1
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
2
|
de Coene Y, Jooken S, Deschaume O, Van Steenbergen V, Vanden Berghe P, Van den Haute C, Baekelandt V, Callewaert G, Van Cleuvenbergen S, Verbiest T, Bartic C, Clays K. Label-Free Imaging of Membrane Potentials by Intramembrane Field Modulation, Assessed by Second Harmonic Generation Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200205. [PMID: 35355419 DOI: 10.1002/smll.202200205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.
Collapse
Affiliation(s)
- Yovan de Coene
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Valérie Van Steenbergen
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Geert Callewaert
- Department of Cellular and Molecular Medicine, Ku Leuven, KULAK Kortrijk Campus, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Stijn Van Cleuvenbergen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Thierry Verbiest
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Koen Clays
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| |
Collapse
|
3
|
Zhou Y, Liu E, Müller H, Cui B. Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging. J Am Chem Soc 2021; 143:10482-10499. [PMID: 34191488 PMCID: PMC8514153 DOI: 10.1021/jacs.1c02960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measuring and monitoring the electrical signals transmitted between neurons is key to understanding the communication between neurons that underlies human perception, information processing, and decision-making. While electrode-based electrophysiology has been the gold standard, optical electrophysiology has opened up a new area in the past decade. Voltage-dependent fluorescent reporters enable voltage imaging with high spatial resolution and flexibility to choose recording locations. However, they exhibit photobleaching as well as phototoxicity and may perturb the physiology of the cell. Label-free optical electrophysiology seeks to overcome these hurdles by detecting electrical activities optically, without the incorporation of exogenous fluorophores in cells. For example, electrochromic optical recording detects neuroelectrical signals via a voltage-dependent color change of extracellular materials, and interferometric optical recording monitors membrane deformations that accompany electrical activities. Label-free optical electrophysiology, however, is in an early stage, and often has limited sensitivity and temporal resolution. In this Perspective, we review the recent progress to overcome these hurdles. We hope this Perspective will inspire developments of label-free optical electrophysiology techniques with high recording sensitivity and temporal resolution in the near future.
Collapse
Affiliation(s)
- Yuecheng Zhou
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| | - Erica Liu
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| | - Holger Müller
- Department of Physics, University of California, 366 LeConte Hall, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| |
Collapse
|
4
|
Bar-Elli O, Steinitz D, Yang G, Tenne R, Ludwig A, Kuo Y, Triller A, Weiss S, Oron D. Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect. ACS PHOTONICS 2018; 5:2860-2867. [PMID: 30042952 PMCID: PMC6053642 DOI: 10.1021/acsphotonics.8b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 05/05/2023]
Abstract
Properly designed colloidal semiconductor quantum dots (QDs) have already been shown to exhibit high sensitivity to external electric fields via the quantum confined Stark effect (QCSE). Yet, detection of the characteristic spectral shifts associated with the effect of the QCSE has traditionally been painstakingly slow, dramatically limiting the sensitivity of these QD sensors to fast transients. We experimentally demonstrate a new detection scheme designed to achieve shot-noise-limited sensitivity to emission wavelength shifts in QDs, showing feasibility for their use as local electric field sensors on the millisecond time scale. This regime of operation is already potentially suitable for detection of single action potentials in neurons at a high spatial resolution.
Collapse
Affiliation(s)
- Omri Bar-Elli
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Dan Steinitz
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Gaoling Yang
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Ron Tenne
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Anastasia Ludwig
- L’Ecole
Normale Superieure, Institute of Biologie
(IBENS), Paris Sciences et Lettres (PSL), CNRS UMR 8197, Inserm 1024, 46 Rue d’Ulm, Paris 75005, France
| | - Yung Kuo
- Department of Chemistry and Biochemistry, Department of Physiology,
and California NanoSystems Institute, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Antoine Triller
- L’Ecole
Normale Superieure, Institute of Biologie
(IBENS), Paris Sciences et Lettres (PSL), CNRS UMR 8197, Inserm 1024, 46 Rue d’Ulm, Paris 75005, France
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, Department of Physiology,
and California NanoSystems Institute, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department of Physics, Institute for Nanotechnology
and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Oron
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
- E-mail:
| |
Collapse
|
5
|
Tsemperouli M, Sugihara K. Characterization of di-4-ANEPPS with nano-black lipid membranes. NANOSCALE 2018; 10:1090-1098. [PMID: 29271448 DOI: 10.1039/c7nr05863b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a platform based on lateral nano-black lipid membranes (nano-BLMs), where electrical measurements and fluorescence microscopy setup are combined, for the calibration of di-4-ANEPPS, a common voltage sensitive dye (VSD). The advantage of this setup is (1) its flexibility in the choice of lipids and applied voltages, (2) its high stability that enables a high voltage (500 mV) application and long-time measurements and (3) its fluorescence microscopy readout, which can be directly correlated with other fluorescence microscopy experiments using VSDs (e.g. membrane potential measurements in living cells). Using this setup, we observed that the calibration curve of di-4-ANEPPS is strongly dependent on the net electric charge of the lipids. The developed setup can be used to calibrate VSDs in different lipid environments in order to better understand their fundamental voltage-sensing mechanism in the future.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
6
|
The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat Rev Neurosci 2015; 16:685-92. [PMID: 26462753 DOI: 10.1038/nrn4022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cable theory and the Goldman-Hodgkin-Huxley-Katz models for the propagation of ions and voltage within a neuron have provided a theoretical foundation for electrophysiology and been responsible for many cornerstone advances in neuroscience. However, these theories break down when they are applied to small neuronal compartments, such as dendritic spines, synaptic terminals or small neuronal processes, because they assume spatial and ionic homogeneity. Here we discuss a broader theory that uses the Poisson-Nernst-Planck (PNP) approximation and electrodiffusion to more accurately model the constraints that neuronal nanostructures place on electrical current flow. This extension of traditional cable theory could advance our understanding of the physiology of neuronal nanocompartments.
Collapse
|
7
|
Popovic MA, Gao X, Carnevale NT, Zecevic D. Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. Cereb Cortex 2012; 24:385-95. [PMID: 23054810 DOI: 10.1093/cercor/bhs320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evidence for an important hypothesis that cortical spine morphology might participate in modifying synaptic efficacy that underlies plasticity and possibly learning and memory mechanisms is inconclusive. Both theory and experiments suggest that the transfer of excitatory postsynaptic potential signals from spines to parent dendrites depends on the spine neck morphology and resistance. Furthermore, modeling of signal transfer in the opposite direction predicts that synapses on spine heads are not electrically isolated from voltages in the parent dendrite. In sharp contrast to this theoretical prediction, one of a very few measurements of electrical signals from spines reported that slow hyperpolarizing membrane potential changes are attenuated considerably by the spine neck as they spread from dendrites to synapses on spine heads. This result challenges our understanding of the electrical behavior of spines at a fundamental level. To re-examine the specific question of the transfer of dendritic signals to synapses of spines, we took advantage of a high-sensitivity Vm-imaging technique and carried out optical measurements of electrical signals from 4 groups of spines with different neck length and simultaneously from parent dendrites. The results show that spine neck does not filter membrane potential signals as they spread from the dendrites into the spine heads.
Collapse
|
8
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
9
|
Active action potential propagation but not initiation in thalamic interneuron dendrites. J Neurosci 2012; 31:18289-302. [PMID: 22171033 DOI: 10.1523/jneurosci.4417-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K-based action potentials can evoke calcium transients in dendrites via local active conductances, making the backpropagating action potential a candidate for dendritic neurotransmitter release. In this study, we used high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation rapidly and actively backpropagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid backpropagation into the dendritic arbor depended upon voltage-gated sodium and tetraethylammonium chloride-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then backpropagate with high fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments.
Collapse
|
10
|
Popovic MA, Foust AJ, McCormick DA, Zecevic D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J Physiol 2011; 589:4167-87. [PMID: 21669974 DOI: 10.1113/jphysiol.2011.209015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination.
Collapse
Affiliation(s)
- Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, Department C/M Physiology, 333 Cedar Street, New Haven, CT, USA
| | | | | | | |
Collapse
|
11
|
Abstract
In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles, and intrinsic approaches) and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic, or electro-optical phenomena to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods.
Collapse
Affiliation(s)
- Darcy S Peterka
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | |
Collapse
|
12
|
Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 2010; 30:6891-902. [PMID: 20484631 DOI: 10.1523/jneurosci.0552-10.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By using a recent improvement in voltage-sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission.
Collapse
|
13
|
Przybylo M, Borowik T, Langner M. Fluorescence Techniques for Determination of the Membrane Potentials in High Throughput Screening. J Fluoresc 2010; 20:1139-57. [DOI: 10.1007/s10895-010-0665-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/05/2010] [Indexed: 01/14/2023]
|
14
|
Bradley J, Luo R, Otis TS, DiGregorio DA. Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neurosci 2009; 29:9197-209. [PMID: 19625510 PMCID: PMC2909666 DOI: 10.1523/jneurosci.1240-09.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/02/2009] [Accepted: 06/17/2009] [Indexed: 11/21/2022] Open
Abstract
A major goal in neuroscience is the development of optical reporters of membrane potential that are easy to use, have limited phototoxicity, and achieve the speed and sensitivity necessary for detection of individual action potentials in single neurons. Here we present a novel, two-component optical approach that attains these goals. By combining DiO, a fluorescent neuronal tracer dye, with dipicrylamine (DPA), a molecule whose membrane partitioning is voltage-sensitive, optical signals related to changes in membrane potential based on FRET (Förster resonance energy transfer) are reported. Using DiO/DPA in HEK-293 cells with diffraction-limited laser spot illumination, depolarization-induced fluorescence changes of 56% per 100 mV (tau approximately 0.1 ms) were obtained, while in neuronal cultures and brain slices, action potentials (APs) generated a Delta F/F per 100 mV of >25%. The high sensitivity provided by DiO/DPA enabled the detection of subthreshold activity and high-frequency APs in single trials from somatic, axonal, or dendritic membrane compartments. Recognizing that DPA can depress excitability, we assayed the amplitude and duration of single APs, burst properties, and spontaneous firing in neurons of primary cultures and brain slices and found that they are undetectably altered by up to 2 microm DPA and only slightly perturbed by 5 microm DPA. These findings substantiate a simple, noninvasive method that relies on a neuronal tracer dye for monitoring electrical signal flow, and offers unique flexibility for the study of signaling within intact neuronal circuits.
Collapse
Affiliation(s)
- Jonathan Bradley
- Centre National de la Recherche Scientifique UMR8118, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, 75006 Paris, France, and
| | - Ray Luo
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Thomas S. Otis
- Centre National de la Recherche Scientifique UMR8118, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, 75006 Paris, France, and
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - David A. DiGregorio
- Centre National de la Recherche Scientifique UMR8118, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, 75006 Paris, France, and
| |
Collapse
|
15
|
Demchenko AP, Yesylevskyy SO. Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 2009; 160:63-84. [PMID: 19481071 DOI: 10.1016/j.chemphyslip.2009.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/21/2022]
Abstract
Electrostatic fields generated on and inside biological membranes are recognized to play a fundamental role in key processes of cell functioning. Their understanding requires an adequate description on the level of elementary charges and the reconstruction of electrostatic potentials by integration over all elementary interactions. Out of all the available research tools, only molecular dynamics simulations are capable of this, extending from the atomic to the mesoscopic level of description on the required time and space scale. A complementary approach is that offered by molecular probe methods, with the application of electrochromic dyes. Highly sensitive to intermolecular interactions, they generate integrated signals arising from electric fields produced by elementary charges at the sites of their location. This review is an attempt to provide a critical analysis of these two approaches and their present and potential applications. The results obtained by both methods are consistent in that they both show an extremely complex profile of the electric field in the membrane. The nanoscopic view, with two-dimensional averaging over the bilayer plane and formal separation of the electrostatic potential into surface (Psi(s)), dipole (Psi(d)) and transmembrane (Psi(t)) potentials, is constructive in the analysis of different functional properties of membranes.
Collapse
Affiliation(s)
- Alexander P Demchenko
- A.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha St. 9, Kiev 01601, Ukraine.
| | | |
Collapse
|
16
|
Zimmermann D, Kiesel M, Terpitz U, Zhou A, Reuss R, Kraus J, Schenk WA, Bamberg E, Sukhorukov VL. A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions. J Membr Biol 2008; 221:107-21. [PMID: 18197354 PMCID: PMC2755742 DOI: 10.1007/s00232-007-9090-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 11/30/2022]
Abstract
Interactions of structurally dissimilar anionic compounds with the plasma membrane of HEK293 cells were analyzed by patch clamp and electrorotation. The combined approach provides complementary information on the lipophilicity, preferential affinity of the anions to the inner/outer membrane leaflet, adsorption depth and transmembrane mobility. The anionic species studied here included the well-known lipophilic anions dipicrylamine (DPA−), tetraphenylborate (TPB−) and [W2(CO)10(S2CH)]−, the putative lipophilic anion
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\text{B}}{\left( {{\text{CF}}_{3} } \right)}^{ - }_{4} $$\end{document} and three new heterocyclic W(CO)5 derivatives. All tested anions partitioned strongly into the cell membrane, as indicated by the capacitance increase in patch-clamped cells. The capacitance increment exhibited a bell-shaped dependence on membrane voltage. The midpoint potentials of the maximum capacitance increment were negative, indicating the exclusion of lipophilic anions from the outer membrane leaflet. The adsorption depth of the large organic anions DPA−, TPB− and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\text{B}}{\left( {{\text{CF}}_{3} } \right)}^{ - }_{4} $$\end{document} increased and that of W(CO)5 derivatives decreased with increasing concentration of mobile charges. In agreement with the patch-clamp data, electrorotation of cells treated with DPA− and W(CO)5 derivatives revealed a large dispersion of membrane capacitance in the kilohertz to megahertz range due to the translocation of mobile charges. In contrast, in the presence of TPB− and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\text{B}}{\left( {{\text{CF}}_{3} } \right)}^{ - }_{4} $$\end{document} no mobile charges could be detected by electrorotation, despite their strong membrane adsorption. Our data suggest that the presence of oxygen atoms in the outer molecular shell is an important factor for the fast translocation ability of lipophilic anions.
Collapse
Affiliation(s)
- D Zimmermann
- Department of Biophysical Chemistry, Max-Planck Institute of Biophysics, Max-von-Laue Strasse 3, D-60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Loo DDF, Hirayama BA, Karakossian MH, Meinild AK, Wright EM. Conformational dynamics of hSGLT1 during Na+/glucose cotransport. ACTA ACUST UNITED AC 2007; 128:701-20. [PMID: 17130520 PMCID: PMC2151600 DOI: 10.1085/jgp.200609643] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examines the conformations of the Na+/glucose cotransporter (SGLT1) during sugar transport using charge and fluorescence measurements on the human SGLT1 mutant G507C expressed in Xenopus oocytes. The mutant exhibited similar steady-state and presteady-state kinetics as wild-type SGLT1, and labeling of Cys507 by tetramethylrhodamine-6-maleimide had no effect on kinetics. Our strategy was to record changes in charge and fluorescence in response to rapid jumps in membrane potential in the presence and absence of sugar or the competitive inhibitor phlorizin. In Na+ buffer, step jumps in membrane voltage elicited presteady-state currents (charge movements) that decay to the steady state with time constants τmed (3–20 ms, medium) and τslow (15–70 ms, slow). Concurrently, SGLT1 rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages (ΔF). The charge vs. voltage (Q-V) and fluorescence vs. voltage (ΔF-V) relations (for medium and slow components) obeyed Boltzmann relations with similar parameters: zδ (apparent valence of voltage sensor) ≈ 1; and V0.5 (midpoint voltage) between −15 and −40 mV. Sugar induced an inward current (Na+/glucose cotransport), and reduced maximal charge (Qmax) and fluorescence (ΔFmax) with half-maximal concentrations (K0.5) of 1 mM. Increasing [αMDG]o also shifted the V0.5 for Q and ΔF to more positive values, with K0.5's ≈ 1 mM. The major difference between Q and ΔF was that at saturating [αMDG]o, the presteady-state current (and Qmax) was totally abolished, whereas ΔFmax was only reduced 50%. Phlorizin reduced both Qmax and ΔFmax (Ki ≈ 0.4 μM), with no changes in V0.5's or relaxation time constants. Simulations using an eight-state kinetic model indicate that external sugar increases the occupancy probability of inward-facing conformations at the expense of outward-facing conformations. The simulations predict, and we have observed experimentally, that presteady-state currents are blocked by saturating sugar, but not the changes in fluorescence. Thus we have isolated an electroneutral conformational change that has not been previously described. This rate-limiting step at maximal inward Na+/sugar cotransport (saturating voltage and external Na+ and sugar concentrations) is the slow release of Na+ from the internal surface of SGLT1. The high affinity blocker phlorizin locks the cotransporter in an inactive conformation.
Collapse
Affiliation(s)
- Donald D F Loo
- Department of Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|