
|
6
|
Ismail NH, Ibrahim SF, Mokhtar MH, Yahaya A, Zulkefli AF, Ankasha SJ, Osman K. Modulation of vulvovaginal atrophy (VVA) by Gelam honey in bilateral oophorectomized rats. Front Endocrinol (Lausanne) 2023; 14:1031066. [PMID: 36923220 PMCID: PMC10010262 DOI: 10.3389/fendo.2023.1031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Vulvovaginal atrophy (VVA) is a common condition in post-menopausal women. Symptoms of VVA include dyspareunia, vaginal dryness, vaginal and/or vulvar itching, burning and soreness, dysuria and vaginal bleeding accompanying sexual activity. These symptoms are physiological responses to hypoestrogenicity, inducing atrophy of the vagina epithelia and sudden reduction in mucous production. Prevailing therapy for VVA is hormone replacement therapy (HRT), notably estrogen, progesterone or a combination of the two. However, using HRT is associated with an increased incidence of breast and endometrial cancer, venous thromboembolism in the lungs and legs, stroke and cardiovascular complications. METHODS This study evaluated Malaysian Gelam honey as a nutraceutical alternative to estrogen HRT (ERT) in alleviating VVA. A total of 24 female 8-weekold Sprague Dawley rats underwent bilateral oophorectomy. A minimum of 14 days elapsed from the time of surgery and administration of the first dose of Gelam honey to allow the female hormones to subside to a stable baseline and complete recovery from surgery. Vaginal tissues were harvested following a 2-week administration of Gelam honey, the harvested vagina tissue underwent immunohistochemistry (IHC) analysis for protein localization and qPCR for mRNA expression analysis. RESULTS Results indicated that Gelam honey administration had increased the localization of Aqp1, Aqp5, CFTR and Muc1 proteins in vaginal tissue compared to the menopause group. The effect of Gelam honey on the protein expressions is summarized as Aqp1>CFTR>Aqp5>Muc1. DISCUSSION Gene expression analysis reveals Gelam honey had no effect on Aqp1 and CFTR genes. Gelam honey had up-regulated Aqp5 gene expression. However, its expression was lower than in the ERT+Ovx group. Additionally, Gelam honey up-regulated Muc1 in the vagina, with an expression level higher than those observed either in the ERT+Ovx or SC groups. Gelam honey exhibits a weak estrogenic effect on the genes and proteins responsible for regulating water in the vaginal tissue (Aqp1, Aqp5 and CFTR). In contrast, Gelam honey exhibits a strong estrogenic ability in influencing gene and protein expression for the sialic acid Muc1. Muc1 is associated with mucous production at the vaginal epithelial layer. In conclusion, the protein and gene expression changes in the vagina by Gelam honey had reduced the occurrence of vaginal atrophy in surgically-induced menopause models.
Collapse
Affiliation(s)
- Nur Hilwani Ismail
- Faculty of Applied Sciences, School of Biological Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azyani Yahaya
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sheril June Ankasha
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Osman
- Centre of Diagnostic, Therapeutic & Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- *Correspondence: Khairul Osman,
| |
Collapse
|
7
|
Tripathy S, Nallasamy S, Mahendroo M. Progesterone and its receptor signaling in cervical remodeling: Mechanisms of physiological actions and therapeutic implications. J Steroid Biochem Mol Biol 2022; 223:106137. [PMID: 35690241 PMCID: PMC9509468 DOI: 10.1016/j.jsbmb.2022.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanmugasundaram Nallasamy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Yang J, Wang MJ, Huang WJ, Zhou Q, Ying X, Tian YH, Zhu YM, Lu YC. High expression of CFTR in cumulus cells from mature oocytes is associated with high-quality of oocyte and subsequent embryonic development. J Assist Reprod Genet 2022; 39:2239-2247. [PMID: 36044164 PMCID: PMC9596676 DOI: 10.1007/s10815-022-02599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore the association of expression of cystic fibrosis transmembrane conductance regulator (CFTR) in cumulus cells (CCs) from mature oocytes with oocyte quality and embryonic development. METHODS A total of 338 infertile women who underwent ovarian stimulation cycle of oocyte retrieval in Zhejiang University School of Medicine were retrospectively enrolled in this study. The relative mRNA expression levels of CFTR, bone morphogenetic protein 15 (BMP15), and growth differentiation factor 9 (GDF9) in CCs were detected by qPCR technology. ROC curve was applied for the diagnosis of oocyte maturation. The serum levels of anti-Müllerian hormone (AMH), E2, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and androstenedione were measured. Oocyte maturation rate, fertilization rate, cleavage rate, high-quality embryo formation rate, and implantation rate after embryo transfer were also determined. RESULTS The mRNA expression levels of CFTR in CCs were significantly increased in metaphase II (MII) oocytes compared to that in metaphase I (MI) or germinal vesicle (GV) oocytes. The ROC curve analysis illustrated that CFTR mRNA expression could efficiently discriminate MII oocytes from MI or GV oocytes (AUC = 0.954), and revealed that 0.695 RQU is the optimal cut-off value for diagnosis. So the cut-off value of 2-ΔΔCT = 0.70 was used to divide the patients into two groups: low- (n = 114) and high-CFTR group (n = 224). The mRNA expression of CFTR in CCs was positively correlated with the antral follicular count (AFC), number of oocytes retrieved, number of MII oocytes, serum E2 level on hCG day, and BMP15 and GDF9 expression in CCs. Under continuous stimulation with the same dose of recombinant follicle-stimulating hormone (rFSH), the number of follicles, average recovered oocytes, recovered oocytes, MII oocytes, as well as the oocyte recovery rate, fertilization rate, oocyte cleavage rate, high-quality embryo formation rate, and implantation rate were decreased in patients with lower CFTR. CONCLUSIONS This study suggests that CFTR expression in CCs is associated with the developmental potential of human oocytes.
Collapse
Affiliation(s)
- Jing Yang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Ming-Juan Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Wen-Jie Huang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Qian Zhou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Xue Ying
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Yong-Hong Tian
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China.
| | - Yong-Chao Lu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
9
|
Shmygol A, Brosens JJ. Proteinase Activated Receptors Mediate the Trypsin-Induced Ca 2 + Signaling in Human Uterine Epithelial Cells. Front Cell Dev Biol 2021; 9:709902. [PMID: 34434932 PMCID: PMC8381647 DOI: 10.3389/fcell.2021.709902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Embryo implantation is a complex and tightly regulated process. In humans, uterine luminal epithelium functions as a biosensor gauging the embryo quality and transmitting this information to the underlying endometrial stromal cells. This quality control ensures that only high quality embryos are implanted, while aberrant ones are rejected. The mechanisms of the embryo-uterine mucosa crosstalk remain incompletely understood. Trypsin, a serine protease secreted by the blastocyst, has been implicated in the cross-signaling. Here we address the mechanisms by which trypsin triggers the intracellular calcium signaling in uterine epithelium. We found that protease-activated G-protein coupled receptors are the main mechanism mediating the effects of trypsin in human uterine epithelium. In addition, trypsin activates the epithelial sodium channels thus increasing the intracellular Na+ concentration and promoting Ca2+ entry on the reverse mode of the sodium/calcium exchanger.
Collapse
Affiliation(s)
- Anatoliy Shmygol
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jan J Brosens
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Miscarriage Research Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
10
|
Lossow K, Hermans-Borgmeyer I, Meyerhof W, Behrens M. Segregated Expression of ENaC Subunits in Taste Cells. Chem Senses 2021; 45:235-248. [PMID: 32006019 DOI: 10.1093/chemse/bjaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salt taste is one of the 5 basic taste qualities. Depending on the concentration, table salt is perceived either as appetitive or aversive, suggesting the contribution of several mechanisms to salt taste, distinguishable by their sensitivity to the epithelial sodium channel (ENaC) blocker amiloride. A taste-specific knockout of the α-subunit of the ENaC revealed the relevance of this polypeptide for low-salt transduction, whereas the response to other taste qualities remained normal. The fully functional ENaC is composed of α-, β-, and γ-subunits. In taste tissue, however, the precise constitution of the channel and the cell population responsible for detecting table salt remain uncertain. In order to examine the cells and subunits building the ENaC, we generated mice carrying modified alleles allowing the synthesis of green and red fluorescent proteins in cells expressing the α- and β-subunit, respectively. Fluorescence signals were detected in all types of taste papillae and in taste buds of the soft palate and naso-incisor duct. However, the lingual expression patterns of the reporters differed depending on tongue topography. Additionally, immunohistochemistry for the γ-subunit of the ENaC revealed a lack of overlap between all potential subunits. The data suggest that amiloride-sensitive recognition of table salt is unlikely to depend on the classical ENaCs formed by α-, β-, and γ-subunits and ask for a careful investigation of the channel composition.
Collapse
Affiliation(s)
- Kristina Lossow
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf (ZMNH), Hamburg, Germany
| | - Wolfgang Meyerhof
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Maik Behrens
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| |
Collapse
|
11
|
Salleh N, Ismail N, Nelli G, Myint K, Khaing SL. Changes in fluid composition and expression of ion channels in rat cervix during different phases of the estrus cycle. Biotech Histochem 2021; 97:53-66. [PMID: 33827344 DOI: 10.1080/10520295.2021.1899285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated changes in the composition of cervical fluid at different phases of the female rat reproductive cycle. Fluid was collected from the cervix of rats by direct cervical flushing and analyzed for changes in Na+ and Cl- content and osmolarity. Following sacrifice, the cervix was harvested and expressions of mRNA and protein for ENaCs, CFTR and AQPs were measured using qPCR and immunohistochemistry, respectively. Cervical fluid Na+ and Cl- content was high during estrus, but osmolarity was high during metestrus and diestrus. Expressions of CFTR, AQP-1 and AQP-2 in the cervix were high during estrus, but low during diestrus. Expression of ENaC (α, β, γ), AQP-5 and AQP-7 was high during metestrus and diestrus and low during estrus. Changes in expression of ion channels in the cervix could explain changes in cervical fluid composition during the estrus cycle phases that could affect female fertility.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nurain Ismail
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Giribabu Nelli
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kyaimon Myint
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Si Lay Khaing
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Medical Education Department, University of Medicine, Yangon, Myanmar
| |
Collapse
|
12
|
López-Albors O, Llamas-López PJ, Ortuño JÁ, Latorre R, García-Vázquez FA. In vivo measurement of pH and CO 2 levels in the uterus of sows through the estrous cycle and after insemination. Sci Rep 2021; 11:3194. [PMID: 33542361 PMCID: PMC7862298 DOI: 10.1038/s41598-021-82620-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The pH-CO2-HCO3- system is a ubiquitous biological regulator with important functional implications for reproduction. Knowledge of the physiological values of its components is relevant for reproductive biology and the optimization of Assisted Reproductive Technologies (ARTs). However, in situ measurements of these parameters in the uterus are scarce or null. This study describes a non-invasive method for in situ time-lapse recording of pH and CO2 within the uterus of non-anesthetized sows. Animals were at three different reproductive conditions, estrous with no insemination and two hours after insemination, and diestrous. From pH and CO2 data, HCO3- concentration was estimated. The non-invasive approach to the porcine uterus with novel optical probes allowed the obtaining of in situ physiological values of pH, CO2, and HCO3-. Variable oscillatory patterns of pH, CO2 and HCO3- were found independently of the estrous condition. Insemination did not immediately change the levels of uterine pH, CO2 (%) and HCO3- concentration, but all the values were affected by the estrous cycle decreasing significantly at diestrous condition. This study contributes to a better understanding of the in vivo regulation of the pH-CO2-HCO3- system in the uterus and may help to optimize the protocols of sperm treatment for in vitro fertilization.
Collapse
Affiliation(s)
- Octavio López-Albors
- grid.10586.3a0000 0001 2287 8496Department of Anatomy and Comparative Pathology, University of Murcia, 30100 Murcia, Spain ,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Pedro José Llamas-López
- grid.10586.3a0000 0001 2287 8496Department of Physiology, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Joaquín Ángel Ortuño
- grid.10586.3a0000 0001 2287 8496Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Rafael Latorre
- grid.10586.3a0000 0001 2287 8496Department of Anatomy and Comparative Pathology, University of Murcia, 30100 Murcia, Spain ,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco Alberto García-Vázquez
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Department of Physiology, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain ,grid.452553.0Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
13
|
Wang Y, Wei H, Ji Y, Liu F, Shen Z, Zhang X. Cystic fibrosis transmembrane conductance regulator in follicular fluid and cumulus cells and its relationship with age. Exp Ther Med 2020; 21:138. [PMID: 33456505 PMCID: PMC7791913 DOI: 10.3892/etm.2020.9570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Oocyte quality deteriorates with female age and numerous indicators of oocyte quality exist. In the present study, the levels of cystic fibrosis transmembrane conductance regulator (CFTR) in the follicular fluid (FF) and cumulus cells (CCs) of infertile females in 3 different age groups were assessed to determine the relationship between CFTR and female age. The general features of the 3 groups, including age, body mass index, infertility duration, basal hormone levels and the number of retrieved oocytes were compared. The FF CFTR levels of the 3 groups were also compared and multiple age-related indicators of oocyte quality were analyzed, including the estradiol levels on the human chorionic gonadotropin injection day, the morphologically normal oocyte rate and the available or high-quality embryo rate. Immunofluorescence and PCR analyses were performed to examine CFTR expression in CCs around oocytes. The results indicated differences in general features and several indicators of oocyte quality among the 3 groups and significant differences in CFTR. The FF CFTR level was positively correlated with age, which was confirmed by immunofluorescence and PCR. Collectively, these results indicated that CFTR expression in FF and CCs may be associated with oocyte quality based on the age of individuals undergoing the assisted reproduction technique.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hui Wei
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yazhong Ji
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Feiping Liu
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhijun Shen
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xunyi Zhang
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
14
|
Hughan KS, Daley T, Rayas MS, Kelly A, Roe A. Female reproductive health in cystic fibrosis. J Cyst Fibros 2020; 18 Suppl 2:S95-S104. [PMID: 31679735 DOI: 10.1016/j.jcf.2019.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Women with cystic fibrosis (CF) are living longer and healthier lives, and opportunities for childbearing are increasingly promising. However, this population can also face sexual and reproductive health concerns, including menstrual irregularities, unplanned pregnancies, infertility and pregnancy complications. Additionally, more women are entering menopause and are at risk for the consequences of estrogen deficiency. The exact mechanisms involved in female reproductive health conditions in CF are not clearly understood, but are thought to include cystic fibrosis transmembrane regulator (CFTR)-mediated abnormalities, changes in female sex hormones, and other CF health-related factors. In the era of CFTR modulator therapy, new data are necessary to understand the impact of CFTR modulation on contraceptive effectiveness, fertility, and pregnancy outcomes to help guide future clinical care. This article reviews the current scientific knowledge of major reproductive health issues for women with CF.
Collapse
Affiliation(s)
- Kara S Hughan
- Division of Pediatric Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Tanicia Daley
- Division of Pediatric Endocrinology and Metabolism, Emory Children's Pediatric Institute, Emory University School of Medicine, 1400 Tullie Road, Atlanta, GA, USA
| | - Maria Socorro Rayas
- Division of Pediatric Endocrinology and Diabetes, University of Texas Health San Antonio, 7703 Floyd Curl, San Antonio, TX, USA
| | - Andrea Kelly
- Division of Pediatric Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 2716 South Street, Philadelphia, PA, USA
| | - Andrea Roe
- Division of Family Planning, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, 1000 Courtyard, 3400 Spruce Street, Philadelphia, PA, USA
| |
Collapse
|
15
|
Kordowitzki P, Kranc W, Bryl R, Kempisty B, Skowronska A, Skowronski MT. The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells 2020; 9:cells9122570. [PMID: 33271827 PMCID: PMC7760214 DOI: 10.3390/cells9122570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific parts in the female reproductive system, which will be presented in detail in the first section of this review. Moreover, they are relevant in different pathologies in the female reproductive system. The contribution of aquaporins in selected reproductive disorders and aging will be summarized in the second section of this review, followed by a section dedicated to aquaporin-related proteins. Since the relevance of aquaporins for the male reproductive system has been reviewed several times in the recent past, this review aims to provide an update on the distribution and impact of aquaporins only in the female reproductive system. Therefore, this paper seeks to determine the physiological and patho-physiological relevance of aquaporins on female reproduction, and female reproductive aging.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-082 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Correspondence: ; Tel.: +48-56-611-2231
| |
Collapse
|
16
|
Failure to conceive in women with CF is associated with pancreatic insufficiency and advancing age. J Cyst Fibros 2018; 18:525-529. [PMID: 30366850 DOI: 10.1016/j.jcf.2018.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/05/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The causes of subfertility in women with CF though multifactorial are not well described. Our aim in this study was to determine the prevalence and factors associated with female subfertility among women with CF. METHODS A retrospective multinational study from 11 CF centers in 5 countries (Israel, France, Spain, Italy, UK) including women with CF was undertaken. Sub/infertility was defined as not achieving a spontaneous pregnancy after one year of unprotected sexual intercourse. Data including genetics, pancreatic insufficiency (PI), prevalence of diabetes (CFRD), lung function, nutritional status measured by body mass index (BMI), sputum bacterial colonization, and rate of pulmonary exacerbations were collected from patients' files. RESULTS Out of 605 women, 241 attempted pregnancy. Of these, 84 (35%) had subfertility, and 67 of them eventually became pregnant. Females attempting conception were older but had better pulmonary function and nutrition compared to those who did not. In a multivariate analysis, PI (OR 1.9 [1.03-3.5], p = .04) and older age (OR 3.9 [2.1-7.3] p < .0001) were associated with subfertility. Lung function, BMI, CFRD, Presence of two class I-III mutations and number of exacerbations in the year prior to fertility attempts were not associated with subfertility. CONCLUSIONS The prevalence of subfertility among women with CF (35%) is higher than the expected 5-15% subfertility in the general population. Older age and pancreatic insufficiency are associated with subfertility in women with CF.
Collapse
|
17
|
Zhang J, Wang Y, Jiang X, Chan HC. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer. Cell Mol Life Sci 2018; 75:1737-1756. [PMID: 29411041 PMCID: PMC11105598 DOI: 10.1007/s00018-018-2755-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial-mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.
Collapse
Affiliation(s)
- Jieting Zhang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yan Wang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Xiaohua Jiang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Hsiao Chang Chan
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
18
|
Kikuchi K, Kozai K, Hojo T, Sakatani M, Okuda K, Bai H, Kawahara M, Takahashi M. Evaluating the electrical impedance and mucus-related gene expression of uterine endometrial tissues in mares. J Reprod Dev 2018; 64:193-197. [PMID: 29311525 PMCID: PMC5902908 DOI: 10.1262/jrd.2017-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the electrical impedance of the reproductive tracts (vagina and uterine endometrial tissues) and the expression of mucus-related genes to identify the stage of the estrous
cycle in mares. We first examined vaginal impedance in native Hokkaido mares during their estrous cycle and found no significant differences. However, impedance levels tended to decrease
towards ovulation. Furthermore, we investigated the estrous cycle by measuring the electrical impedance of the uterine endometrial tissues obtained from carcasses of mares. We found that
impedance levels in the endometrial tissues decreased in the regressed phase of the corpus luteum (CL). Expression of mucus-related genes (ATP1A1, CFTR,
AQP3, and AQP5) varied at different stages of the estrous cycle. Among them, AQP3 expression was consistent with previous reports. We
concluded that electrical impedance in the uterine endometrial tissues of mares could be potentially used to verify the presence of active CL in horses for experimental purposes. However,
further studies are needed to determine the reference value and to identify the day of the estrous cycle in mares.
Collapse
Affiliation(s)
- Kohta Kikuchi
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Keisuke Kozai
- Laboratory of Animal Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Present: Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Takuo Hojo
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto 861-1192, Japan
| | - Miki Sakatani
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto 861-1192, Japan
| | - Kiyoshi Okuda
- Laboratory of Animal Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|
19
|
Xie ZD, Guo YM, Ren MJ, Yang J, Wang SF, Xu TH, Chen LM, Liu Y. The Balance of [Formula: see text] Secretion vs. Reabsorption in the Endometrial Epithelium Regulates Uterine Fluid pH. Front Physiol 2018; 9:12. [PMID: 29422866 PMCID: PMC5788990 DOI: 10.3389/fphys.2018.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
Uterine fluid contains a high concentration of HCO3- which plays an essential role in sperm capacitation and fertilization. In addition, the HCO3- concentration in uterine fluid changes periodically during the estrous cycle. It is well-known that the endometrial epithelium contains machineries involving the apical SLC26 family anion exchangers for secreting HCO3- into the uterine fluid. In the present study, we find for the first time that the electroneutral Na+/HCO3- cotransporter NBCn1 is expressed at the apical membrane of the endometrial epithelium. The protein abundance of the apical NBCn1 and that of the apical SLC26A4 and SLC26A6 are reciprocally regulated during the estrous cycle in the uterus. NBCn1 is most abundant at diestrus, whereas SLC26A4/A6 are most abundant at proestrus/estrus. In the ovariectomized mice, the expression of uterine NBCn1 is inhibited by β-estradiol, but stimulated by progesterone, whereas that of uterine SLC26A4/A6 is stimulated by β-estradiol. In vivo perfusion studies show that the endometrial epithelium is capable of both secreting and reabsorbing HCO3-. Moreover, the activity for HCO3- secretion by the endometrial epithelium is significantly higher at estrus than it is at diestrus. The opposite is true for HCO3- reabsorption. We conclude that the endometrial epithelium simultaneously contains the activity for HCO3- secretion involving the apical SLC26A4/A6 and the activity for HCO3- reabsorption involving the apical NBCn1, and that the acid-base homeostasis in the uterine fluid is regulated by the finely-tuned balance of the two activities.
Collapse
Affiliation(s)
- Zhang-Dong Xie
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Juan Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shao-Fang Wang
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Tong-Hui Xu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Huang W, Jin A, Zhang J, Wang C, Tsang LL, Cai Z, Zhou X, Chen H, Chan HC. Upregulation of CFTR in patients with endometriosis and its involvement in NFκB-uPAR dependent cell migration. Oncotarget 2017; 8:66951-66959. [PMID: 28978008 PMCID: PMC5620148 DOI: 10.18632/oncotarget.16441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Endometriotic tissues exhibit high migration ability with the underlying mechanisms remain elusive. Our previous studies have demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR) acts as a tumor suppressor regulating cell migration. In the present study, we explored whether CFTR plays a role in the development of human endometriosis. We found that both mRNA and protein expression levels of CFTR and urokinase-type plasminogen activator receptor (uPAR) were significantly increased in ectopic endometrial tissues from patients with endometriosis compared to normal endometrial tissues from women without endometriosis and positively correlated. In human endometrial Ishikawa (ISK) cells, overexpression of CFTR stimulated cell migration with upregulated NFκB p65 and uPAR. Knockdown of CFTR inhibited cell migration. Furthermore, inhibition of NFκB with its inhibitors (curcumin or Bay) significantly reduced the expression of uPAR and cell migration in the CFTR-overexpressing ISK cells. Collectively, the present results suggest that the CFTR-NFκB-uPAR signaling may contribute to the progression of human endometriosis, and indicate potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing Huang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Aihong Jin
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Jieting Zhang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Chaoqun Wang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Zhiming Cai
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Xiaping Zhou
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Hao Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China.,Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
21
|
Chinigarzadeh A, Muniandy S, Salleh N. Combinatorial effect of genistein and female sex-steroids on uterine fluid volume and secretion rate and aquaporin (AQP)-1, 2, 5, and 7 expression in the uterus in rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:832-844. [PMID: 27235753 DOI: 10.1002/tox.22283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED We hypothesized that genistein can interfere with the regulation of uterine fluid volume, secretion rate and expression of aquaporin in the uterus by female sex-steroids, i.e., estrogen and progesterone. Therefore, the aims of this study were to investigate changes in these parameters in the presence of genistein and female sex-steroids. METHODS Female Sprague-Dawley rats were ovariectomized and received 3-days estradiol-17β benzoate (E2) plus genistein (25, 50, or 100 mg kg-1 day-1 ) or 3-days E2 followed by 3-days E2 plus progesterone with genistein (25, 50, or 100 mg kg-1 day-1 ). A day after last treatment, uterine fluid secretion rate was determined by in vivo uterine perfusion with rats under anesthesia. Animals were sacrificed and uteri were harvested and subjected for histological analyses. Luminal/outer uterine circumference was determined and distribution of AQP-1, 2, 5, and 7 in endometrium was visualized by immunofluorescence. Expression of AQP-1, 2, 5, and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR respectively. RESULTS Combined treatment of E2 with high dose genistein (50 and 100 mg kg-1 day-1 ) resulted in significant decrease in uterine fluid volume, secretion rate and expression of AQP-1, 2, 5, and 7 proteins and mRNAs in uterus (p < 0.05). No significant changes in these parameters were observed when 25 mg kg-1 day-1 genistein was given with E2 or when genistein was given with E2 followed by E2 plus progesterone Conclusions: Decreased in uterine fluid volume, secretion rate and AQP-1, 2, 5, and 7 expression in the uterus by high dose genistein in the presence of E2 could potentially affect female fertility. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 832-844, 2017.
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Abstract
Objective: To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation. Data Sources: Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected. Study Selection: Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded. Results: ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2. Conclusion: The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference.
Collapse
Affiliation(s)
| | | | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
23
|
Bhusane K, Bhutada S, Chaudhari U, Savardekar L, Katkam R, Sachdeva G. Secrets of Endometrial Receptivity: Some Are Hidden in Uterine Secretome. Am J Reprod Immunol 2016; 75:226-36. [DOI: 10.1111/aji.12472] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023] Open
Affiliation(s)
- Kashmira Bhusane
- Primate Biology Laboratory; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - Sumit Bhutada
- Primate Biology Laboratory; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - Uddhav Chaudhari
- Primate Biology Laboratory; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - Lalita Savardekar
- Primate Biology Laboratory; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - Rajendra Katkam
- Primate Biology Laboratory; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| |
Collapse
|
24
|
Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats. Reprod Toxicol 2015; 58:194-202. [PMID: 26529183 DOI: 10.1016/j.reprotox.2015.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (p<0.05) while genistein plus [E+(E+P)] were higher than E+(E+P)-only treatment (p<0.05). In conclusions, increased levels of CFTR, AC and cAMP in cervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes.
Collapse
|
25
|
Chinigarzadeh A, Muniandy S, Salleh N. Estrogen, progesterone, and genistein differentially regulate levels of expression of α-, β-, and γ-epithelial sodium channel (ENaC) and α-sodium potassium pump (Na⁺/K⁺-ATPase) in the uteri of sex steroid-deficient rats. Theriogenology 2015; 84:911-26. [PMID: 26154487 DOI: 10.1016/j.theriogenology.2015.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 04/18/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
Estrogen, progesterone, and genistein could induce changes in uterine fluid volume and Na(+) concentration. Progesterone upregulates expression of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase which contributed toward these changes. However, effects of estrogen and genistein were unknown. This study therefore investigated changes in expression of these proteins in the uterus under estrogen, progesterone, and genistein influences to further understand mechanisms underlying sex steroids and phytoestrogen effects on uterine fluid Na(+) regulation. In this study, uteri of ovariectomized female rats receiving 7-day treatment with genistein (25, 50, and 100 mg/kg/day), estrogen (0.8 × 10(-4) mg/kg/day), or progesterone (4 mg/kg/day) were harvested, and expression levels of α-, β-, and γ-ENaC proteins and messenger RNAs (mRNAs) and α-Na(+)/K(+)-ATPase protein were determined by Western blotting (proteins) and real-time polymerase chain reaction (mRNA). Meanwhile, distribution of α-, β-, and γ-ENaC and α-Na(+)/K(+)-ATPase proteins in the uterus was identified by immunohistochemistry. Our findings indicated that expression of α-, β-, and γ-ENaC proteins and mRNAs and α-Na(+)/K(+)-ATPase protein were enhanced under progesterone influence. Lower expressions were noted under estrogen and genistein influences compared to progesterone. Under estrogen, progesterone, and genistein influences, α- and β-ENaC were distributed at apical membrane and γ-ENaC was distributed at apical and basolateral membranes of uterine luminal epithelia. Under progesterone influence, α-Na(+)/K(+)-ATPase was highly expressed at basolateral membrane. In conclusion, high expression of α-, β-, and γ-ENaC and α-Na(+)/K(+)-ATPase under progesterone influence would contribute toward increased uterine fluid Na(+) reabsorption, whereas lesser expression of these proteins under estrogen and genistein influences would contribute toward lower reabsorption of uterine fluid Na(+).
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Ismail N, Giribabu N, Muniandy S, Salleh N. Estrogen and progesterone differentially regulate the levels of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC), and cyclic adenosine mono-phosphate (cAMP) in the rat cervix. Mol Reprod Dev 2015; 82:463-74. [PMID: 26018621 DOI: 10.1002/mrd.22496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
The consistency of the cervical mucus changes with the reproductive cycle, which we hypothesized involved changing levels of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC), and cyclic adenosine mono-phosphate (cAMP). We therefore measured the abundance of each in the rat cervix under estrogen and progesterone influence to determine if the activity of these components could explain the changes in the consistency of cervical mucus. Ovariectomised adult female rats were treated with three days of either estrogen (1 μg/kg/day) or progesterone (20 mg/kg/day), or three days of estrogen followed by two days of either vehicle or progesterone or estrogen plus progesterone. In some groups, mifepristone (7 mg/kg/day) was concurrently given with progesterone. Animals were then sacrificed, and the cervix was harvested for protein and mRNA expression analyses by Western blot and real-time PCR, respectively. The distribution of proteins was investigated by immunohistochemistry, and levels of cAMP were determined by enzyme-linked immunosorbent assay (ELISA). Cftr mRNA, AC protein, and cAMP levels in cervical homogenates as well as the tissue distribution of CFTR and AC in endocervical epithelia were highest under estrogen influence; the opposite pattern was seen under progesterone influence. Cervical lumen circumference was highest under estrogen and lowest under progesterone. The effects of progesterone were antagonized by mifepristone. Therefore, increased abundance of CFTR, AC, and cAMP under estrogen influence could account for the increased fluid accumulation within the cervical lumen, which would contribute to lower cervical mucus consistency, whereas progesterone reverses this effect at the molecular and organ level.
Collapse
Affiliation(s)
- Nurain Ismail
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Chen H, Guo JH, Zhang XH, Chan HC. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction 2015; 149:393-401. [PMID: 25646509 DOI: 10.1530/rep-14-0368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.
Collapse
Affiliation(s)
- Hui Chen
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Jing Hui Guo
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Xiao Hu Zhang
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Hsiao Chang Chan
- Faculty of MedicineSchool of Biomedical Sciences, Epithelial Cell Biology Research Center, CUHK-SJTU Joint Center for Human Reproduction and Related Diseases, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| |
Collapse
|
28
|
Mohd Mokhtar H, Giribabu N, Kassim N, Muniandy S, Salleh N. Testosterone decreases fluid and chloride secretions in the uterus of adult female rats via down-regulating cystic fibrosis transmembrane regulator (CFTR) expression and functional activity. J Steroid Biochem Mol Biol 2014; 144 Pt B:361-72. [PMID: 25125390 DOI: 10.1016/j.jsbmb.2014.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Estrogen is known to stimulate uterine fluid and Cl(-) secretion via CFTR. This study investigated testosterone effect on these changes in a rat model. METHODS Ovariectomized adult female rats received estrogen for five days or estrogen for three days followed by two days peanut oil or testosterone either alone or in the presence of flutamide or finasteride. At the end of treatment, uteri were perfused with perfusate containing CFTRinh-172. The rate of fluid and Cl(-) secretion were determined. Dose-dependent effect of testosterone and effect of forskolin on fluid secretion rate were measured. Animals were sacrificed and uteri were removed for CFTR protein and mRNA expression analyses, histology and cAMP measurement. Morphology of uterus, levels of expression of CFTR protein and mRNA and distribution of CFTR protein were observed. RESULTS Estrogen causes increase while testosterone causes decrease in uterine fluid and Cl(-) secretions. The effects of estrogen but not testosterone were antagonized by CFTRinh-172. Luminal fluid volume and apical expression of CFTR in the luminal epithelia were highest under estrogen and lowest under testosterone influences. Similar changes were observed in CFTR protein and mRNA expressions. Uterine cAMP level was highest under estrogen and lowest under testosterone influence. Forskolin increases fluid secretion rate in estrogen but not in testosterone-treated animals. Testosterone effects were dose-dependent and were antagonized by flutamide however, not finasteride. CONCLUSIONS Testosterone inhibition of estrogen-induced uterine fluid and Cl(-) secretion occurs via inhibition of CFTR expression and functional activities. These changes could explain the adverse effects of testosterone on fertility.
Collapse
Affiliation(s)
- Helmy Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normadiah Kassim
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
29
|
Sun X, Ruan YC, Guo J, Chen H, Tsang LL, Zhang X, Jiang X, Chan HC. Regulation of miR-101/miR-199a-3p by the epithelial sodium channel during embryo implantation: involvement of CREB phosphorylation. Reproduction 2014; 148:559-68. [PMID: 25187622 DOI: 10.1530/rep-14-0386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In our previous study, we have demonstrated that the epithelial sodium channel (ENaC) mediates the embryo-derived signals leading to the activation of CREB and upregulation of cyclooxygenase type 2 (COX2) required for embryo implantation. This study aims to investigate whether microRNAs (miRNAs) are involved in the ENaC-induced upregulation of COX2 during embryo implantation. The results show that the levels of miR-101 and miR-199a-3p, two COX2 targeting miRNAs, are reduced by ENaC activation, and increased by ENaC inhibition or knock-down of ENaC subunit (ENaCα) in human endometrial surface epithelial (HES) cells or in mouse uteri during implantation. Phosphorylation of CREB is induced by the activation of ENaC, and blocked by ENaC inhibition or knockdown in HES cells. Knockdown of ENaCα or CREB in HES cells or in mouse uterus in vivo results in increases in miR-101 and miR-199a-3p, accompanied with decreases in COX2 protein levels and reduction in implantation rate. The downregulation of COX2 caused by knockdown of ENaC or CREB can be recovered by the inhibitors of miR-101 or miR-199a-3p in HES cells. These results reveal a novel molecular mechanism modulating COX2 expression during embryo implantation via ENaC-dependent CREB activation and COX2-targeting miRNAs.
Collapse
Affiliation(s)
- Xiao Sun
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ye Chun Ruan
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinghui Guo
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui Chen
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lai Ling Tsang
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaohu Zhang
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaohua Jiang
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research CenterKey Laboratory for Regenerative Medicine of Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
30
|
Alsop TA, McLeod BJ, Butt AG. Variations in epithelial Na(+) transport and epithelial sodium channel localisation in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, during the oestrous cycle. Reprod Fertil Dev 2014; 28:328-36. [PMID: 25056576 DOI: 10.1071/rd13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 05/27/2014] [Indexed: 11/23/2022] Open
Abstract
The fluid in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, is copious at ovulation when it may be involved in sperm transport or maturation, but is rapidly reabsorbed following ovulation. We have used the Ussing short-circuit current (Isc) technique and measurements of transcript and protein expression of the epithelial Na(+) channel (ENaC) to determine if variations in electrogenic Na(+) transport are associated with this fluid absorption. Spontaneous Isc (<20µAcm(-2) during anoestrus, 60-80µAcm(-2) in cycling animals) was inhibited by serosal ouabain. Mucosal amiloride (10µmolL(-1)), an inhibitor of ENaC, had little effect on follicular Isc but reduced luteal Isc by ~35%. This amiloride-sensitive Isc was dependent on mucosal Na(+) and the half-maximal inhibitory concentration (IC50)-amiloride (0.95μmolL(-1)) was consistent with ENaC-mediated Na(+) absorption. Results from polymerase chain reaction with reverse transcription (RT-PCR) indicate that αENaC mRNA is expressed in anoestrous, follicular and luteal phases. However, in follicular animals αENaC immunoreactivity in epithelial cells was distributed throughout the cytoplasm, whereas immunoreactivity was restricted to the apical pole of cells from luteal animals. These data suggest that increased Na(+) absorption contributes to fluid absorption during the luteal phase and is regulated by insertion of ENaC into the apical membrane of cul-de-sac epithelial cells.
Collapse
Affiliation(s)
- T-A Alsop
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - B J McLeod
- AgResearch Invermay, Private Bag 50034 Mosgiel 9053, New Zealand
| | - A G Butt
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
31
|
Jorge S, Chang S, Barzilai JJ, Leppert P, Segars JH. Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod Sci 2014; 21:1093-107. [PMID: 25001021 DOI: 10.1177/1933719114542023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction-how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling.
Collapse
Affiliation(s)
- Soledad Jorge
- CRTP Scholars, NIH, Bethesda, MD, USA Yale University School of Medicine, New Haven, CT, USA
| | - Sydney Chang
- CRTP Scholars, NIH, Bethesda, MD, USA Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
32
|
Zhou M, Fu J, Huang W, Shen L, Xiao L, Song Y, Liu Y. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: findings from a mouse model and clinical cases of abortion. PLoS One 2014; 9:e99521. [PMID: 24914548 PMCID: PMC4051784 DOI: 10.1371/journal.pone.0099521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/15/2014] [Indexed: 11/23/2022] Open
Abstract
The status of the maternal endometrium is vital in regulating humoral homeostasis and for ensuring embryo implantation. Cystic fibrosis transmembrane conductance regulators (CFTR) and epithelial sodium channel alpha subunits (ENaC-α) play an important role in female reproduction by maintaining humoral and cell homeostasis. However, it is not clear whether the expression levels of CFTR and ENaC-α in the decidual component during early pregnancy are related with early miscarriage. CBA×DBA/2 mouse mating has been widely accepted as a classical model of early miscarriage. The abortion rate associated with this mating was 33.33% in our study. The decidua of abortion-prone CBA female mice (DBA/2 mated) had higher CFTR mRNA and protein expression and lower ENaC-α mRNA and protein expression, compared to normal pregnant CBA mice (BLAB/C mated). Furthermore, increased CFTR expression and decreased ENaC-α expression were observed in the uterine tissue from women with early miscarriage, as compared to those with successful pregnancy. In conclusion, increased CFTR expression and decreased ENaC-α expression in the decidua of early abortion may relate with failure of early pregnancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- * E-mail:
| | - Licong Shen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Ying Liu
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
33
|
Liu XM, Zhang D, Wang TT, Sheng JZ, Huang HF. Ion/Water Channels for Embryo Implantation Barrier. Physiology (Bethesda) 2014; 29:186-95. [PMID: 24789983 DOI: 10.1152/physiol.00039.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.
Collapse
Affiliation(s)
- Xin-Mei Liu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Pathology & Pathophysiology, School of Medicine, Zhejiang University, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| | - Ting-Ting Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| | - Jian-Zhong Sheng
- Department of Pathology & Pathophysiology, School of Medicine, Zhejiang University, People's Republic of China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| |
Collapse
|
34
|
Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update 2014; 20:517-29. [PMID: 24591147 DOI: 10.1093/humupd/dmu006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although embryo implantation is a prerequisite for human reproduction, it remains a poorly understood process. The molecular mechanisms regulating endometrial receptivity and/or embryo implantation are still largely unclear. METHODS Pubmed and Medline literature databases were searched for articles in English published up to December 2013 with relevant keywords including 'endometrium', 'Na(+), Cl(-), K(+), or Ca(2+) channels', 'ion channels', 'endometrial receptivity', 'blastocyst implantation' and 'embryo implantation'. RESULTS At the time of writing, more than 14 types of ion channels, including the cystic fibrosis transmembrane conductance regulator, epithelial sodium channel and various Ca(2+) and K(+) channels, had been reported to be expressed in the endometrium or cells of endometrial origin. In vitro and/or in vivo studies conducted on different species, including rodents, pigs and humans, demonstrated the involvement of various ion channels in the process of embryo implantation by regulating: (i) uterine luminal fluid volume; (ii) decidualization; and (iii) the expression of the genes associated with implantation. Importantly, abnormal ion channel expression was found to be associated with implantation failure in IVF patients. CONCLUSIONS Ion channels in the endometrium are emerging as important players in regulating endometrial receptivity and embryo implantation. Abnormal expression or function of ion channels in the endometrium may lead to impaired endometrial receptivity and/or implantation failure. Further investigation into the roles of endometrial ion channels may provide a better understanding of the complex process of embryo implantation and thus reveal novel targets for diagnosis and treatment of implantation failure.
Collapse
Affiliation(s)
- Ye Chun Ruan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hui Chen
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hsiao Chang Chan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
35
|
Chinigarzadeh A, Kassim NM, Muniandy S, Salleh N. Genistein-induced fluid accumulation in ovariectomised rats' uteri is associated with increased cystic fibrosis transmembrane regulator expression. Clinics (Sao Paulo) 2014; 69:111-9. [PMID: 24519202 PMCID: PMC3912340 DOI: 10.6061/clinics/2014(02)07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE High genistein doses have been reported to induce fluid accumulation in the uteri of ovariectomised rats, although the mechanism underlying this effect remains unknown. Because genistein binds to the oestrogen receptor and the cystic fibrosis transmembrane regulator mediates uterine fluid secretion, we hypothesised that this genistein effect involves both the oestrogen receptor and cystic fibrosis transmembrane regulator. METHODS Ovariectomised adult female Sprague-Dawley rats were treated with 25, 50, or 100 mg/kg/day genistein for three consecutive days with and without the ER antagonist ICI 182780. One day after the final drug injection, the animals were humanely sacrificed, and the uteri were removed for histology and cystic fibrosis transmembrane regulator mRNA and protein expression analysis using real-time polymerase chain reaction and Western blotting, respectively. The cystic fibrosis transmembrane regulator protein distribution was analysed visually by immunohistochemistry. RESULTS The histological analysis revealed an increase in the circumference of the uterine lumen with increasing doses of genistein, which was suggestive of fluid accumulation. Moreover, genistein stimulated a dose-dependent increase in the expression of cystic fibrosis transmembrane regulator protein and mRNA, and high-intensity cystic fibrosis transmembrane regulator immunostaining was observed at the apical membrane of the luminal epithelium following 50 and 100 mg/kg/day genistein treatment. The genistein-induced increase in uterine luminal circumference and cystic fibrosis transmembrane regulator expression was antagonised by treatment with ICI 182780. CONCLUSION Genistein-induced luminal fluid accumulation in ovariectomised rats' uteri involves the oestrogen receptor and up-regulation of cystic fibrosis transmembrane regulator expression, and these findings reveal the mechanism underlying the effect of this compound on changes in fluid volume in the uterus after menopause.
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| | - Normadiah M Kassim
- University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur/Malaysia
| | - Sekaran Muniandy
- University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur/Malaysia
| | - Naguib Salleh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| |
Collapse
|
36
|
Chen Q, Zhang Y, Elad D, Jaffa AJ, Cao Y, Ye X, Duan E. Navigating the site for embryo implantation: Biomechanical and molecular regulation of intrauterine embryo distribution. Mol Aspects Med 2013; 34:1024-42. [DOI: 10.1016/j.mam.2012.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/31/2012] [Indexed: 01/03/2023]
|
37
|
Jiang LY, Shan JJ, Tong XM, Zhu HY, Yang LY, Zheng Q, Luo Y, Shi QX, Zhang SY. Cystic fibrosis transmembrane conductance regulator is correlated closely with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters. Andrologia 2013; 46:824-30. [PMID: 23998339 DOI: 10.1111/and.12155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated to be expressed in mature spermatozoa and correlated with sperm quality. Sperm CFTR expression in fertile men is higher than that in infertile men suffering from teratospermia, asthenoteratospermia, asthenospermia and oligospermia, but it is unknown whether CFTR is correlated with sperm parameters when sperm parameters are normal. In this study, 282 healthy and fertile men with normal semen parameters were classified into three age groups, group (I): age group of 20-29 years (98 cases, 27.1 ± 6.2), group (II): age group of 30-39 years (142 cases, 33.7 ± 2.6) and group (III): age group of more than or equal to 40 years (42 cases, 44.1 ± 4.6). Sperm concentration, total count and progressive motility were analysed by computer-assisted sperm analysis. Sperm morphology was analysed by modified Papanicolaou staining. Sperm CFTR expression was conducted by indirect immunofluorescence staining. There was a significant positive correlation (P < 0.001) between CFTR expression and sperm progressive motility (r = 0.221) and normal morphology (r = 0.202), but there were no correlations between sperm CFTR expression and semen volume, sperm concentration, sperm total count as well as male age (P > 0.05). Our findings show that CFTR expression is associated with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters, but not associated with the number of spermatozoa and male age.
Collapse
Affiliation(s)
- L-Y Jiang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Differential expression of Na+/H+-exchanger (NHE-1, 2, and 4) proteins and mRNA in rodent's uterus under sex steroid effect and at different phases of the oestrous cycle. BIOMED RESEARCH INTERNATIONAL 2013; 2013:840121. [PMID: 23509787 PMCID: PMC3582097 DOI: 10.1155/2013/840121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/01/2013] [Indexed: 12/16/2022]
Abstract
Precise uterine fluid pH regulation may involve the Na+/H+-exchanger (NHE). We hypothesized that NHE isoforms are differentially expressed under different sex steroid treatment and at different oestrous cycle phases which may explain the uterine fluid pH changes observed under these conditions. Method. Oestrous cycle phases of intact WKY rats were identified by vaginal smear. Another group of rats was ovariectomized and treated with 0.2 μg 17β-oestradiol (E), 4 mg progesterone (P), and E followed by P (E + P). The animals were then sacrificed and the uteri were removed for mRNA and protein expression analyses by real-time PCR and western blotting, respectively. NHE isoforms distribution was detected by immunohistochemistry (IHC). Results. NHE-1 mRNA and protein were upregulated at diestrus (Ds) and following P treatment. Meanwhile, NHE-2 and NHE-4 proteins and mRNA were upregulated at proestrus (Ps) and estrus (Es) and following E treatment. NHE-1 was found predominantly at the apical membrane, while NHE-2 and NHE-4 were found at the apical and basolateral membranes of the luminal epithelia. NHE-4 is the main isoform upregulated by E. Conclusion. Differential expressions of uterine NHE isoforms 1, 2, and 4 could explain the observed changes in the uterine fluid pH under these conditions.
Collapse
|
39
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Chan HC, Chen H, Ruan Y, Sun T. Physiology and Pathophysiology of the Epithelial Barrier of the Female Reproductive Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:193-217. [DOI: 10.1007/978-1-4614-4711-5_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Progesterone downregulates oestrogen-induced expression of CFTR and SLC26A6 proteins and mRNA in rats' uteri. J Biomed Biotechnol 2012; 2012:596084. [PMID: 23226939 PMCID: PMC3513973 DOI: 10.1155/2012/596084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022] Open
Abstract
Under progesterone (P) dominance, fluid loss assists uterine closure which is associated with pH reduction. We hypothesize that P inhibits uterine fluid secretion and HCO3− transport. Aim. to investigate the expression of Cystic Fibrosis Transmembrane Regulator (CFTR) and Cl−/HCO3− exchanger (SLC26A6) under P effect. Method. Uteri from ovariectomized steroid replaced and intact rats at different stages of oestrous cycle were analyzed for changes in protein and mRNA expressions. Results. P inhibits CFTR and SLC26A6 proteins and mRNA expression while oestrogen (E) causes vice versa. E treatment followed by P causes a reduction in these transporters' mRNA and protein. Similar changes occur throughout the oestrous cycle; that is, CFTR mRNA expression was high at proestrus while SLC26A6 mRNA and protein expressions were increased at proestrus and estrus. At diestrus, however, the expression of these transporters' protein and mRNA was reduced. Conclusion. Inhibition of CFTR and SLC26A6 expressions may explain the reduced fluid volume and pH under P-mediated effect.
Collapse
|
42
|
Ion channels/transporters as epigenetic regulators? -a microRNA perspective. SCIENCE CHINA-LIFE SCIENCES 2012; 55:753-60. [PMID: 23015123 DOI: 10.1007/s11427-012-4369-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.
Collapse
|
43
|
Jin PY, Lu YC, Li L, Han QF. Co action of CFTR and AQP1 increases permeability of peritoneal epithelial cells on estrogen-induced ovarian hyper stimulation syndrome. BMC Cell Biol 2012; 13:23. [PMID: 22928917 PMCID: PMC3443456 DOI: 10.1186/1471-2121-13-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background Ovarian hyper stimulation syndrome (OHSS) is an iatrogenic complication associated with fertility drugs. It is characterized by increased vascular permeability and substantial fluid shift with accumulation in the body cavity. The pathogenesis of OHSS remains obscure, and no definitive treatments are currently available. Results Using western blot and short-circuit current (Isc) techniques, we investigate the potential coactions of analysis in cystic fibrosis transmembrane conductance regulator (CFTR) and aquaporin 1 (AQP1) on the hyper permeability of body cavity peritoneal epithelial cells in the pathogenesis of OHSS. The rats develop OHSS symptoms, with the up regulation of both CFTR and AQP1 expression and enhanced CFTR channel activity in peritoneal epithelial cells, can also be mimicked by administration of estrogen, alone in ovariectomized rats. Administration of progesterone suppresses CFTR activity, OHSS symptoms as well as CFTR and AQP1 expression. Besides, AQP1 inhibitor, HgCl2, can suppress CFTR channel activity. Therefore, antisera against CFTR or AQP1 to OHSS animals may result in alleviation of the symptom. Conclusion This study confirms the coactions of CFTR and AQP1 play a critical role in the development and progression of increased peritoneal epithelial permeability in severe OHSS. These findings may provide grounds for ameliorating assisted reproduction treatment strategy to reduce the risk of OHSS in in vitro fertilization (IVF).
Collapse
Affiliation(s)
- Pei-Yin Jin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|
44
|
Shao R, Wang X, Wang W, Stener-Victorin E, Mallard C, Brännström M, Billig H. From mice to women and back again: causalities and clues for Chlamydia-induced tubal ectopic pregnancy. Fertil Steril 2012; 98:1175-85. [PMID: 22884019 DOI: 10.1016/j.fertnstert.2012.07.1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To provide an overview of knockout mouse models that have pathological tubal phenotypes after Chlamydia muridarum infection, discuss factors and pathological processes that contribute to inflammation, summarize data on tubal transport and progression of tubal implantation from studies in humans and animal models, and highlight research questions in the field. DESIGN A search of the relevant literature using PubMed and other online tools. SETTING University-based preclinical and clinical research laboratories. PATIENT(S) Women with tubal ectopic pregnancy after Chlamydia trachomatis infection. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Critical review of the literature. RESULT(S) Chlamydia trachomatis infection poses a major threat to human reproduction. Biological and epidemiological evidence suggests that progression of Chlamydia infection causes intense and persistent inflammation, injury, and scarring in the fallopian tube, leading to a substantially increased risk of ectopic pregnancy and infertility. The main targets of Chlamydia infection are epithelial cells lining the mucosal surface, which play a central role in host immune responses and pathophysiology. Tubal phenotypes at the cellular level in mutant mice appear to reflect alterations in the balance between inflammatory mediator and factor deficiency. While studies in mice infected with Chlamydia muridarum have provided insight into potential inflammatory mediators linked to fallopian tube pathology, it is unclear how inflammation induced by Chlamydia infection prevents or retards normal tubal transport and causes embryo implantation in the fallopian tube. CONCLUSION(S) Given the similarities in the tubal physiology of humans and rodents, knockout mouse models can be used to study certain aspects of tubal functions, such as gamete transport and early embryo implantation. Elucidation of the exact molecular mechanisms of immune and inflammatory responses caused by Chlamydia infection in human fallopian tubal cells in vitro and understanding how Chlamydia infection affects tubal transport and implantation in animal studies in vivo may explain how Chlamydia trachomatis infection drives inflammation and develops the tubal pathology in women with tubal ectopic pregnancy.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat Med 2012; 18:1112-7. [DOI: 10.1038/nm.2771] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 04/10/2012] [Indexed: 11/09/2022]
|
46
|
Chen H, Guo JH, Lu YC, Ding GL, Yu MK, Tsang LL, Fok KL, Liu XM, Zhang XH, Chung YW, Huang P, Huang H, Chan HC. Impaired CFTR-dependent amplification of FSH-stimulated estrogen production in cystic fibrosis and PCOS. J Clin Endocrinol Metab 2012; 97:923-32. [PMID: 22170719 DOI: 10.1210/jc.2011-1363] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Estrogens play important roles in a wide range of physiological and pathological processes, and their biosynthesis is profoundly influenced by FSH that regulates the rate-limiting enzyme aromatase-converting estrogens from androgens. Abnormal estrogen levels are often seen in diseases such as ovarian disorders in polycystic ovarian syndrome (PCOS), an endocrine disorder affecting 5-10% of women of reproductive age, and cystic fibrosis (CF), a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). OBJECTIVES We undertook the present study to investigate the mechanism underlying these ovarian disorders, which is not well understood. RESULTS FSH-stimulated cAMP-responsive element binding protein phosphorylation, aromatase expression, and estradiol production are found to be enhanced by HCO3- and a HCO3- sensor, the soluble adenylyl cyclase, which could be significantly reduced by CFTR inhibition or in ovaries or granulosa cells of cftr knockout/ΔF508 mutant mice. CFTR expression is found positively correlated with aromatase expression in human granulosa cells, supporting its role in regulating estrogen production in humans. Reduced CFTR and aromatase expression is also found in PCOS rodent models and human patients. CONCLUSIONS CFTR regulates ovarian estrogen biosynthesis by amplifying the FSH-stimulated signal via the nuclear soluble adenylyl cyclase. The present findings suggest that defective CFTR-dependent regulation of estrogen production may underlie the ovarian disorders seen in CF and PCOS.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, Room 408 Basic Medical Sciences Building, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with human cervical cancer malignancy, progression and prognosis. Gynecol Oncol 2012; 125:470-6. [PMID: 22366595 DOI: 10.1016/j.ygyno.2012.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the correlation of cystic fibrosis transmembrane conductance regulator (CFTR) to cervical cancer progression and prognosis by examining CFTR expression levels in different cervical tissues and cell lines. METHODS Paraffin-embedded cervical tissue samples (n=192) were collected for immunohistochemistry (IHC), while fresh cervical tissue samples (n=165) and human cervical cell lines were collected for protein and mRNA detection by quantitative real-time PCR and western blot, respectively. Correlations between CFTR expression levels to cancer clinicopathologic features and prognosis were statistically analyzed. RESULTS Both CFTR mRNA and protein expression gradually increased from normal to precancerous (LSIL, HSIL) and cervical cancer tissues (p<0.05). Furthermore, CFTR expression level was well-correlated to tumor stage (p<0.001), histological grades (p<0.001), lymphatic metastasis (p<0.001), vascular invasion (p<0.05), interstitial invasive depth (p<0.05), tumor size (p<0.05) and HPV infection (p<0.05). In vitro, CFTR mRNA and protein were expressed strongly both in SiHa and HeLa, but little was seen in Caski and H8 (p<0.05). More importantly, overexpression of CFTR conferred significantly poorer survival in cervical carcinoma (Log rank p=0.028), although it was not an independent predictor for prognosis according to multivariate analysis (p>0.05). CONCLUSIONS These results suggest that higher CFTR expression is closely associated with cervical cancer progression, aggressive behaviors and poorer prognosis, indicating that CFTR may function as a novel tumor marker, a prospective prognostic indicator and a potential therapeutic target for cervical cancer.
Collapse
|
48
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
49
|
Enuka Y, Hanukoglu I, Edelheit O, Vaknine H, Hanukoglu A. Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 2011; 137:339-53. [PMID: 22207244 DOI: 10.1007/s00418-011-0904-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 11/29/2022]
Abstract
Epithelial sodium channels (ENaCs) are located on the apical surface of cells and funnel Na(+) ions from the lumen into the cell. ENaC function also regulates extracellular fluid volume as water flows across membranes accompanying Na(+) ions to maintain osmolarity. To examine the sites of expression and intracellular localization of ENaC, we generated polyclonal antibodies against the extracellular domain of human α-ENaC subunit that we expressed in E. coli. Three-dimensional (3D) confocal microscopy of immunofluorescence using these antibodies for the first time revealed that ENaCs are uniformly distributed on the ciliary surface in all epithelial cells with motile cilia lining the bronchus in human lung and female reproductive tract, all along the fimbrial end of the fallopian tube, the ampulla and rare cells in the uterine glands. Quantitative analysis indicated that cilia increase cell surface area >70-fold and the amount of ENaC on cilia is >1,000-fold higher than on non-ciliated cell surface. These findings indicate that ENaC functions as a regulator of the osmolarity of the periciliary fluid bathing the cilia. In contrast to ENaC, cystic fibrosis transmembrane conductance regulator (CFTR) that channels chloride ions from the cytoplasm to the lumen is located mainly on the apical side, but not on cilia. The cilial localization of ENaC requires reevaluation of the mechanisms of action of CFTR and other modulators of ENaC function. ENaC on motile cilia should be essential for diverse functions of motile cilia, such as germ cell transport, fertilization, implantation, clearance of respiratory airways and cell migration.
Collapse
Affiliation(s)
- Yehoshua Enuka
- Department of Molecular Biology, Ariel University Center, Ariel 40700, Israel
| | | | | | | | | |
Collapse
|
50
|
Yang JZ, Jiang X, Dong J, Guo J, Chen H, Tsang LL, Chung YW, Zhang X, Chan HC. Abnormally enhanced cystic fibrosis transmembrane conductance regulator-mediated apoptosis in endometrial cells contributes to impaired embryo implantation in controlled ovarian hyperstimulation. Fertil Steril 2011; 95:2100-6, 2106.e1-2. [DOI: 10.1016/j.fertnstert.2011.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 01/05/2023]
|