1
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
2
|
Ugurel E, Connes P, Yavas G, Eglenen B, Turkay M, Aksu AC, Renoux C, Joly P, Gauthier A, Hot A, Bertrand Y, Cannas G, Yalcin O. Differential effects of adenylyl cyclase-protein kinase A cascade on shear-induced changes of sickle cell deformability. Clin Hemorheol Microcirc 2020; 73:531-543. [DOI: 10.3233/ch-190563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Elif Ugurel
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Gokce Yavas
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Buse Eglenen
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Mine Turkay
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Ali Cenk Aksu
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Celine Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- UF de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- UF de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut d’hématologie et d’oncologie pédiatrique (IHOP), Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Clinique de Médecine Ambulatoire/Hématologie Hôpital Edouard Herriot, Lyon, Lyon, France
| | - Yves Bertrand
- Institut d’hématologie et d’oncologie pédiatrique (IHOP), Hospices Civils de Lyon, Lyon, France
| | - Giovanna Cannas
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Clinique de Médecine Ambulatoire/Hématologie Hôpital Edouard Herriot, Lyon, Lyon, France
| | - Ozlem Yalcin
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| |
Collapse
|
3
|
Chaves NA, Alegria TGP, Dantas LS, Netto LES, Miyamoto S, Bonini Domingos CR, da Silva DGH. Impaired antioxidant capacity causes a disruption of metabolic homeostasis in sickle erythrocytes. Free Radic Biol Med 2019; 141:34-46. [PMID: 31163255 DOI: 10.1016/j.freeradbiomed.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
This study examined particularly relevant redox pathways such as glycolysis, pentose phosphate pathway (PPP), metHb reductase and nucleotide metabolism, in order to better address how sickle cells deal with redox metabolism disruption. We also investigated the generation of specific oxidative lesions, and the levels of an unexplored antioxidant that could act as a candidate biomarker for oxidative status in sickle cell anemia (SCA). We adopted rigorous exclusion criteria to obtain the studied groups, which were composed by 10 subjects without hemoglobinopathies and 10 SCA patients. We confirmed that sickle cells overwhelm the antioxidant defense system, leading to an impaired antioxidant capacity that significantly contributed to the increase in cholesterol oxidation (ChAld) and hemolysis. Among the antioxidants evaluated, ergothioneine levels decreased in SCA (two-fold). We found strong correlations of ergothioneine levels with other erythrocyte metabolism markers, suggesting its use as an antioxidant therapy alternative for SCA treatment. Moreover, we found higher activities of MetHb reductase, AChE, G6PDH, HXK, and LDH, as well as levels of NADPH, ATP and hypoxanthine in sickle cells. On this basis, we conclude that impaired antioxidant capacity leaves to a loss of glycolysis and PPP shifting mechanism control and further homeostasis rupture, contributing to a decreased lifespan of sickle cells.
Collapse
Affiliation(s)
| | - Thiago Geronimo Pires Alegria
- USP - University of Sao Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, Sao Paulo, Brazil
| | - Lucas Souza Dantas
- USP - University of Sao Paulo, Institute of Chemistry, Department of Biochemistry, Sao Paulo, Brazil
| | - Luis Eduardo Soares Netto
- USP - University of Sao Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, Sao Paulo, Brazil
| | - Sayuri Miyamoto
- USP - University of Sao Paulo, Institute of Chemistry, Department of Biochemistry, Sao Paulo, Brazil
| | | | | |
Collapse
|
4
|
Klichkhanov NK, Dzhafarova AM. The Kinetics of Thermal Denaturation of Acetylcholinesterase of the Rat Red Blood Cell Membrane during Moderate Hypothermia. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Saldanha C, Freitas T, Silva-Herdade AS. Timolol effects on erythrocyte deformability and nitric oxide metabolism. Clin Hemorheol Microcirc 2018; 69:165-173. [PMID: 29630536 DOI: 10.3233/ch-189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Timolol maleate is a compound used in treatment for reducing increased intra-ocular pressure by limiting aqueous humor production. Decreased erythrocyte deformability (ED), increased activity of erythrocyte acetylcholinesterase (AChE), increased values of nitrosoglutathione (GSNO) and nitic oxide (NO) and decreased plasma levels of NO metabolites, were described in primary open angle glaucoma patients. In healthy human red blood cells (RBCs), timolol is an inhibitor of AChE and induces NO efflux and GSNO efflux from that blood component in lower concentration than those obtained in presence of the natural AChE substrate, acetylcholine (ACh). The signal transduction pathway in RBCs described for NO in dependence of AChE-ACh active complex involves Gi protein, protein tyrosine kinase (PTK like Syk and p53/56Lyn), protein tyrosine phosphatase (PTP) and adenylyl cyclase (AC).The aim of this in vitro study was to verify the effect of timolol maleate in ED, NO efflux and NO derivatives molecules (NOx) like nitrite (NO2-), nitrate (NO3-, peroxynitrite (-ONOO) and GSNO under the presence of PTK, PTP, AC and guanylyl cyclase (GC) enzyme proteins inhibitors.Blood samples from healthy donors were each one divided and were performed aliquots in absence (control aliquots) and presence of timolol or timolol plus each inhibitor and Gi protein uncoupling. No significant differences in erythrocyte NO efflux, GSNO, peroxynitrite, nitrite and nitrate concentrations in response to timolol when compared with the untreated blood samples aliquots were obtained.It was observed an increase in erythrocyte deformability at high shear stresses induced by the simultaneous presence of timolol and band 3 protein dephosphorylation by PTK syk inhibitor. No significant differences where verified in peroxynitrite levels in the blood aliquots in presence of timolol plus each enzyme inhibitor and Gi protein uncoupling in relation to the control aliquots. No variation of GSNO concentration occurs under the presence of timolol and AMGT (PTK lyn inhibitor) besides the significant higher values observed with each one of the other inhibitors. Nitrate concentration increases significantly in all aliquots with timolol plus each one of the inhibitors. The same was observe with nitrite levels with exception of the aliquots with timolol plus AMGT or timolol plus Gi protein uncoupling showing no significant values in relation to the control aliquots.Besides the changes in NO derivative molecules and NO efflux from RBCs obtained in this study with blood samples of healthy donors under the effect of timolol plus each inhibitor of the proteins participants in NO signal transduction mechanism, further analogue studies must be promoted with blood samples of patients with glaucoma or any other inflammatory vascular disease.
Collapse
Affiliation(s)
- Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Teresa Freitas
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Ana Santos Silva-Herdade
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
Saldanha C. Human Erythrocyte Acetylcholinesterase in Health and Disease. Molecules 2017; 22:E1499. [PMID: 28885588 PMCID: PMC6151671 DOI: 10.3390/molecules22091499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 01/11/2023] Open
Abstract
The biochemical properties of erythrocyte or human red blood cell (RBC) membrane acetylcholinesterase (AChE) and its applications on laboratory class and on research are reviewed. Evidence of the biochemical and the pathophysiological properties like the association between the RBC AChE enzyme activity and the clinical and biophysical parameters implicated in several diseases are overviewed, and the achievement of RBC AChE as a biomarker and as a prognostic factor are presented. Beyond its function as an enzyme, a special focus is highlighted in this review for a new function of the RBC AChE, namely a component of the signal transduction pathway of nitric oxide.
Collapse
Affiliation(s)
- Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
7
|
Esteves R, Freitas T, Teixeira P, Napoleão P, Neves C, Saldanha C. Erythrocyte nitric oxide in glaucoma patients - ex vivo study. Clin Hemorheol Microcirc 2017; 64:989-994. [PMID: 27814293 DOI: 10.3233/ch-168049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Glaucoma is an optic neuropathy associated with vascular dysregulation and increased intra-ocular pressure (IOP). Timolol is used as treatment for reducing IOP, by limiting aqueous humour production. Increased NOS expression as well as decreased levels of nitric oxide (NO) metabolites, and high activity of erythrocyte acetylcholinesterase (AChE) were observed in primary open angle glaucoma patients. OBJECTIVE This ex vivo study aims to evaluate timolol effect in NO efflux and its derivatives in glaucoma patient's erythrocytes. METHODS Venous blood from 15 glaucoma patients was collected. Erythrocyte suspensions were incubated with the AChE modulators acetylcholine (ACh) and timolol at 10 μM. Erythrocyte NO efflux and S-nitrosoglutathione (GSNO) concentration were measured. RESULTS No significant differences were obtained in erythrocyte NO efflux and GSNO concentration in response to ACh or timolol when compared with the untreated erythrocytes of glaucoma patients. When comparing the same incubation conditions for erythrocyte suspensions between glaucoma patients and healthy subjects, those from glaucoma patients showed higher NO efflux in presence and absence of timolol, and higher values of GSNO in the presence of timolol. CONCLUSIONS We demonstrated that erythrocytes from glaucoma patients have similar availability to release NO both in absence and presence of timolol, and have higher GSNO values in presence of timolol.
Collapse
Affiliation(s)
- Rita Esteves
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Teresa Freitas
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Pedro Teixeira
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Patrícia Napoleão
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Carlos Neves
- Faculdade de Medicina, Universidade de Lisboa, ISAMB, CECU Coordenator, ALM Clinical Director
| | - Carlota Saldanha
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| |
Collapse
|
8
|
Lima C, Pinto S, Napoleão P, Pronto-Laborinho AC, Barros MA, Freitas T, de Carvalho M, Saldanha C. Identification of erythrocyte biomarkers in amyotrophic lateral sclerosis. Clin Hemorheol Microcirc 2017; 63:423-437. [PMID: 27258202 DOI: 10.3233/ch-162066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. It has been hypothesised that red blood cells (RBCs) may be involved in the disease process by the release of damaging molecules. OBJECTIVE The aim of this ex vivo study is to compare RBCs biochemical and hemorheological parameters between ALS patients and healthy donors to identify novel biomarkers of the ALS disease. METHODS We included 82 ALS patients and 40 gender age-matched healthy donors. We performed quantification of erythrocyte aggregation and deformability, nitric oxide (NO) efflux from RBCs, acetylcholinesterase (AChE) enzyme activity and intraerythrocytic concentration of nitrite, nitrate and S-nitrosogluthatione (GSNO). RESULTS Erythrocyte deformability and AChE activity were increased in patients with ALS in comparison to healthy donors. NO efflux from RBCs and concentration of intraerythrocytic nitrite were lower in ALS patients. In patients, we found that for higher NO range of values the respiratory function is worse and that for higher AChE range of values the RBCs nitrite content increase. CONCLUSION The results of the present study indicate that NO efflux from RBCs and RBCs AChE should be further explored as potential biomarkers for ALS.
Collapse
Affiliation(s)
- Catarina Lima
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Napoleão
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Amparo Barros
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Freitas
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Neurociências. Hospital de Santa Maria-CHLN, Lisbon, Portugal
| | - Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
|
10
|
Napoleão P, Freitas T, Saldanha C. Effect of oxidized LDL on erythrocyte nitric oxide metabolism. Clin Hemorheol Microcirc 2016. [DOI: 10.3233/ch-168050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Napoleão P, Freitas T, Saldanha C. Effect of oxidized LDL on erythrocyte nitric oxide metabolism. Clin Hemorheol Microcirc 2016; 64:971-975. [PMID: 27767978 DOI: 10.3233/ch-168025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS Oxidized low density lipoprotein (ox-LDL) has been reported as an inhibitor of nitric oxide (NO)-mediated dilatation in microcirculation. Oxidized LDL effect on NO metabolism of erythrocytes is not known. Therefore, this study aims to evaluate the effect of ox-LDL on erythrocytes NO metabolism. METHODS The effect of different concentrations of human purified ox-LDL (25, 50 and 100 μg/mL) on NO metabolism was evaluated on blood of healthy subjects. RESULTS An inhibitory effect of higher concentrations of ox-LDL on erythrocyte NO efflux levels was verified. Concentrations of NO efflux from erythrocytes were lower as consequence of treatments with 50 μg/mL ox-LDL treatment (1.6±0.27 nM) and 100 μg/mL ox-LDL treatment (1.3±0.22 nM) than control (1.9±0.28 nM). Opposite, ox-LDL incubation has a positive effect on GSNO content of erythrocytes. That effect is proportional to concentrations of ox-LDL treatments (10.8±1.4 nM for 25 μg/mL, 12.9±1.5 nM for 50 μg/mL and 12.1±1.9 nM for 100 μg/mL) and is significant relative to control (8.56±0.76 μM) and ACh (8.9±0.52 μM) aliquots. CONCLUSIONS Presence of oxidized LDL in erythrocyte NO metabolism induces a decrease of NO efflux amount and an increase on intra-erythrocyte GSNO concentrations. These results suggest a role of ox-LDL in mobilization of NO between NO derivatives molecules in dependence of oxidized LDL concentration. An anti - reactive nitrogene role can be attributed to ox-LDL for its contribution in the erythrocyte scavenged ability for nitric oxide.
Collapse
Affiliation(s)
- Patrícia Napoleão
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Freitas
- Instituto de Bioquímica Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carlota Saldanha
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Bioquímica Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Duarte C, Napoleão P, Freitas T, Saldanha C. An ex vivo study of nitric oxide efflux from human erythrocytes in both genders. Clin Hemorheol Microcirc 2016; 64:951-955. [PMID: 27767976 DOI: 10.3233/ch-168023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Acetylcholinesterase (AChE) is located on outer surface of erythrocyte membrane. Gender-related differences in erythrocyte AChE enzyme activity had been verified in young adults. It is also known that binding of acetylcholine (ACh) with AChE on erythrocyte membrane initiates a signal transduction mechanism that stimulates nitric oxide (NO) efflux. AIMS This ex vivo study was done to compare the amount of NO efflux obtained from erythrocytes of healthy donors in males and females. METHODS We included 66 gender age-matched healthy donors (40-60 years old). We performed quantification of erythrocyte NO efflux from erythrocytes and of the membrane AChE enzyme activity. RESULTS There are no significant differences in NO efflux from erythrocytes between men and women. Regarding AChE enzyme activity values, in this range of age, no differences between genders were obtained. However, the values of AChE enzyme activity in the third quartile of NO efflux values were significantly higher (p < 0.05) in women than in men. CONCLUSIONS The efflux of NO from erythrocyte of healthy humans did not change with gender. For the same range of values of NO efflux from erythrocytes, in both gender, it was verified higher values of AChE enzyme activity in women.
Collapse
|
13
|
Teixeira P, Napoleão P, Saldanha C. S-nitrosoglutathione efflux in the erythrocyte. Clin Hemorheol Microcirc 2015; 60:397-404. [DOI: 10.3233/ch-141855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
|
15
|
Acetylcholinesterase conformational states influence nitric oxide mobilization in the erythrocyte. J Membr Biol 2015; 248:349-54. [PMID: 25652185 DOI: 10.1007/s00232-015-9776-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/23/2015] [Indexed: 01/21/2023]
Abstract
In the human erythrocyte, band 3 protein mediates nitric oxide (NO) translocation and its effects are strongly related to phosphorylated/dephosphorylated intracellular states. The metabolism of NO could change in the presence of acetylcholinesterase (AChE). Therefore, the present study was designed to assess the effect of conformational changes in AChE (via N-19 and C-16 antibodies) and enzymatic inhibition/activation of protein kinase C (PKC) in erythrocyte NO mobilization in vitro. Our results show that by inhibiting PKC with cheletrine, impaired erythrocyte NO efflux and s-nitrosoglutathione (GSNO) levels were verified, while PKC's activation by Phorbol 12-myristate 13-acetate had the opposite effect. Those results demonstrate the influence of 4.1R complex and band 3 protein level of phosphorylation on NO efflux and GSNO concentration mediated by PKC inhibition/activation. In addition, the present study shows evidence that conformational changes in AChE promoted by incubation with N-19 and C-16 antibodies alter the enzyme's functional connection to acetylcholine (ACh) (AChE-ACh complex) in an irreversible manner, resulting in impaired GSNO concentration and NO efflux from the erythrocyte. Novel insight into NO metabolism in the erythrocyte is brought with the presented findings allowing new possibilities of modulating NO delivery, possibly involving PKC and AChE conformational alterations in combination.
Collapse
|
16
|
Barvitenko NN, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 2014; 20:484-501. [PMID: 23441854 DOI: 10.1111/micc.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.
Collapse
|
17
|
Application of a nitric oxide sensor in biomedicine. BIOSENSORS-BASEL 2014; 4:1-17. [PMID: 25587407 PMCID: PMC4264366 DOI: 10.3390/bios4010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned.
Collapse
|
18
|
Structural and Compositional Changes in Erythrocyte Membrane of Obese Compared to Normal-Weight Adolescents. J Membr Biol 2013; 246:939-47. [DOI: 10.1007/s00232-013-9596-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
19
|
Staurosporine-induced apoptosis presents with unexpected cholinergic effects in a differentiated neuroblastoma cell line. Neurochem Int 2012; 61:1011-20. [DOI: 10.1016/j.neuint.2012.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 11/20/2022]
|
20
|
Fibrinogen effects on erythrocyte nitric oxide mobilization in presence of acetylcholine. Life Sci 2012; 91:1017-22. [PMID: 22796369 DOI: 10.1016/j.lfs.2012.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/20/2022]
Abstract
AIMS The objectives of this study were to evaluate the effects of high fibrinogen concentration on erythrocyte deformability on mobilization of nitric oxide (NO) and of its metabolites in the presence of acetylcholine (ACh) in healthy human blood samples. MAIN METHODS Levels of NO were evaluated by amperometric method. Nitrite, nitrate and S-nitrosoglutathione (GSNO) were measured using the spectrophotometric Griess reaction. Erythrocyte deformability was determined using the Rheodyn SSD laser diffractometer. KEY FINDINGS In the presence of high concentrations of fibrinogen and ACh (10 μM) in the blood samples from healthy humans the erythrocyte nitrites, nitrates and GSNO concentrations increased without significant changes in NO efflux. Mobilization of NO in erythrocytes' presence was enhanced in the presence of ACh and high fibrinogen levels. SIGNIFICANCE These results suggest that during inflammation when both ACh and high levels of fibrinogen are present, NO delivery by erythrocytes might be compromised by their NO scavenging ability that acts as a compensatory mechanism against the overproduced NO by endothelial inducible nitric oxide synthase.
Collapse
|
21
|
Nonneuronal Cholinergic System in Human Erythrocytes: Biological Role and Clinical Relevance. J Membr Biol 2010; 234:227-34. [DOI: 10.1007/s00232-010-9250-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
|