1
|
Papouskova K, Zimmermannova O, Sychrova H. Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K + importer Trk1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184369. [PMID: 38969203 DOI: 10.1016/j.bbamem.2024.184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Trk1 is the main K+ importer of Saccharomyces cerevisiae. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K+. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment - pore loop - transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in S. cerevisiae cells without chromosomal copies of TRK genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K+.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| |
Collapse
|
2
|
Rivetta A, Slayman C. Electrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans. Methods Enzymol 2024; 696:3-24. [PMID: 38658085 DOI: 10.1016/bs.mie.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tight regulation of molecules moving through the cell membrane is particularly important for free-living microorganisms because of their small cell volumes and frequent changes in the chemical composition of the extracellular environment. This is true for nutrients, but even more so for toxic molecules. Traditionally, the transport of these diverse molecules in microorganisms has been studied on cell populations rather than on single cells, mainly because of technical difficulties. The goal of this chapter is to make available a detailed method to prepare yeast spheroplasts to study the movement of fluoride ions across the plasma membrane of single cells by the patch-clamp technique. In this procedure, three steps are critical to achieve high resistance (GΩ) seals between the membrane and the glass electrode: (1) appropriate removal of the cell wall by enzymatic treatment; (2) balance between the osmotic strength of sealing solutions and cell membrane turgor; and (3) meticulous morphological inspection of spheroplasts suitable for gigaseal formation. We show now that this method, originally developed for Saccharomyces cerevisiae, can also be applied to Candida albicans, an opportunistic human pathogen.
Collapse
Affiliation(s)
- Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States.
| | - Clifford Slayman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Antunes M, Sá-Correia I. The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts. FEMS Yeast Res 2024; 24:foae016. [PMID: 38658183 PMCID: PMC11092280 DOI: 10.1093/femsyr/foae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
4
|
Kulik N, Kale D, Spurna K, Shamayeva K, Hauser F, Milic S, Janout H, Zayats V, Jacak J, Ludwig J. Dimerisation of the Yeast K + Translocation Protein Trk1 Depends on the K + Concentration. Int J Mol Sci 2022; 24:ijms24010398. [PMID: 36613841 PMCID: PMC9820094 DOI: 10.3390/ijms24010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In baker's yeast (Saccharomyces cerevisiae), Trk1, a member of the superfamily of K-transporters (SKT), is the main K+ uptake system under conditions when its concentration in the environment is low. Structurally, Trk1 is made up of four domains, each similar and homologous to a K-channel α subunit. Because most K-channels are proteins containing four channel-building α subunits, Trk1 could be functional as a monomer. However, related SKT proteins TrkH and KtrB were crystallised as dimers, and for Trk1, a tetrameric arrangement has been proposed based on molecular modelling. Here, based on Bimolecular Fluorescence Complementation experiments and single-molecule fluorescence microscopy combined with molecular modelling; we provide evidence that Trk1 can exist in the yeast plasma membrane as a monomer as well as a dimer. The association of monomers to dimers is regulated by the K+ concentration.
Collapse
Affiliation(s)
- Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Deepika Kale
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Karin Spurna
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Fabian Hauser
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Sandra Milic
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Hannah Janout
- Bioinformatics, University of Applied Sciences Upper Austria, 4232 Hagenberg, Austria
- Institute of Symbolic AI, Johannes Kepler University, 4040 Linz, Austria
| | - Vasilina Zayats
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Jost Ludwig
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
6
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
7
|
Kale D, Spurny P, Shamayeva K, Spurna K, Kahoun D, Ganser D, Zayats V, Ludwig J. The S. cerevisiae cation translocation protein Trk1 is functional without its “long hydrophilic loop” but LHL regulates cation translocation activity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1476-1488. [DOI: 10.1016/j.bbamem.2019.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
8
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
9
|
Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:97. [PMID: 31044010 PMCID: PMC6477708 DOI: 10.1186/s13068-019-1427-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative to replace petroleum refining. However, PA inhibits yeast growth at concentrations well below the titers typically required for a commercial bioprocess. RESULTS Adaptive laboratory evolution (ALE) with PA concentrations ranging from 15 to 45 mM enabled the isolation of yeast strains with more than threefold improved tolerance to PA. Through whole genome sequencing and CRISPR-Cas9-mediated reverse engineering, unique mutations in TRK1, which encodes a high-affinity potassium transporter, were revealed as the cause of increased propionic acid tolerance. Potassium supplementation growth assays showed that mutated TRK1 alleles and extracellular potassium supplementation not only conferred tolerance to PA stress but also to multiple organic acids. CONCLUSION Our study has demonstrated the use of ALE as a powerful tool to improve yeast tolerance to PA. Potassium transport and maintenance is not only critical in yeast tolerance to PA but also boosts tolerance to multiple organic acids. These results demonstrate high-affinity potassium transport as a new principle for improving organic acid tolerance in strain engineering.
Collapse
Affiliation(s)
- Xin Xu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Thomas C. Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601 Australia
| | - Christina Divne
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Isak S. Pretorius
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
10
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2018; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Eigenstetter G, Takors R. Dynamic modeling reveals a three-step response of Saccharomyces cerevisiae to high CO2 levels accompanied by increasing ATP demands. FEMS Yeast Res 2018; 17:2975573. [PMID: 28175306 DOI: 10.1093/femsyr/fox008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is often applied in large-scale bioreactors where gradients of dissolved CO2 exist. Under high CO2 pressure, the dissolved gas enters the microbe, causing multifold intracellular responses such as decrease of pH, increase of HCO3- and changes of ion balance. Effects of varying CO2 concentrations are multifold, hard to scale and hardly investigated. Hence, the multi-level response to CO2 shifts was summarized in a predicting ODE model with mass action kinetics, balancing electrochemical charges in steady-state growth conditions. Compared to experimental observations, the simulated dynamics of ion concentrations were found to be consistent. During CO2 shifts, the model predicts the initial depolarization of the membrane potential, the temporal pH drop and the activation of countermeasures such as Pma1-mediated H+ export and Trk1,2-mediated K+ import. In conclusion, extracellular cation concentrations and the cellular pH regulation are critical factors that determine physiology and cellular energy management. Consequently, pressure-induced CO2 gradients cause peaks of ATP demand which may occur in cells circulating in large-scale industrial bioreactors.
Collapse
|
12
|
Felcmanova K, Neveceralova P, Sychrova H, Zimmermannova O. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation. FEMS Yeast Res 2017; 17:3966712. [DOI: 10.1093/femsyr/fox053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
|
13
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Mathematical Modelling of Cation Transport and Regulation in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:291-305. [DOI: 10.1007/978-3-319-25304-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Smith KD, Gordon PB, Rivetta A, Allen KE, Berbasova T, Slayman C, Strobel SA. Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains. J Biol Chem 2015; 290:19874-87. [PMID: 26055717 PMCID: PMC4528147 DOI: 10.1074/jbc.m115.651976] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Fluoride is a ubiquitous environmental toxin with which all biological species must cope. A recently discovered family of fluoride export (FEX) proteins protects organisms from fluoride toxicity by removing it from the cell. We show here that FEX proteins in Saccharomyces cerevisiae function as ion channels that are selective for fluoride over chloride and that these proteins are constitutively expressed at the yeast plasma membrane. Continuous expression is in contrast to many other toxin exporters in yeast, and this, along with the fact that two nearly duplicate proteins are encoded in the yeast genome, suggests that the threat posed by fluoride ions is frequent and detrimental. Structurally, eukaryotic FEX proteins consist of two homologous four-transmembrane helix domains folded into an antiparallel dimer, where the orientation of the two domains is fixed by a single transmembrane linker helix. Using phylogenetic sequence conservation as a guide, we have identified several functionally important residues. There is substantial functional asymmetry in the effect of mutation at corresponding sites in the two domains. Specifically, mutations to residues in the C-terminal domain proved significantly more detrimental to function than did similar mutations in the N-terminal domain. Our data suggest particular residues that may be important to anion specificity, most notably the necessity of a positive charge near the end of TMH1 in the C-terminal domain. It is possible that a cationic charge at this location may create an electrostatic well for fluoride ions entering the channel from the cytoplasm.
Collapse
Affiliation(s)
- Kathryn D Smith
- From the Departments of Molecular Biophysics and Biochemistry
| | | | | | | | | | | | - Scott A Strobel
- From the Departments of Molecular Biophysics and Biochemistry, Chemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
16
|
A structural model for facultative anion channels in an oligomeric membrane protein: the yeast TRK (K+) system. Pflugers Arch 2015; 467:2447-60. [DOI: 10.1007/s00424-015-1712-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
|
17
|
Zayats V, Stockner T, Pandey SK, Wörz K, Ettrich R, Ludwig J. A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1183-95. [DOI: 10.1016/j.bbamem.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 11/25/2022]
|
18
|
Volkov V. Quantitative description of ion transport via plasma membrane of yeast and small cells. FRONTIERS IN PLANT SCIENCE 2015; 6:425. [PMID: 26113853 PMCID: PMC4462678 DOI: 10.3389/fpls.2015.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/21/2023]
Abstract
Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.
Collapse
Affiliation(s)
- Vadim Volkov
- *Correspondence: Vadim Volkov, Faculty of Life Sciences, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| |
Collapse
|
19
|
Ariño J, Aydar E, Drulhe S, Ganser D, Jorrín J, Kahm M, Krause F, Petrezsélyová S, Yenush L, Zimmermannová O, van Heusden GPH, Kschischo M, Ludwig J, Palmer C, Ramos J, Sychrová H. Systems biology of monovalent cation homeostasis in yeast: the translucent contribution. Adv Microb Physiol 2014; 64:1-63. [PMID: 24797924 DOI: 10.1016/b978-0-12-800143-1.00001-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Maintenance of monovalent cation homeostasis (mainly K(+) and Na(+)) is vital for cell survival, and cation toxicity is at the basis of a myriad of relevant phenomena, such as salt stress in crops and diverse human diseases. Full understanding of the importance of monovalent cations in the biology of the cell can only be achieved from a systemic perspective. Translucent is a multinational project developed within the context of the SysMO (System Biology of Microorganisms) initiative and focussed in the study of cation homeostasis using the well-known yeast Saccharomyces cerevisiae as a model. The present review summarize how the combination of biochemical, genetic, genomic and computational approaches has boosted our knowledge in this field, providing the basis for a more comprehensive and coherent vision of the role of monovalent cations in the biology of the cell.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Dept. Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Ebru Aydar
- Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | | | | | - Jesús Jorrín
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Matthias Kahm
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | | | - Silvia Petrezsélyová
- Institut de Biotecnologia i Biomedicina & Dept. Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Olga Zimmermannová
- Department of Membrane Transport, Institute of Physiology Academy of Sciences CR, Prague, Czech Republic
| | | | - Maik Kschischo
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | | | - Chris Palmer
- Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | - José Ramos
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology Academy of Sciences CR, Prague, Czech Republic
| |
Collapse
|
20
|
Abstract
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.
Collapse
|
21
|
Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L, Yenush L, Ariño J, Ramos J, Kschischo M. Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 2012; 8:e1002548. [PMID: 22737060 PMCID: PMC3380843 DOI: 10.1371/journal.pcbi.1002548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/23/2012] [Indexed: 11/25/2022] Open
Abstract
The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (“the reverse tracking algorithm”) we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis. Without potassium, all living cells will die; it has to be present in sufficient amounts for the proper function of most cell types. Disturbances in potassium levels in animal cells result in potentially fatal conditions and it is also an essential nutrient for plants and fungi. Cells have developed effective mechanisms for surviving under adverse environmental conditions of low external potassium. The question is how. Using the eukaryotic model organism, baker's yeast (Saccharomyces cerevisiae), we modeled how potassium homeostasis takes place. This is because, through mathematical modeling and experimentation, we found that the electro-chemical forces regulating potassium concentrations are coupled to proton fluxes, which respond to external conditions in order to maintain a viable potassium level within the cells. Our results challenge the current understanding of potassium homeostasis in baker's yeast, and could potentially be extended to other microorganisms, including non-conventional yeasts such as the pathogenic Candida albicans, and plant cells. In the future, the fundamental bases for this descriptive and predictive model might contribute to the development of new treatments for fungal infections, or developments in crop sciences.
Collapse
Affiliation(s)
- Matthias Kahm
- Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences, Koblenz, Remagen, Germany
| | - Clara Navarrete
- Department of Microbiology, Campus de Rabanales, University of Córdoba, Córdoba, Spain
| | - Vicent Llopis-Torregrosa
- Instituto de Biologia Molecular y Celular de Plantas UPV-CSIC, Ciudad Politécnica de la Innovación, Universidad Politécnica de Valencia, Valencia, Spain
| | - Rito Herrera
- Department of Microbiology, Campus de Rabanales, University of Córdoba, Córdoba, Spain
| | - Lina Barreto
- Institut de Biotecnologia I Biomedicina & Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lynne Yenush
- Instituto de Biologia Molecular y Celular de Plantas UPV-CSIC, Ciudad Politécnica de la Innovación, Universidad Politécnica de Valencia, Valencia, Spain
| | - Joaquin Ariño
- Institut de Biotecnologia I Biomedicina & Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose Ramos
- Department of Microbiology, Campus de Rabanales, University of Córdoba, Córdoba, Spain
| | - Maik Kschischo
- Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences, Koblenz, Remagen, Germany
- * E-mail:
| |
Collapse
|
22
|
Benito B, Garciadeblás B, Fraile-Escanciano A, Rodríguez-Navarro A. Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genet Biol 2011; 48:812-22. [DOI: 10.1016/j.fgb.2011.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
23
|
Rivetta A, Kuroda T, Slayman C. Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels. Pflugers Arch 2011; 462:315-30. [PMID: 21556692 DOI: 10.1007/s00424-011-0959-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 11/26/2022]
Abstract
Patch clamp studies of the potassium-transport proteins TRK1,2 in Saccharomyces cerevisiae have revealed large chloride efflux currents: at clamp voltages negative to -100 mV, and intracellular chloride concentrations >10 mM (J. Membr. Biol. 198:177, 2004). Stationary-state current-voltage analysis led to an in-series two-barrier model for chloride activation: the lower barrier (α) being 10-13 kcal/mol located ~30% into the membrane from the cytoplasmic surface; and the higher one (β) being 12-16 kcal/mol located at the outer surface. Measurements carried out with lyotrophic anions and osmoprotective solutes have now demonstrated the following new properties: (1) selectivity for highly permeant anions changes with extracellular pH; at pH(o)= 5.5: I(-)≈ Br(-) >Cl(-) >SCN(-) >NO (3)(-) , and at pH(o) 7.5: I(-)≈ Br(-) > SCN(-) > NO(3)(-) >Cl(-). (2) NO(2)(-) acts like "superchoride", possibly enhancing the channel's intrinsic permeability to Cl(-). (3) SCN(-) and NO(3)(-) block chloride permeability. (4) The order of selectivity for several slightly permeant anions (at pH(o)= 5.5 only) is formate>gluconate>acetate>>phosphate(-1). (5) All anion conductances are modulated (choked) by osmoprotective solutes. (6) The data and descriptive two-barrier model evoke a hypothetical structure (Biophys. J. 77:789, 1999) consisting of an intramembrane homotetramer of fungal TRK molecules, arrayed radially around a central cluster of four single helices (TM7) from each monomer. (7) That tetrameric cluster would resemble the hydrophobic core of (pentameric) ligand-gated ion channels, and would suggest voltage-modulated hydrophobic gating to underlie anion permeation.
Collapse
Affiliation(s)
- Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
24
|
Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H. Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 2010; 67:2511-32. [PMID: 20333436 PMCID: PMC11115768 DOI: 10.1007/s00018-010-0317-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/10/2010] [Accepted: 02/15/2010] [Indexed: 02/06/2023]
Abstract
Bacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K(+) and/or Na(+) and characterized by a common structure probably derived from an ancestral K(+) channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H(+)-K(+) or Na(+)-K(+) symport, K(+) or Na(+) uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K(+) or Na(+) uptake to membrane potential control, adaptation to osmotic or salt stress, or Na(+) recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features.
Collapse
Affiliation(s)
- C. Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, 34060 Montpellier Cedex 2, France
| | - M. Jabnoune
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, 34060 Montpellier Cedex 2, France
- Present Address: Plant Biotechnology Laboratory, DBMV, University of Lausanne, 1015 Lausanne, Switzerland
| | - S. Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, 34060 Montpellier Cedex 2, France
| | - A.-A. Véry
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, 34060 Montpellier Cedex 2, France
| | - C. Fizames
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, 34060 Montpellier Cedex 2, France
| | - H. Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, 34060 Montpellier Cedex 2, France
| |
Collapse
|
25
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
26
|
Lauff DB, Santa-María GE. Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:497-507. [DOI: 10.1111/j.1567-1364.2010.00628.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA. Diversity in expression patterns and functional properties in the rice HKT transporter family. PLANT PHYSIOLOGY 2009; 150:1955-71. [PMID: 19482918 PMCID: PMC2719131 DOI: 10.1104/pp.109.138008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/23/2009] [Indexed: 05/18/2023]
Abstract
Plant growth under low K(+) availability or salt stress requires tight control of K(+) and Na(+) uptake, long-distance transport, and accumulation. The family of membrane transporters named HKT (for High-Affinity K(+) Transporters), permeable either to K(+) and Na(+) or to Na(+) only, is thought to play major roles in these functions. Whereas Arabidopsis (Arabidopsis thaliana) possesses a single HKT transporter, involved in Na(+) transport in vascular tissues, a larger number of HKT transporters are present in rice (Oryza sativa) as well as in other monocots. Here, we report on the expression patterns and functional properties of three rice HKT transporters, OsHKT1;1, OsHKT1;3, and OsHKT2;1. In situ hybridization experiments revealed overlapping but distinctive and complex expression patterns, wider than expected for such a transporter type, including vascular tissues and root periphery but also new locations, such as osmocontractile leaf bulliform cells (involved in leaf folding). Functional analyses in Xenopus laevis oocytes revealed striking diversity. OsHKT1;1 and OsHKT1;3, shown to be permeable to Na(+) only, are strongly different in terms of affinity for this cation and direction of transport (inward only or reversible). OsHKT2;1 displays diverse permeation modes, Na(+)-K(+) symport, Na(+) uniport, or inhibited states, depending on external Na(+) and K(+) concentrations within the physiological concentration range. The whole set of data indicates that HKT transporters fulfill distinctive roles at the whole plant level in rice, each system playing diverse roles in different cell types. Such a large diversity within the HKT transporter family might be central to the regulation of K(+) and Na(+) accumulation in monocots.
Collapse
Affiliation(s)
- Mehdi Jabnoune
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Campus SupAgro-M/INRA, 34060 Montpellier cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sant'Ana GDS, Paes LDS, Paiva AFV, Fietto LG, Totola AH, Trópia MJM, Silveira-Lemos D, Lucas C, Fietto JLR, Brandão RL, Castro IDM. Protective effect of ions against cell death induced by acid stress in Saccharomyces. FEMS Yeast Res 2009; 9:701-12. [PMID: 19473262 DOI: 10.1111/j.1567-1364.2009.00523.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces boulardii is a probiotic used to prevent or treat antibiotic-induced gastrointestinal disorders and acute enteritis. For probiotics to be effective they must first be able to survive the harsh gastrointestinal environment. In this work, we show that S. boulardii displayed the greatest tolerance to simulated gastric environments compared with several Saccharomyces cerevisiae strains tested. Under these conditions, a pH 2.0 was the main factor responsible for decreased cell viability. Importantly, the addition of low concentrations of sodium chloride (NaCl) protected cells in acidic conditions more effectively than other salts. In the absence of S. boulardii mutants, the protective effects of Na(+) in yeast viability in acidic conditions was tested using S. cerevisiae Na(+)-ATPases (ena1-4), Na(+)/H(+) antiporter (nha1Delta) and Na(+)/H(+) antiporter prevacuolar (nhx1Delta) null mutants, respectively. Moreover, we provide evidence suggesting that this protection is determined by the plasma membrane potential, once altered by low pH and low NaCl concentrations. Additionally, the absence or low expression/activity of Ena proteins seems to be closely related to the basal membrane potential of the cells.
Collapse
Affiliation(s)
- Gilzeane dos Santos Sant'Ana
- Laboratório de Biologia Celular e Molecular (LBCM), Núcleo de Pesquisa em Ciências Biológicas, Departamento de Farmácia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, Rivetta A. Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus onCandida albicans. FEMS Yeast Res 2009; 9:278-92. [DOI: 10.1111/j.1567-1364.2008.00471.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Jennings ML, Cui J. Chloride homeostasis in Saccharomyces cerevisiae: high affinity influx, V-ATPase-dependent sequestration, and identification of a candidate Cl- sensor. ACTA ACUST UNITED AC 2008; 131:379-91. [PMID: 18378800 PMCID: PMC2279172 DOI: 10.1085/jgp.200709905] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chloride homeostasis in Saccharomyces cerevisiae has been characterized with the goal of identifying new Cl− transport and regulatory pathways. Steady-state cellular Cl− contents (∼0.2 mEq/liter cell water) differ by less than threefold in yeast grown in media containing 0.003–5 mM Cl−. Therefore, yeast have a potent mechanism for maintaining constant cellular Cl− over a wide range of extracellular Cl−. The cell water:medium [Cl−] ratio is >20 in media containing 0.01 mM Cl− and results in part from sequestration of Cl− in organelles, as shown by the effect of deleting genes involved in vacuolar acidification. Organellar sequestration cannot account entirely for the Cl− accumulation, however, because the cell water:medium [Cl−] ratio in low Cl− medium is ∼10 at extracellular pH 4.0 even in vma1 yeast, which lack the vacuolar H+-ATPase. Cellular Cl− accumulation is ATP dependent in both wild type and vma1 strains. The initial 36Cl− influx is a saturable function of extracellular [36Cl−] with K1/2 of 0.02 mM at pH 4.0 and >0.2 mM at pH 7, indicating the presence of a high affinity Cl− transporter in the plasma membrane. The transporter can exchange 36Cl− for either Cl− or Br− far more rapidly than SO4=, phosphate, formate, HCO3−, or NO3−. High affinity Cl− influx is not affected by deletion of any of several genes for possible Cl− transporters. The high affinity Cl− transporter is activated over a period of ∼45 min after shifting cells from high-Cl− to low-Cl− media. Deletion of ORF YHL008c (formate-nitrite transporter family) strongly reduces the rate of activation of the flux. Therefore, Yhl008cp may be part of a Cl−-sensing mechanism that activates the high affinity transporter in a low Cl− medium. This is the first example of a biological system that can regulate cellular Cl− at concentrations far below 1 mM.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
31
|
Roller A, Natura G, Bihler H, Slayman CL, Bertl A. Functional consequences of leucine and tyrosine mutations in the dual pore motifs of the yeast K(+) channel, Tok1p. Pflugers Arch 2008; 456:883-96. [PMID: 18421473 DOI: 10.1007/s00424-008-0446-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/09/2007] [Accepted: 01/02/2008] [Indexed: 11/26/2022]
Abstract
Tandem pore-loop potassium channels differ from the majority of K(+) channels in that a single polypeptide chain carries two K(+)-specific segments (P) each sandwiched between two transmembrane helices (M) to form an MP(1)M-MP(2)M series. Two of these peptide molecules assemble to form one functional potassium channel, which is expected to have biaxial symmetry (commonly described as asymmetric) due to independent mutation in the two MPM units. The resulting intrinsic asymmetry is exaggerated in fungal 2P channels, especially in Tok1p of Saccharomyces, by the N-terminal presence of four more transmembrane helices. Functional implications of such structural asymmetry have been investigated via mutagenesis of residues (L290 in P(1) and Y424 in P(2)) that are believed to provide the outermost ring of carbonyl oxygen atoms for coordination with potassium ions. Both complementary mutations (L290Y and Y424L) yield functional potassium channels having quasi-normal conductance when expressed in Saccharomyces itself, but the P(1) mutation (only) accelerates channel opening about threefold in response to depolarizing voltage shifts. The more pronounced effect at P(1) than at P(2) appears paradoxical in relation to evolution, because a comparison of fungal Tok1p sequences (from 28 ascomycetes) shows the filter sequence of P(2) (overwhelmingly TIGYGD) to be much stabler than that of P(1) (mostly TIGLGD). Profound functional asymmetry is revealed by the fact that combining mutations (L290Y + Y424L)-which inverts the order of residues from the wild-type channel-reduces the expressed channel conductance by a large factor (20-fold, cf. <twofold for the single mutants).
Collapse
Affiliation(s)
- Anja Roller
- Botanisches Institut I, Universität Karlsruhe (TH), Kaiserstrasse 12, 76128, Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
32
|
Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N. Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 2008; 283:1911-20. [PMID: 18029350 DOI: 10.1074/jbc.m708213200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The tonoplast K(+) membrane transport system plays a crucial role in maintaining K(+) homeostasis in plant cells. Here, we isolated cDNAs encoding a two-pore K(+) channel (NtTPK1) from Nicotiana tabacum cv. SR1 and cultured BY-2 tobacco cells. Two of the four variants of NtTPK1 contained VHG and GHG instead of the GYG signature sequence in the second pore region. All four products were functional when expressed in the Escherichia coli cell membrane, and NtTPK1 was targeted to the tonoplast in tobacco cells. Two of the three promoter sequences isolated from N. tabacum cv. SR1 were active, and expression from these was increased approximately 2-fold by salt stress or high osmotic shock. To determine the properties of NtTPK1, we enlarged mutant yeast cells with inactivated endogenous tonoplast channels and prepared tonoplasts suitable for patch clamp recording allowing the NtTPK1-related channel conductance to be distinguished from the small endogenous currents. NtTPK1 exhibited strong selectivity for K(+) over Na(+). NtTPK1 activity was sensitive to spermidine and spermine, which were shown to be present in tobacco cells. NtTPK1 was active in the absence of Ca(2+), but a cytosolic concentration of 45 microM Ca(2+) resulted in a 2-fold increase in the amplitude of the K(+) current. Acidification of the cytosol to pH 5.5 also markedly increased NtTPK1-mediated K(+) currents. These results show that NtTPK1 is a novel tonoplast K(+) channel belonging to a different group from the previously characterized vacuolar channels SV, FV, and VK.
Collapse
Affiliation(s)
- Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H. Molecular and functional characterization of a Na(+)-K(+) transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 2007; 282:26057-66. [PMID: 17626012 DOI: 10.1074/jbc.m611613200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectomycorrhizal symbiosis between fungi and woody plants strongly improves plant mineral nutrition and constitutes a major biological process in natural ecosystems. Molecular identification and functional characterization of fungal transport systems involved in nutrient uptake are crucial steps toward understanding the improvement of plant nutrition and the symbiotic relationship itself. In the present report a transporter belonging to the Trk family is identified in the model ectomycorrhizal fungus Hebeloma cylindrosporum and named HcTrk1. The Trk family is still poorly characterized, although it plays crucial roles in K(+) transport in yeasts and filamentous fungi. In Saccharomyces cerevisiae K(+) uptake is mainly dependent on the activity of Trk transporters thought to mediate H(+):K(+) symport. The ectomycorrhizal HcTrk1 transporter was functional when expressed in Xenopus oocytes, enabling the first electrophysiological characterization of a transporter from the Trk family. HcTrk1 mediates instantaneously activating inwardly rectifying currents, is permeable to both K(+) and Na(+), and displays channel-like functional properties. The whole set of data and particularly a phenomenon reminiscent of the anomalous mole fraction effect suggest that the transport does not occur according to the classical alternating access model. Permeation appears to occur through a single-file pore, where interactions between Na(+) and K(+) might result in Na(+):K(+) co-transport activity. HcTrk1 is expressed in external hyphae that explore the soil when the fungus grows in symbiotic condition. Thus, it could play a major role in both the K(+) and Na(+) nutrition of the fungus (and of the plant) in nutrient-poor soils.
Collapse
Affiliation(s)
- Claire Corratgé
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, CNRS/INRA/SupAgro/UM2 and Rhizosphère and Symbiose, UMR1222 INRA/SupAgro, Place Viala, F-34060 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jennings ML, Howren TR, Cui J, Winters M, Hannigan R. Transport and regulatory characteristics of the yeast bicarbonate transporter homolog Bor1p. Am J Physiol Cell Physiol 2007; 293:C468-76. [PMID: 17459946 DOI: 10.1152/ajpcell.00286.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The functional properties of the Saccharomyces cerevisiae bicarbonate transporter homolog Bor1p (YNL275wp) were characterized by measuring boron (H3BO3), Na+, and Cl− fluxes. Neither Na+ nor Cl− appears to be a transported substrate for Bor1p. Uphill efflux of boron mediated by Bor1p was demonstrated directly by loading cells with boron and resuspending in a low-boron medium. Cells with intact BOR1, but not the deletant strain, transport boron outward until the intracellular concentration is sevenfold lower than that in the medium. Boron efflux through Bor1p is a saturable function of intracellular boron (apparent Km ∼1–2 mM). The extracellular pH dependences of boron distribution and efflux indicate that uphill efflux is driven by the inward H+ gradient. Addition of 30 mM HCO3− does not affect boron extrusion by Bor1p, indicating that HCO3− does not participate in Bor1p function. Functional Bor1p is present in cells grown in medium with no added boron, and overnight growth in 10 mM H3BO3 causes only a small increase in the levels of functional Bor1p and in BOR1 mRNA. The fact that Bor1p is expressed when there is no need for boron extrusion and is not strongly induced in the presence of growth-inhibitory boron concentrations is surprising if the main physiological function of yeast Bor1p is boron efflux. A possible role in vacuolar dynamics for Bor1p was recently reported by Decker and Wickner ( 10 ). Under the conditions used presently, there appears to be mildly abnormal vacuolar morphology in the deletant strain.
Collapse
Affiliation(s)
- Michael L Jennings
- Dept. of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 505, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
35
|
Kinclova-Zimmermannova O, Gaskova D, Sychrova H. The Na+,K+/H+-antiporter Nha1 influences the plasma membrane potential ofSaccharomyces cerevisiae. FEMS Yeast Res 2006; 6:792-800. [PMID: 16879429 DOI: 10.1111/j.1567-1364.2006.00062.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are three different sodium transport systems (Ena1-4p, Nha1p, Nhx1p) in Saccharomyces cerevisiae. The effect of their absence on the tolerance to alkali-metal cations and on the membrane potential was studied. All three sodium transporters were found to participate in the maintenance of Na+, Li+, K+ and Cs+ homeostasis. Measurements of the distribution of a fluorescent potentiometric probe (diS-C3(3) assay) in cell suspensions showed that the lack of all three transporters depolarizes the plasma membrane. The overexpression of the Na+,K+/H+ antiporter Nha1 resulted in the hyperpolarization of the plasma membrane and consequently increased the sensitivity to Cs+, Tl+ and hygromycin B. This is the first evidence that the activity of a Na+,K+/H+ antiporter could play a role in the homeostatic regulation of the plasma membrane potential in yeast cells.
Collapse
|
36
|
Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:425-36. [PMID: 16364949 DOI: 10.1093/jxb/erj034] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The availability of potassium to the plant is highly variable, due to complex soil dynamics, which are strongly influenced by root-soil interactions. A low plant potassium status triggers expression of high affinity K+ transporters, up-regulates some K+ channels, and activates signalling cascades, some of which are similar to those involved in wounding and other stress responses. The molecules that signal low K+ status in plants include reactive oxygen species and phytohormones, such as auxin, ethylene and jasmonic acid. Apart from up-regulation of transport proteins and adjustment of metabolic processes, potassium deprivation triggers developmental responses in roots. All these acclimation strategies enable plants to survive and compete for nutrients in a dynamic environment with a variable availability of potassium.
Collapse
Affiliation(s)
- M K Ashley
- Division of Biology, Imperial College London, Wye Campus, Wye, Ashford TN25 5AH, Kent, UK
| | | | | |
Collapse
|
37
|
Rivetta A, Slayman C, Kuroda T. Quantitative modeling of chloride conductance in yeast TRK potassium transporters. Biophys J 2005; 89:2412-26. [PMID: 16040756 PMCID: PMC1366741 DOI: 10.1529/biophysj.105.066712] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
So-called TRK proteins are responsible for active accumulation of potassium in plants, fungi, and bacteria. A pair of these proteins in the plasma membrane of Saccharomyces cerevisiae, ScTrk1p and ScTrk2p, also admit large, adventitious, chloride currents during patch-recording (Cl- efflux). Resulting steady-state current-voltage curves can be described by two simple kinetic models, most interestingly, voltage-driven channeling of ions through a pair of activation-energy barriers that lie within the membrane dielectric, near the inner (alpha) and outer (beta) surfaces. Two barrier heights (E(alpha) and E(beta)) and two relative distances (a1 and b2) from the surfaces specify the model. Measured current amplitude parallels intracellular chloride concentration and is strongly enhanced by acidic extracellular pH. The former implies an exponential variation of a1, between approximately 0.2 and approximately 0.4 of the membrane thickness, whereas the latter implies a linear variation of E(beta), by 0.69 Kcal mol(-1)/pH. The model requires membrane slope conductance to rise exponentially with increasingly large negative membrane voltage, as verified by data from a few yeast spheroplasts that tolerated voltage clamping at -200 to -300 mV. The behaviors of E(beta) and a1 accord qualitatively with a hypothetical structural model for fungal TRK proteins, suggesting that chloride ions flow through a central pore formed by symmetric aggregation of four TRK monomers.
Collapse
Affiliation(s)
- Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
38
|
Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:523-35. [PMID: 15500468 DOI: 10.1111/j.1365-313x.2004.02230.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Disruption of the TRH1 potassium transporter impairs root hair development in Arabidopsis, and also affects root gravitropic behaviour. Rescue of these morphological defects by exogenous auxin indicates a link between TRH1 activity and auxin transport. In agreement with this hypothesis, the rate of auxin translocation from shoots to roots and efflux of [3H]IAA in isolated root segments were reduced in the trh1 mutant, but efflux of radiolabelled auxin was accelerated in yeast cells transformed with the TRH1 gene. In roots, Pro(TRH1):GUS expression was localized to the root cap cells which are known to be the sites of gravity perception and are central for the redistribution of auxin fluxes. Consistent with these findings, auxin-dependent DR5:GUS promoter-reporter construct was misexpressed in the trh1 mutant indicating that partial block of auxin transport through the root cap is associated with upstream accumulation of the phytohormone in protoxylem cells. When [K+] in the medium was reduced from 20 to 0.1 mm, wild type roots showed mild agravitropic phenotype and DR5:GUS misexpression in stelar cells. This pattern of response to low external [K+] was also affected by trh1 mutation. We conclude that the TRH1 carrier is an important part of auxin transport system in Arabidopsis roots.
Collapse
Affiliation(s)
- Francisco Vicente-Agullo
- Department of Agricultural Sciences, Imperial College London, Wye Campus, Wye, Ashford, Kent TN25 5AH, UK
| | | | | | | | | | | |
Collapse
|
39
|
Current awareness on yeast. Yeast 2004; 21:1317-24. [PMID: 15586969 DOI: 10.1002/yea.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Baev D, Rivetta A, Vylkova S, Sun JN, Zeng GF, Slayman CL, Edgerton M. The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem 2004; 279:55060-72. [PMID: 15485849 DOI: 10.1074/jbc.m411031200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The principal feature of killing of Candida albicans and other pathogenic fungi by the catonic protein Histatin 5 (Hst 5) is loss of cytoplasmic small molecules and ions, including ATP and K(+), which can be blocked by the anion channel inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. We constructed C. albicans strains expressing one, two, or three copies of the TRK1 gene in order to investigate possible roles of Trk1p (the organism's principal K(+) transporter) in the actions of Hst 5. All measured parameters (Hst 5 killing, Hst 5-stimulated ATP efflux, normal Trk1p-mediated K(+) ((86)Rb(+)) influx, and Trk1p-mediated chloride conductance) were similarly reduced (5-7-fold) by removal of a single copy of the TRK1 gene from this diploid organism and were fully restored by complementation of the missing allele. A TRK1 overexpression strain of C. albicans, constructed by integrating an additional TRK1 gene into wild-type cells, demonstrated cytoplasmic sequestration of Trk1 protein, along with somewhat diminished toxicity of Hst 5. These results could be produced either by depletion of intracellular free Hst 5 due to sequestered binding, or to cooperativity in Hst 5-protein interactions at the plasma membrane. Furthermore, Trk1p-mediated chloride conductance was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid in all of the tested strains, strongly suggesting that the TRK1 protein provides the essential pathway for ATP loss and is the critical effector for Hst 5 toxicity in C. albicans.
Collapse
Affiliation(s)
- Didi Baev
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|