1
|
Tian C, Yang Y, Li Y, Sun F, Qu J, Zha D. Expression and localization of α 2A-adrenergic receptor in the rat post-natal developing cochlea. Eur J Histochem 2023; 67:3748. [PMID: 37548252 PMCID: PMC10476538 DOI: 10.4081/ejh.2023.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Lots of adrenergic receptors (ARs) are widely present across the auditory pathways and are positioned to affect auditory and vestibular functions. However, noradrenergic regulation in the cochlea has not been well characterized. In this study, a rat model of noise-induced hearing loss was developed to investigate the expression of α2A-adrenergic receptor (AR) after acoustic trauma, then, we investigated the expression of α2A-AR in the developing rat cochlea using immunofluorescence, qRT-PCR, and Western blotting. We found that the expression of α2A-AR significantly increased in rats exposed to noise compared with controls. Immunofluorescence analysis demonstrated that α2A-AR is localized on hair cells (HCs), spiral ganglion neurons (SGNs), and the stria vascularis (SV) in the postnatal developing cochlea from post-natal day (P) 0 to P28. Furthermore, we observed α2A-AR mRNA reached a maximum level at P14 and P28 when compared with P0, while no significant differences in α2A-AR protein levels at the various stages when compared with P0. This study provides direct evidence for the expression of α2A-AR in HCs, SGNs, and the SV of the cochlea, indicating that norepinephrine might play a vital role in hearing function within the cochlea through α2A-AR.
Collapse
Affiliation(s)
- Chaoyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shannxi Province.
| | - Yang Yang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shannxi Province.
| | - Yao Li
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shannxi Province.
| | - Fei Sun
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shannxi Province.
| | - Juan Qu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shannxi Province.
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shannxi Province.
| |
Collapse
|
2
|
Identifying potential ligands specifically binding to beta1-adrenoceptor from Radix Aconiti Lateralis Praeparata extract by affinity chromatographic method. J Pharm Biomed Anal 2022; 220:115022. [DOI: 10.1016/j.jpba.2022.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
|
3
|
Ishii M, Ishiyama G, Ishiyama A, Kato Y, Mochizuki F, Ito Y. Relationship Between the Onset of Ménière's Disease and Sympathetic Hyperactivity. Front Neurol 2022; 13:804777. [PMID: 35370896 PMCID: PMC8970286 DOI: 10.3389/fneur.2022.804777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Objective The pathogenesis of Ménière's disease is still largely unknown; however, it is known to be strongly associated with stress. Excessive stress can cause hyperactivity of the sympathetic autonomic nervous system. With the aim of understanding changes in sympathetic hyperactivity before and after Ménière's disease, we compared autonomic nervous function in patients in a stable phase of Ménière's disease and that in healthy adults. We also gathered data over about 10 years on autonomic nervous function immediately before a Ménière's attack. Study Design Prospective study. Patients Autonomic nervous function was analyzed in 129 patients in a stable phase of Ménière's disease 31 healthy adult volunteers. In nine patients, autonomic nervous function was also measured immediately before and after treatment of a vertigo attack. Main Outcome Measure Power spectrum analysis of heart rate variability (HRV) of EEG/ECG and an infrared electronic pupillometer were used. Sympathetic and parasympathetic nervous function was measured. Results There were no statistically significant differences in autonomic nervous function determined by HRV and electronic pupillometry between patients in a stable phase of Ménière's disease and healthy adults. Sympathetic function as measured by electronic pupillometry parameters VD and T5 showed no difference between the affected and unaffected sides in the baseline data measured in the stable phase (VD: affected side is 31.02 ± 6.16 mm/sec, unaffected side is 29.25 ± 5.73 mm/sec; T5: affected side is 3.37 ± 0.43 msec, unaffected side is 3.25 ± 0.39 msec). In contrast, all nine patients whose HRV data had been obtained just before an attack showed marked suppression of the parasympathetic nervous system and activation of the sympathetic nervous system. Electronic pupillometry also revealed an overactivation of the sympathetic nervous system on the affected side, just before the attacks. Analysis of sequential changes after the onset of an attack revealed that overactivation on the affected side was reduced after treatment, and no difference between affected and unaffected sides was observed 3 days after treatment. Conclusion Detailed analysis of autonomic nervous function showed that immediately before an attack of Ménière's disease, the sympathetic nervous system on the affected side was strongly overactivated.
Collapse
Affiliation(s)
- Masanori Ishii
- Department of Otorhinolaryngology, Japan Community Health Care Organization (JCHO) Tokyo Shinjuku Medical Center, Tokyo, Japan
- Department of Otorhinolaryngology and Head & Neck Surgery, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Masanori Ishii
| | - Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Akira Ishiyama
- Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yujin Kato
- Department of Otorhinolaryngology and Head & Neck Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumihiro Mochizuki
- Department of Otorhinolaryngology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yusuke Ito
- Department of Otorhinolaryngology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
4
|
Schoeppler D, Denzinger A, Schnitzler HU. The resting frequency of echolocation signals changes with body temperature in the hipposiderid bat Hipposideros armiger. J Exp Biol 2022; 225:jeb243569. [PMID: 34989397 PMCID: PMC8918815 DOI: 10.1242/jeb.243569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022]
Abstract
Doppler shift (DS) compensating bats adjust in flight the second harmonic of the constant-frequency component (CF2) of their echolocation signals so that the frequency of the Doppler-shifted echoes returning from ahead is kept constant with high precision (0.1-0.2%) at the so-called reference frequency (fref). This feedback adjustment is mediated by an audio-vocal control system that correlates with a maximal activation of the foveal resonance area in the cochlea. Stationary bats adjust the average CF2 with similar precision at the resting frequency (frest), which is slightly below the fref. Over a range of time periods (from minutes up to years), variations of the coupled fref and frest have been observed, and were attributed to age, social influences and behavioural situations in rhinolophids and hipposiderids, and to body temperature effects and flight activity in Pteronotus parnellii. We assume that, for all DS-compensating bats, a change in body temperature has a strong effect on the activation state of the foveal resonance area in the cochlea, which leads to a concomitant change in emission frequency. We tested our hypothesis in a hipposiderid bat, Hipposideros armiger, and measured how the circadian variation of body temperature at activation phases affected frest. With a miniature temperature logger, we recorded the skin temperature on the back of the bats simultaneously with echolocation signals produced. During warm-up from torpor, strong temperature increases were accompanied by an increase in frest, of up to 1.44 kHz. We discuss the implications of our results for the organization and function of the audio-vocal control systems of all DS-compensating bats.
Collapse
Affiliation(s)
- Diana Schoeppler
- Animal Physiology, Institute for Neurobiology, Faculty of Science, University of Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
5
|
Tian C, Zha D. Sympathetic Nervous System Regulation of Auditory Function. Audiol Neurootol 2021; 27:93-103. [PMID: 34407531 DOI: 10.1159/000517452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The auditory system processes how we hear and understand sounds within the environment. It comprises both peripheral and central structures. Sympathetic nervous system projections are present throughout the auditory system. The function of sympathetic fibers in the cochlea has not been studied extensively due to the limited number of direct projections in the auditory system. Nevertheless, research on adrenergic and noradrenergic regulation of the cochlea and central auditory system is growing. With the rapid development of neuroscience, auditory central regulation is an extant topic of focus in research on hearing. SUMMARY As such, understanding sympathetic nervous system regulation of auditory function is a growing topic of interest. Herein, we review the distribution and putative physiological and pathological roles of sympathetic nervous system projections in hearing. Key Messages: In the peripheral auditory system, the sympathetic nervous system regulates cochlear blood flow, modulates cochlear efferent fibers, affects hair cells, and influences the habenula region. In central auditory pathways, norepinephrine is essential for plasticity in the auditory cortex and affects auditory cortex activity. In pathological states, the sympathetic nervous system is associated with many hearing disorders. The mechanisms and pathways of sympathetic nervous system modulation of auditory function is still valuable for us to research and discuss.
Collapse
Affiliation(s)
- Chaoyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Wung D, Goderie T, van Wier MF, Stam M, Kramer SE. Association of beta blocker use and hearing ability in adults: a cross-sectional study. Int J Audiol 2021; 61:102-107. [PMID: 34057380 DOI: 10.1080/14992027.2021.1915508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the potential association between beta blocker use and hearing ability in adults and to discern whether this effect is dose-dependent. DESIGN Cross-sectional analyses. Multiple linear regression was performed with hearing ability as the dependent variable and beta blocker use as the independent variable. The independent variable was classified into three dose categories for secondary analysis. Adjustments were made for age, gender, educational level, and tobacco smoking status. STUDY SAMPLE 1636 adults, 75 of whom reported being on beta blockers, from the internet-based Netherlands Longitudinal Study on Hearing (NL-SH). RESULTS No significant association was found between beta blocker use and hearing ability in noise. In the adjusted regressions, beta blocker use changed the speech reception threshold in noise (SRT) by -0.04 dB signal-to-noise ratio (SNR) (95%CI [-0.67 to 0.58], p = 0.890). Medium dose beta blocker use changed SRT by -0.42 dB SNR (95%CI [-1.38 to 0.71], p = 0.433), while a high dose changed it by -0.26 dB SNR (95%CI [-1.74 to 1.4], p = 0.767). CONCLUSIONS No evidence was found for beta blocker-induced changes in hearing ability. Future studies on this topic should favour case-control and cohort study designs, while focussing on a hypertensive population to minimise confounding by indication.
Collapse
Affiliation(s)
- Deanna Wung
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
| | - Thadé Goderie
- Department of Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marieke F van Wier
- Department of Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariska Stam
- Department of Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,National Health Care Institute, Diemen, The Netherlands
| | - Sophia E Kramer
- Department of Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Chabbert C. Pathophysiological mechanisms at the sources of the endolymphatic hydrops, and possible consequences. J Vestib Res 2021; 31:289-295. [PMID: 33579885 DOI: 10.3233/ves-200792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanisms of ion exchanges and water fluxes underlying the endolymphatic hydrops phenomenon, remain indeterminate so far. This review intends to reposition the physical environment of the endolymphatic compartment within the inner ear, as well as to recall the molecular effectors present in the membranous labyrinth and that could be at the source of the hydrops.
Collapse
Affiliation(s)
- Christian Chabbert
- Aix Marseille University-CNRS, Laboratory of Cognitive Neurosciences, UMR 7291, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France.,Research Group on Vestibular Pathophysiology Unity GDR#, France
| |
Collapse
|
8
|
Wei W, Shi X, Xiong W, He L, Du ZD, Qu T, Qi Y, Gong SS, Liu K, Ma X. RNA-seq Profiling and Co-expression Network Analysis of Long Noncoding RNAs and mRNAs Reveal Novel Pathogenesis of Noise-induced Hidden Hearing Loss. Neuroscience 2020; 434:120-135. [PMID: 32201268 DOI: 10.1016/j.neuroscience.2020.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/16/2022]
Abstract
Noise-induced hidden hearing loss (NIHHL), one of the family of conditions described as noise-induced hearing loss (NIHL), is characterized by synaptopathy following moderate noise exposure that causes only temporary threshold elevation. Long noncoding RNAs (lncRNAs) mediate several essential regulatory functions in a wide range of biological processes and diseases, but their roles in NIHHL remain largely unknown. In order to determine the potential roles of these lncRNAs in the pathogenesis of NIHHL, we first evaluated their expression in NIHHL mice model and mapped possible regulatory functions and targets using RNA-sequencing (RNA-seq). In total, we identified 133 lncRNAs and 522 mRNAs that were significantly dysregulated in the NIHHL model. Gene Ontology (GO) showed that these lncRNAs were involved in multiple cell components and systems including synapses and the nervous and sensory systems. In addition, a lncRNA-mRNA network was constructed to identify core regulatory lncRNAs and transcription factors. KEGG analysis was also used to identify the potential pathways being affected in NIHHL. These analyses allowed us to identify the guanine nucleotide binding protein alpha stimulating (GNAS) gene as a key transcription factor and the adrenergic signaling pathway as a key pathway in the regulation of NIHHL pathogenesis. Our study is the first, to our knowledge, to isolate a lncRNA mediated regulatory pathway associated with NIHHL pathogenesis; these observations may provide fresh insight into the pathogenesis of NIHHL and may pave the way for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Xi Shi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221004, China
| | - Wei Xiong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lu He
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng-De Du
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Tengfei Qu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Qi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiulan Ma
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Barbieri MA, Cicala G, Cutroneo PM, Mocciaro E, Sottosanti L, Freni F, Galletti F, Arcoraci V, Spina E. Ototoxic Adverse Drug Reactions: A Disproportionality Analysis Using the Italian Spontaneous Reporting Database. Front Pharmacol 2019; 10:1161. [PMID: 31649536 PMCID: PMC6791930 DOI: 10.3389/fphar.2019.01161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: The panorama of drug-induced ototoxicity has widened in the last decades; moreover, post-marketing data are necessary to gain a better insight on ototoxic adverse drug reactions (ADRs). The aim of this study was to perform an analysis of ADR reports describing drug-induced ototoxicity from the Italian spontaneous reporting system (SRS). Methods: As a measure of disproportionality, we calculated the reporting odds ratios (RORs) and 95% confidence intervals (CIs) with a case/non-case methodology. Cases were all suspected ADR reports regarding drug-induced ototoxicity collected into the Italian SRS from 2001 to 2017. Non-cases included all other ADRs reported in the same period. Results: Of 325,980 reports, 652 included at least one ototoxic ADR, compared with 325,328 non-cases. Statistically significant adjusted RORs were found for drugs for cardiovascular disorders, urologicals, teriparatide, amikacin, prulifloxacin, rifampicin and isoniazid, cisplatin, hormone antagonists, tacrolimus, pomalidomide, tramadol, and antidepressants. Significant adjusted RORs in relation to tinnitus were also observed for doxazosin (ROR 5.55, 95% CI 2.06–14.93), bisoprolol (4.28, 1.59–11.53), nebivolol (8.06, 3.32–19.56), ramipril (3.96, 2.17–7.23), irbesartan (19.60, 9.19–41.80), betamethasone (4.01, 1.28–12.52), moxifloxacin (4.56, 1.71–12.34), ethambutol (12.25, 3.89–38.57), efavirenz (16.82, 5.34–52.96), sofosbuvir/ledipasvir (5.95, 1.90–18.61), etoposide (7.09, 2.63–19.12), abatacept (6.51, 2.42–17.53), indometacin (6.30, 2.02–19.72), etoricoxib (5.00, 2.23–11.23), tapentadol (4.37, 1.09–17.62), and timolol combinations (23.29, 9.53–56.95). Moreover, significant adjusted RORs for hypoacusis regarded clarithromycin (3.95, 1.86–8.40), azithromycin (10.23, 5.03–20.79), vancomycin (6.72, 2.14–21.11), methotrexate (3.13, 1.00–9.81), pemetrexed (4.38, 1.40–13.76), vincristine (5.93, 1.88–18.70), vinorelbine (21.60, 8.83–52.82), paclitaxel (2.34, 1.03–5.30), rituximab (3.20, 1.19–8.63), interferon alfa-2b (17.44, 8.56–35.53), thalidomide (16.92, 6.92–41.38), and deferasirox (41.06, 20.07–84.01). Conclusions: This study is largely consistent with results from literature. Nevertheless, propafenone, antituberculars, hormone antagonists, teriparatide, tramadol, and pomalidomide are unknown for being ototoxic. Hypoacusis after the use of vinorelbine, methotrexate, and pemetrexed is unexpected, such as tinnitus related with etoposide, nebivolol, betamethasone, abatacept, sofosbuvir/ledipasvir, and tapentadol, but these considerations require further investigation to better define the risk due to the paucity of data. Moreover, physicians should be aware of the clinical significance of ototoxicity and be conscious about the importance of their contribution to spontaneous reporting.
Collapse
Affiliation(s)
| | - Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paola Maria Cutroneo
- Sicilian Regional Pharmacovigilance Centre, University Hospital of Messina, Messina, Italy
| | - Eleonora Mocciaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Francesco Freni
- Department of Adult and Developmental Human Pathology "Gaetano Barresi," University of Messina, Messina, Italy
| | - Francesco Galletti
- Department of Adult and Developmental Human Pathology "Gaetano Barresi," University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Al-Ghamdi BS, Rohra DK, Abuharb GAI, Alkofide HA, AlRuwaili NS, Shoukri MM, Cahusac PMB. Use of beta blockers is associated with hearing loss. Int J Audiol 2017; 57:213-220. [DOI: 10.1080/14992027.2017.1405162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bandar Saeed Al-Ghamdi
- Department of Cardiology, Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia,
- Department of Medicine, Alfaisal University, Riyadh, Saudi Arabia,
| | - Dileep Kumar Rohra
- Department of Pharmacology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,
| | - Gheid Ali Ibrahim Abuharb
- Clinical Audiology, Department of Otolaryngology, Head & Neck Surgery and Communication Sciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia,
| | - Hala Abdulrahman Alkofide
- Clinical Audiology, Department of Otolaryngology, Head & Neck Surgery and Communication Sciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia,
| | - Nadiah Salem AlRuwaili
- Department of Cardiology, Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia,
| | - Mohamed M. Shoukri
- Department of Cell Biology and the National Biotechnology Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia, and
| | - Peter M. B. Cahusac
- Department of Pharmacology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Kim BG, Kim JY, Jung J, Moon IS, Yoon JH, Choi JY, Kim SH. β 1- and β 2-adrenergic stimulation-induced electrogenic transport by human endolymphatic sac epithelium and its clinical implications. Sci Rep 2017; 7:42217. [PMID: 28165045 PMCID: PMC5292703 DOI: 10.1038/srep42217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023] Open
Abstract
The endolymphatic sac (ES) is a cystic structure of the inner ear connected to the cochlea and vestibule, which plays a role in regulating ion homeostasis in inner ear fluid. Disruption of ion homeostasis can cause inner ear disorders with hearing loss and dizziness, such as Meniere's disease. Herein, we found, for the first time, functional evidence for the involvement of β1- and β2-adrenergic receptors in apical electrogenic ion transport by human ES epithelium by using electrophysiological/pharmacological and molecular biological methods, which were dependent on K+ and Cl- ion transport. The apical electrogenic transport was absent or very weak in ES epithelia of patients with Meniere's disease. These results suggested that adrenergic stimulation via β1- and β2-adrenergic receptors in the human ES was involved in regulation of inner ear fluid ion homeostasis and impairment of this response could be a pathological mechanism of Meniere's disease.
Collapse
Affiliation(s)
- Bo Gyung Kim
- Department of Otorhinolaryngology, Soonchunhyang University College of Medicine, Bucheon, 420-767, Republic of Korea
| | - Jin Young Kim
- Research Center for Natural Human Defense System, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea
| | - JinSei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine
| | - In Seok Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine
| | - Joo-Heon Yoon
- Research Center for Natural Human Defense System, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
12
|
Degerman E, Rauch U, Lindberg S, Caye-Thomasen P, Hultgårdh A, Magnusson M. Expression of insulin signalling components in the sensory epithelium of the human saccule. Cell Tissue Res 2013; 352:469-78. [DOI: 10.1007/s00441-013-1614-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/08/2013] [Indexed: 12/24/2022]
|
13
|
Masuda M, Kanzaki S, Minami S, Kikuchi J, Kanzaki J, Sato H, Ogawa K. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss. Otol Neurotol 2013; 33:1142-50. [PMID: 22872174 DOI: 10.1097/mao.0b013e3182635417] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS We investigated whether inflammatory biomarkers and stress are involved in the pathophysiology of idiopathic sensorineural hearing loss (ISHL). STUDY DESIGN Individual cohort study. SETTING Two tertiary centers. PATIENTS Forty-three ISHL and 10 non-ISHL patients seen in our ENT departments from 2004 to 2010 within a week from the onset of new symptoms and without steroid administration before visiting our departments. INTERVENTION Multiple audiologic evaluations, blood tests including leukocyte counts, natural killer cell activity (NKCA), interleukin 6 (IL-6), tumor necrosis factor, high-sensitivity CRP (hCRP), and the General Health Questionnaire were used to evaluate the systemic stress and inflammatory response. MAIN OUTCOME MEASURES Correlations between biomarkers and ISHL severity and prognosis were evaluated by statistical analysis. RESULTS In the ISHL patients, a neutrophil count above the reference range was associated with severe hearing loss and poor prognosis, and was accompanied by low NKCA and high IL-6. In the non-ISHL patients, these associations were not present. The abnormal neutrophil count was independent of preexisting vascular diseases. The abnormal counts responded to treatment and decreased into the reference range. CONCLUSION Neutrophil counts above the reference range of a facility will be a useful indicator of poor prognosis of ISHL. Synchronism of different types of NF-κB activation pathways could be required to cause severe ISHL. An NKCA decrease, an acute neutrophil count increase, and an IL-6 increase can induce NF-κB activation in the cochlea and cause severe ISHL. Further epidemiologic surveys should be conducted to evaluate whether stressful life events increase the risk of severe ISHL onset.
Collapse
Affiliation(s)
- Masatsugu Masuda
- Department of Otolaryngology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kanzaki J, Masuda M. Correlation between stress and acute sensorineural hearing loss: stress and sudden deafness. ACTA ACUST UNITED AC 2013. [DOI: 10.4295/audiology.56.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Matsubara A, Miyashita T, Inamoto R, Mori N. Presence of adrenergic receptors in rat endolymphatic sac epithelial cells. J Membr Biol 2012; 246:109-14. [PMID: 23124944 DOI: 10.1007/s00232-012-9508-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/07/2012] [Indexed: 12/25/2022]
Abstract
Intravenous application of catecholamines produces a depression in the endolymphatic sac direct current potential (ESP) and increases endolymphatic pressure via the β-adrenergic receptor (AR) in guinea pigs, suggesting that catecholamines play a role in the endolymphatic system. However, the localization of ARs in the endolymphatic sac (ES) is still undetermined. The presence of ARs in the rat ES was investigated by reverse transcriptase-polymerase chain reaction using laser capture microdissection (LCM) and immunohistochemical analysis. Expression of α(1A)-, α(1B)-, α(2A)-, α(2B)-, β(1)-, β(2)- and β(3)-ARs was observed in LCM samples of ES epithelia. Immunohistochemical analysis using specific antibodies showed immunofluorescence of β(2)- and β(3)-ARs in epithelial cells of the ES intermediate portion, and no specific staining results were obtained for α(1)-, α(2A)-, α(2B)- and β(1)-ARs. The presence of β(2)-AR with no clear immunostaining of β(1)-AR in ES epithelial cells is in accordance with previous electrophysiological and pharmacological results, which suggests that β(2)-AR mediates the action of catecholamines on the ESP. The presence of β(3)-AR in the ES epithelial cells and its absence in the stria vascularis implies that β(3)-AR plays a specific role in the ES.
Collapse
Affiliation(s)
- Ai Matsubara
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Kita-gun, Miki-cho, Kagawa 761-0793, Japan.
| | | | | | | |
Collapse
|
16
|
Maison SF, Usubuchi H, Vetter DE, Elgoyhen AB, Thomas SA, Liberman MC. Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway. J Neurophysiol 2012; 108:491-500. [PMID: 22514298 DOI: 10.1152/jn.01050.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Suppression of ipsilateral distortion product otoacoustic emissions (DPOAEs) by contralateral noise is used in humans and animals to assay the strength of sound-evoked negative feedback from the medial olivocochlear (MOC) efferent pathway. However, depending on species and anesthesia, contributions of other feedback systems to the middle or inner ear can cloud the interpretation. Here, contributions of MOC and middle-ear muscle reflexes, as well as autonomic feedback, to contra-noise suppression in anesthetized mice are dissected by selectively eliminating each pathway by surgical transection, pharmacological blockade, or targeted gene deletion. When ipsilateral DPOAEs were evoked by low-level primaries, contra-noise suppression was typically ~1 dB with contra-noise levels around 95 dB SPL, and it always disappeared upon contralateral cochlear destruction. Lack of middle-ear muscle contribution was suggested by persistence of contra-noise suppression after paralysis with curare, tensor tympani cauterization, or section of the facial nerve. Contribution of cochlear sympathetics was ruled out by studying mutant mice lacking adrenergic signaling (dopamine β-hydroxylase knockouts). Surprisingly, contra-noise effects on low-level DPOAEs were also not diminished by eliminating the MOC system pharmacologically (strychnine), surgically, or by deletion of relevant cholinergic receptors (α9/α10). In contrast, when ipsilateral DPOAEs were evoked by high-level primaries, the contra-noise suppression, although comparable in magnitude, was largely eliminated by MOC blockade or section. Possible alternate pathways are discussed for the source of contra-noise-evoked effects at low ipsilateral levels.
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114-3096, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kitahara T, Horii A, Uno A, Imai T, Okazaki S, Kamakura T, Takimoto Y, Inohara H. Changes in beta-2 adrenergic receptor and AMP-activated protein kinase alpha-2 subunit in the rat vestibular nerve after labyrinthectomy. Neurosci Res 2012; 72:221-6. [DOI: 10.1016/j.neures.2011.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 12/17/2022]
|
18
|
Nevoux J, Teixeira M, Viengchareun S, Cosson C, Butlen D, Lombès M, Ferrary E. Vasopressin, ATP and catecholamines differentially control potassium secretion in inner ear cell line. FEBS Lett 2011; 585:2703-8. [PMID: 21820436 DOI: 10.1016/j.febslet.2011.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
Abstract
A strict control of endolymph composition (high potassium, low sodium fluid) and volume is instrumental for a proper functioning of the inner ear. Alteration of endolymph homeostasis is proposed in the pathogenesis of Menière's disease. However, the mechanisms controlling endolymph secretion remain elusive. By using the vestibular EC5v cells, we provide evidence for the presence of vasopressin, catecholamine and purinergic signaling pathways, coupled to adenylate cyclase, phosphoinositidase C and Ca(2+) activation. We demonstrate that vasopressin and catecholamines stimulate while ATP inhibits apical potassium secretion by EC5v cells. These results open new interesting perspectives for the management of inner ear diseases.
Collapse
Affiliation(s)
- Jérôme Nevoux
- UMR-S 867, Inserm, UFR de Médecine Paris Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Maison SF, Le M, Larsen E, Lee SK, Rosowski JJ, Thomas SA, Liberman MC. Mice lacking adrenergic signaling have normal cochlear responses and normal resistance to acoustic injury but enhanced susceptibility to middle-ear infection. J Assoc Res Otolaryngol 2010; 11:449-61. [PMID: 20503062 DOI: 10.1007/s10162-010-0220-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/04/2010] [Indexed: 12/17/2022] Open
Abstract
The vasculature and neurons of the inner ear receive adrenergic innervation from the cervical sympathetic chain, and adrenergic receptors may be expressed by cells of the organ of Corti and stria vascularis, despite a lack of direct sympathetic innervation. To assess the functional role of adrenergic signaling in the auditory periphery, we studied mice with targeted deletion of the gene for dopamine beta-hydroxylase (DBH), which catalyzes the conversion of dopamine to noradrenaline; thus, these mutant mice have no measurable adrenaline or noradrenaline. Dbh (-/-) mice were more susceptible to spontaneous middle-ear infection than their control littermates, consistent with a role for sympathetics in systemic and/or local immune response. At 6-8 weeks of age, cochlear thresholds and suprathreshold responses assessed by auditory brainstem responses and distortion product otoacoustic emissions, as well as light-microscopic morphology, were indistinguishable from controls, if ears with conductive hearing loss were eliminated. Dbh (-/-) mice were no more susceptible to acoustic injury than controls, despite prior reports that sympathectomy reduces noise damage. Dbh (-/-) mice showed enhancement of shock-evoked olivocochlear suppression of cochlear responses, which may arise from the loss of adrenergic inputs to olivocochlear neurons in the brainstem. However, adrenergic modulation of olivocochlear efferents does not mediate the protective effect of contralateral cochlear destruction on ipsilateral response to acoustic overexposure.
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Kolli T, Hivley R, Jaber L, Zhao FI, Yan J, Herness S. Characterization of the expression pattern of adrenergic receptors in rat taste buds. Neuroscience 2010; 169:1421-37. [PMID: 20478367 DOI: 10.1016/j.neuroscience.2010.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/03/2010] [Accepted: 05/11/2010] [Indexed: 12/01/2022]
Abstract
Taste buds signal the presence of chemical stimuli in the oral cavity to the central nervous system using both early transduction mechanisms, which allow single cells to be depolarized via receptor-mediated signaling pathways, and late transduction mechanisms, which involve extensive cell-to-cell communication among the cells in the bud. The latter mechanisms, which involve a large number of neurotransmitters and neuropeptides, are less well understood. Among neurotransmitters, multiple lines of evidence suggest that norepinephrine plays a yet unknown role in the taste bud. This study investigated the expression pattern of adrenergic receptors in the rat posterior taste bud. Expression of alpha1A, alpha1B, alpha1D, alpha2A, alpha2B, alpha2C, beta1, and the beta2 adrenoceptor subtypes was observed in taste buds using RT-PCR and immunocytochemical techniques. Taste buds also expressed the biosynthetic enzyme for norepinephrine, dopamine beta-hydroxylase (DbetaH), as well as the norepinephrine transporter. Further, expression of the epinephrine synthetic enzyme, phenylethanolamine N-methyltransferase (PNMT), was observed suggesting a possible role for this transmitter in the bud. Phenotyping adrenoceptor expression patterns with double labeling experiments to gustducin, synaptosomal-associated protein 25 (SNAP-25), and neural cell adhesion molecule (NCAM) suggests they are prominently expressed in subsets of cells known to express taste receptor molecules but segregated from cells known to have synapses with the afferent nerve fiber. Alpha and beta adrenoceptors co-express with one another in unique patterns as observed with immunocytochemistry and single cell reverse transcription polymerase chain reaction (RT-PCR). These data suggest that single cells express multiple adrenergic receptors and that adrenergic signaling may be particularly important in bitter, sweet, and umami taste qualities. In summary, adrenergic signaling in the taste bud occurs through complex pathways that include presynaptic and postsynaptic receptors and likely play modulatory roles in processing of gustatory information similar to other peripheral sensory systems such as the retina, cochlea, and olfactory bulb.
Collapse
Affiliation(s)
- Y Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi'an Jiaotong University, 76# West Yanta Road, Xi'an 710061, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Tartas M, Morin F, Barrière G, Goillandeau M, Lacaille JC, Cazalets JR, Bertrand SS. Noradrenergic modulation of intrinsic and synaptic properties of lumbar motoneurons in the neonatal rat spinal cord. Front Neural Circuits 2010; 4:4. [PMID: 20300468 PMCID: PMC2839852 DOI: 10.3389/neuro.04.004.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/29/2010] [Indexed: 01/08/2023] Open
Abstract
Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a K(IR) like current. Methoxamine (alpha(1)), clonidine (alpha(2)) and isoproterenol (beta) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (alpha(1)), yohimbine (alpha(2)) and propranolol (beta). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic alpha(1) and beta receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord.
Collapse
Affiliation(s)
- Maylis Tartas
- CNRS UMR 5227, Université de Bordeaux Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Khan KM, Drescher MJ, Hatfield JS, Ramakrishnan NA, Drescher DG. Immunohistochemical localization of adrenergic receptors in the rat organ of corti and spiral ganglion. J Neurosci Res 2008; 85:3000-12. [PMID: 17671986 DOI: 10.1002/jnr.21404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alpha(1)-, beta(1)-, and beta(2)-adrenergic receptors (ARs), which mediate responses to adrenergic input, have been immunohistochemically identified within the organ of Corti and spiral ganglion with polyclonal antibodies of established specificity. Alpha(1)-AR was immunolocalized to sites overlapping supranuclear regions of inner hair cells as well as to nerve fibers approaching the base of inner hair cells, most evident in the basal cochlear turn. A similar preponderance across cochlear turns for alpha(1)-AR in afferent cell bodies in the spiral ganglion pointed to type I afferent dendrites as a possible neural source of alpha(1)-AR beneath the inner hair cell. Foci of immunoreactivity for alpha(1)-AR, putatively neural, were found overlapping supranuclear and basal sites of outer hair cells for all turns. Beta(1)- and beta(2)-ARs were immunolocalized to sites overlapping apical and basal poles of the inner and outer hair cells, putatively neural in part, with immunoreactive nerve fibers observed passing through the habenula perforata. Beta(1)- and beta(2)-ARs were also detected in the cell bodies of Deiters' and Hensen's cells. Within the spiral ganglion, beta(1)- and beta(2)-ARs were immunolocalized to afferent cell bodies, with highest expression in the basal cochlear turn, constituting one possible neural source of receptors within the organ of Corti, specifically on type I afferent dendrites. Beta(1)- and beta(2)-ARs in Hensen's and Deiters' cells would couple to Galphas, known to be present specifically in the supporting cells. Overall, adrenergic modulation of neural/supporting cell function within the organ of Corti represents a newly considered mechanism for modifying afferent signaling.
Collapse
Affiliation(s)
- Khalid M Khan
- Laboratory of Bio-Otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
23
|
Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 2006; 576:11-21. [PMID: 16857713 PMCID: PMC1995626 DOI: 10.1113/jphysiol.2006.112888] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/14/2006] [Indexed: 12/13/2022] Open
Abstract
The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endocochlear potential and requires a highly specialized environment that enables and sustains sensory function. Disturbance of cochlear homeostasis is the cause of many forms of hearing loss including the most frequently occurring syndromic and non-syndromic forms of hereditary hearing loss, Pendred syndrome and Cx26-related deafness. The occurrence of these and other monogenetic disorders illustrates that cochlear fluid homeostasis and the generation of the endocochlear potential are poorly secured by functional redundancy. This review summarizes the most prominent aspects of cochlear fluid homeostasis. It covers cochlear fluid composition, the generation of the endocochlear potential, K(+) secretion and cycling and its regulation, the role of gap junctions, mechanisms of acid-base homeostasis, and Ca(2+) transport.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, 205 Coles Hall, Kansas State University, Manhattan, 66506, USA.
| |
Collapse
|
24
|
Khan KM, Sarfaraz N, Siddiqui S, Nawaz H. Immunohistochemical localization of G protein betagamma subunits in the lateral wall of the rat cochlea. J Anat 2006; 208:205-18. [PMID: 16441565 PMCID: PMC2100195 DOI: 10.1111/j.1469-7580.2006.00526.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The role of G protein-mediated signal transduction in the production of endolymph, an extracellular fluid of unusual ionic composition, is beginning to be understood. The identity of Galpha subunits in the stria vascularis and the spiral ligament of the lateral wall of the cochlear duct is well established. However, little is known about the presence of betagamma subunits. This study used immunohistochemistry to investigate the distribution of G protein betagamma subunits in the lateral wall of the cochlea. Temporal bones of 6- to 8-week-old rats were fixed in 4% paraformaldehyde and 0.1% glutaraldehyde and processed for embedding in paraffin wax. The dewaxed, midmodiolar sections of the cochlea were incubated with subunit-specific polyclonal antibodies. The results show that the pattern of immunoreactivity varies for the G protein beta1-4 and gamma1-3, 5 and 7 subunits in the stria vascularis and spiral ligament. In the stria vascularis, immunoreactivity was detected for beta2, beta3, beta4, gamma1, gamma2 and gamma7 subunits. All five types of fibrocytes in the spiral ligament exhibited positive staining for gamma2 and gamma7. However, immunoreactivity for beta1-4 subunits was variable. Immunoreactivity for gamma3 and gamma5 subunits was not detected in the lateral cochlear wall. The expression pattern of G protein betagamma subunits in lateral wall provides a basis for interpreting the functions of G protein-coupled receptors in cochlear fluid homeostasis.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Biological & Biomedical Sciences, Faculty of Health Sciences, The Aga Khan University, Karachi, Pakistan.
| | | | | | | |
Collapse
|
25
|
Takahashi T, Tang T, Lai NC, Roth DM, Rebolledo B, Saito M, Lew WYW, Clopton P, Hammond HK. Increased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction. Circulation 2006; 114:388-96. [PMID: 16864723 DOI: 10.1161/circulationaha.106.632513] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cardiac-directed expression of adenylyl cyclase type VI (AC(VI)) in mice results in structurally normal hearts with normal basal heart rate and function but increased responses to catecholamine stimulation. We tested the hypothesis that increased left ventricular (LV) AC(VI) content would increase mortality after acute myocardial infarction (MI). METHODS AND RESULTS Transgenic mice with cardiac-directed AC(VI) expression and their transgene-negative littermates (control) underwent coronary ligation, and survival, infarct size, and LV size and function were assessed 1 to 7 days after MI. Mice with increased AC(VI) expression had increased survival (control 41%, AC(VI) 74%; P = 0.004). Infarct size and myocardial apoptotic rates were similar in AC(VI) and control mice; however, AC(VI) mice had less LV dilation (P < 0.001) and increased ejection fractions (P < 0.03). Three days after MI, studies in isolated perfused hearts showed that basal LV +dP/dt was similar, but graded dobutamine infusion was associated with a more robust LV contractile response in AC(VI) mice (P < 0.05). Increased LV function was associated with increases in cAMP generation (P = 0.0002), phospholamban phosphorylation (P < 0.04), sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) affinity for calcium (P < 0.015), and reduced AV block (P = 0.04). CONCLUSIONS In acute MI, increased cardiac AC(VI) content attenuates adverse LV remodeling, preserves LV contractile function, and reduces mortality.
Collapse
MESH Headings
- Adenylyl Cyclases/analysis
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/physiology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Apoptosis/physiology
- Calcium/metabolism
- Cyclic AMP/analysis
- Cyclic AMP/physiology
- Female
- GTP-Binding Proteins/analysis
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/physiology
- Gene Expression Regulation, Enzymologic/physiology
- Heart Ventricles/chemistry
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics/physiology
- Male
- Mice
- Mice, Transgenic
- Myocardial Contraction/physiology
- Myocardial Infarction/mortality
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Propranolol/pharmacology
- Receptors, Adrenergic, beta/analysis
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/physiology
- Survival Rate
- Ventricular Remodeling/physiology
Collapse
|
26
|
Nasser Y, Ho W, Sharkey KA. Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J Comp Neurol 2006; 495:529-53. [PMID: 16498685 DOI: 10.1002/cne.20898] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adrenergic receptors in the enteric nervous system (ENS) are important in control of the gastrointestinal tract. Here we describe the distribution of adrenergic receptors in the ENS of the ileum and colon of the guinea pig, rat, and mouse by using single- and double-labelling immunohistochemistry. In the myenteric plexus (MP) of the rat and mouse, alpha2a-adrenergic receptors (alpha2a-AR) were widely distributed on neurons and enteric glial cells. alpha2a-AR mainly colocalized with calretinin in the MP, whereas submucosal alpha2a-AR neurons colocalized with vasoactive intestinal polypeptide (VIP), neuropeptide Y, and calretinin in both species. In the guinea pig ileum, we observed widespread alpha2a-AR immunoreactivity on nerve fibers in the MP and on VIP neurons in the submucosal plexus (SMP). We observed extensive beta1-adrenergic receptor (beta1-AR) expression on neurons and nerve fibers in both the MP and the SMP of all species. Similarly, the beta2-adrenergic receptor (beta2-AR) was expressed on neurons and nerve fibers in the SMP of all species, as well as in the MP of the mouse. In the MP, beta1- and beta2-AR immunoreactivity was localized to several neuronal populations, including calretinin and nitrergic neurons. In the SMP of the guinea pig, beta1- and beta2-AR mainly colocalized with VIP, whereas, in the rat and mouse, beta1- and beta2-AR were distributed among the VIP and calretinin populations. Adrenergic receptors were widely localized on specific neuronal populations in all species studied. The role of glial alpha2a-AR is unknown. These results suggest that sympathetic innervation of the ENS is directed toward both enteric neurons and enteric glia.
Collapse
Affiliation(s)
- Yasmin Nasser
- Institute of Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
27
|
Tang T, Lai NC, Roth DM, Drumm J, Guo T, Lee KW, Han PL, Dalton N, Gao MH. Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to beta-adrenergic stimulation. Basic Res Cardiol 2005; 101:117-26. [PMID: 16283593 DOI: 10.1007/s00395-005-0559-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/22/2005] [Accepted: 09/26/2005] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that deletion of adenylyl cyclase type V (AC(V)) would be associated with decreased left ventricular (LV) contractile function and responsiveness to beta-adrenergic receptor (betaAR) stimulation. Absence of cardiac AC(V) expression was confirmed by RT-PCR and immunoblotting in AC(V)-deleted mice (AC(V) (-/-)). Compared to sibling mice with normal amounts of AC(V) (CON), basal and water-soluble forskolin derivative NKH477-stimulated cAMP production was reduced in both LV homogenates and in isolated cardiac myocytes. Basal LV +dP/dt (isolated perfused hearts) was increased (CON: 3,649 +/- 247 mmHg/s; AC(V) (-/-): 4,625 +/- 350 mmHg/s; p = 0.035, n = 10), but the potency of dobutamine on LV +dP/dt was decreased by AC(V) deletion (log EC(50): CON: -6.83 +/- 0.14 M; AC(V) (-/-): -5.99 +/- 0.15 M; p = 0.0007, n = 10). The initial rates of ATP-dependent sarcoplasmic reticulum calcium uptake, assessed in LV homogenates, showed that AC(V) deletion increased SERCA2a affinity for Ca(2+) (log EC(50): CON: -5.94 +/- 0.03 M; AC(V) (-/-): -6.09 +/- 0.02 M; p = 0.001, n = 8). AC(V) deletion is also associated with increased phospholamban phosphorylation, decreased type 1 protein phosphatase catalytic subunit content and activity, and reduced cardiac Galphas protein content. In conclusion, AC(V) deletion has a favorable effect on basal LV function despite reduced cAMP levels. Increased SERCA2a affinity for Ca(2+) and increased phospholamban phosphorylation are contributing factors. However, AC(V) deletion is associated with reduced LV contractile responsiveness to betaAR stimulation, an effect that is associated with reduced Galphas protein content and reduced cAMP generating capacity in cardiac myocytes.
Collapse
Affiliation(s)
- Tong Tang
- Veterans Affairs, San Diego Healthcare System, 9151A, 3350 La Jolla Village Drive, San Diego, California 92161, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kanjhan R, Hryciw DH, Yun CC, Bellingham MC, Poronnik P. Postnatal developmental expression of the PDZ scaffolds Na+ -H+ exchanger regulatory factors 1 and 2 in the rat cochlea. Cell Tissue Res 2005; 323:53-70. [PMID: 16160858 PMCID: PMC1472810 DOI: 10.1007/s00441-005-0051-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 06/28/2005] [Indexed: 01/07/2023]
Abstract
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na(+)-H(+) exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| | | | | | | | | |
Collapse
|