1
|
McKenna FF, Miles L, Babb JS, Goff DC, Lazar M. Diffusion kurtosis imaging of gray matter in schizophrenia. Cortex 2019; 121:201-224. [PMID: 31629198 DOI: 10.1016/j.cortex.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Prior postmortem studies have shown gray matter (GM) microstructural abnormalities in schizophrenia. However, few studies to date have examined GM microstructural integrity in schizophrenia in vivo. Here, we employed diffusion kurtosis imaging (DKI) to test for differences in GM microstructure in eighteen schizophrenia (SZ) patients versus nineteen healthy controls (HC). GM microstructure was characterized in each participant using DKI-derived metrics of mean kurtosis (MK) and mean diffusivity (MD). Individual T1-weighted images were used to create subject-specific cortically-labelled regions of interest (ROIs) of the four cortical lobes and sixty-eight cortical GM regions delineated by the Desikan-Killiany atlas, and to derive the associated cortical thickness and area measures. The derived ROIs were also registered to the diffusion space of each subject and used to generate region-specific mean MK and MD values. We additionally administered the Wisconsin Card Sorting Test (WCST), Stroop test, and Trail Making Test part B (Trails-B) to test the relationship between GM metrics and executive function in SZ. We found significantly increased MK and MD in SZ compared to HC participants in the temporal lobe, sub-lobar temporal cortical regions (fusiform, inferior temporal, middle temporal and temporal pole), and posterior cingulate cortex after correcting for multiple comparisons. Correlational analyses revealed significant associations of MK and MD with executive function scores derived from the WCST, Stroop, and Trails-B tests, along with an inverse relationship between MK and MD and cortical thickness and area. A hierarchical multiple linear regression analysis showed that up to 85% of the inter-subject variability in cognitive function in schizophrenia measured by the WCST could be explained by MK in combination with either GM thickness or area. MK and MD appear to be sensitive to GM microstructural pathology in schizophrenia and may provide useful biomarkers of abnormal cortical microstructure in this disorder.
Collapse
Affiliation(s)
- Faye F McKenna
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Laura Miles
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - James S Babb
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Donald C Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
3
|
Association between mismatch negativity and voxel-based brain volume in schizophrenia. Clin Neurophysiol 2018; 129:1899-1906. [DOI: 10.1016/j.clinph.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023]
|
4
|
The neuropathological study of myelin oligodendrocyte glycoprotein in the temporal lobe of schizophrenia patients. Acta Neuropsychiatr 2018; 30:232-240. [PMID: 29564992 DOI: 10.1017/neu.2018.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Recent studies based on the neuroimaging analysis, genomic analysis and transcriptome analysis of the postmortem brain suggest that the pathogenesis of schizophrenia is related to myelin-oligodendrocyte abnormalities. However, no serious neuropathological investigation of this protein in the schizophrenic brain has yet been performed. In this study, to confirm the change in neuropathological findings due to the pathogenesis of this disease, we observed the expression of myelin-oligodendrocyte directly in the brain tissue of schizophrenia patients. METHODS Myelin oligodendrocyte glycoprotein (MOG) was evaluated in the cortex of the superior temporal gyrus (STG) and the hippocampus in 10 schizophrenic and nine age- and sex-matched normal control postmortem brains. RESULTS The expression of MOG was significantly lower in the middle layer of the neocortex of the STG and stratum lucidum of CA3 in the hippocampus in the long-term schizophrenic brains (patients with ≥30 years of illness duration) than in the age-matched controls. Furthermore, the thickness of MOG-positive fibre-like structures was significantly lower in both regions of the long-term schizophrenic brains than in the age-matched controls. CONCLUSION These findings suggest that a long duration of illness has a marked effect on the expression of MOG in these regions, and that myelin-oligodendrocyte abnormalities in these regions may be related to the progressive pathophysiology of schizophrenia.
Collapse
|
5
|
Comparison of accuracy between FSL's FIRST and Freesurfer for caudate nucleus and putamen segmentation. Sci Rep 2017; 7:2418. [PMID: 28546533 PMCID: PMC5445091 DOI: 10.1038/s41598-017-02584-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/12/2017] [Indexed: 11/08/2022] Open
Abstract
Although several methods have been developed to automatically delineate subcortical gray matter structures from MR images, the accuracy of these algorithms has not been comprehensively examined. Most of earlier studies focused primarily on the hippocampus. Here, we assessed the accuracy of two widely used non-commercial programs (FSL-FIRST and Freesurfer) for segmenting the caudate and putamen. T1-weighted 1 mm3 isotropic resolution MR images were acquired for thirty healthy subjects (15 females). Caudate nucleus and putamen were segmented manually by two independent observers and automatically by FIRST and Freesurfer (v4.5 and v5.3). Utilizing manual labels as reference standard the following measures were studied: Dice coefficient (D), percentage volume difference (PVD), absolute volume difference as well as intraclass correlation coefficient (ICC) for consistency and absolute agreement. For putamen segmentation, FIRST achieved higher D, lower PVD and higher ICC for absolute agreement with manual tracing than either version of Freesurfer. Freesurfer overestimated the putamen, while FIRST was not statistically different from manual tracing. The ICC for consistency with manual tracing was similar between the two methods. For caudate segmentation, FIRST and Freesurfer performed more similarly. In conclusion, Freesurfer and FIRST are not equivalent when comparing to manual tracing. FIRST was superior for putaminal segmentation.
Collapse
|
6
|
Goghari VM, Truong W, Spilka MJ. A magnetic resonance imaging family study of cortical thickness in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168:660-8. [PMID: 26235705 DOI: 10.1002/ajmg.b.32354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022]
Abstract
Schizophrenia is associated with abnormalities in cortical thickness, including both thicker and thinner cortices than controls. Although less reliably than in patients, non-psychotic relatives of schizophrenia patients have also demonstrated both thicker and thinner cortices than controls, suggesting an effect of familial or genetic liability. We investigated cortical thickness in 25 schizophrenia patients, 26 adult non-psychotic first-degree biological relatives, and 23 community controls using the automated program FreeSurfer. Contrary to hypotheses, we found relatives of schizophrenia patients had greater cortical thickness in all lobes compared to patients and controls; however, this finding was not as widespread when compared to controls. In contrast, schizophrenia patients only demonstrated a thinner right fusiform region than controls and relatives. Our finding of greater thickness in adult biological relatives could represent a maladaptive abnormality or alternatively, a compensatory mechanism. Previous literature suggests that the nature of abnormalities in relatives can vary by the age of relatives and change across the developmental period. Abnormalities in patients may depend on lifestyle factors and on current and previous anti-psychotic medication use. Our results speak to the need to study various populations of patients and relatives across the lifespan to better understand different developmental periods and the impact of environmental factors. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vina M Goghari
- Department of Psychology, Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wanda Truong
- Department of Psychology, Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Spilka
- Department of Psychology, Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
McCarthy CS, Ramprashad A, Thompson C, Botti JA, Coman IL, Kates WR. A comparison of FreeSurfer-generated data with and without manual intervention. Front Neurosci 2015; 9:379. [PMID: 26539075 PMCID: PMC4612506 DOI: 10.3389/fnins.2015.00379] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023] Open
Abstract
This paper examined whether FreeSurfer-generated data differed between a fully-automated, unedited pipeline and an edited pipeline that included the application of control points to correct errors in white matter segmentation. In a sample of 30 individuals, we compared the summary statistics of surface area, white matter volumes, and cortical thickness derived from edited and unedited datasets for the 34 regions of interest (ROIs) that FreeSurfer (FS) generates. To determine whether applying control points would alter the detection of significant differences between patient and typical groups, effect sizes between edited and unedited conditions in individuals with the genetic disorder, 22q11.2 deletion syndrome (22q11DS) were compared to neurotypical controls. Analyses were conducted with data that were generated from both a 1.5 tesla and a 3 tesla scanner. For 1.5 tesla data, mean area, volume, and thickness measures did not differ significantly between edited and unedited regions, with the exception of rostral anterior cingulate thickness, lateral orbitofrontal white matter, superior parietal white matter, and precentral gyral thickness. Results were similar for surface area and white matter volumes generated from the 3 tesla scanner. For cortical thickness measures however, seven edited ROI measures, primarily in frontal and temporal regions, differed significantly from their unedited counterparts, and three additional ROI measures approached significance. Mean effect sizes for edited ROIs did not differ from most unedited ROIs for either 1.5 or 3 tesla data. Taken together, these results suggest that although the application of control points may increase the validity of intensity normalization and, ultimately, segmentation, it may not affect the final, extracted metrics that FS generates. Potential exceptions to and limitations of these conclusions are discussed.
Collapse
Affiliation(s)
- Christopher S McCarthy
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Avinash Ramprashad
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Carlie Thompson
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Jo-Anna Botti
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| |
Collapse
|
8
|
Brisch R, Bernstein HG, Dobrowolny H, Krzyżanowska M, Jankowski Z, Bogerts B, Gos T. Volumetric analysis of the diagonal band of Broca in patients with schizophrenia and affective disorders: A post-mortem study. Clin Anat 2015; 29:466-72. [PMID: 26457806 DOI: 10.1002/ca.22656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 11/09/2022]
Abstract
The human diagonal band of Broca is connected to other parts of the limbic system, such as the hippocampus, that are involved in the pathology of schizophrenia. This study aimed to characterize the volume and anterior-to-posterior distance of the human diagonal band of Broca (vertical limb) from post-mortem brains obtained from three groups: healthy control subjects (N = 17), patients with schizophrenia (N = 26), and patients with affective disorders (N = 12). There were no significant differences in the volume or anterior-to-posterior distance in the patients with schizophrenia or affective disorders compared with the healthy control subjects. To date, this is the first post-mortem investigation measuring the volume and the anterior-to-posterior distance of the diagonal band of Broca (vertical limb) in patients with schizophrenia or affective disorders compared with healthy control subjects.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Ul. Dębowa 23, Medical University of Gdańsk, Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Ul. Dębowa 23, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Ul. Dębowa 23, Medical University of Gdańsk, Gdańsk, Poland
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Ul. Dębowa 23, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Bakhshi K, Chance S. The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 2015; 303:82-102. [DOI: 10.1016/j.neuroscience.2015.06.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
|
10
|
John JP, Lukose A, Bagepally BS, Halahalli HN, Moily NS, Vijayakumari AA, Jain S. A systematic examination of brain volumetric abnormalities in recent-onset schizophrenia using voxel-based, surface-based and region-of-interest-based morphometric analyses. J Negat Results Biomed 2015; 14:11. [PMID: 26065881 PMCID: PMC4464994 DOI: 10.1186/s12952-015-0030-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
Background Brain morphometric abnormalities in schizophrenia have been extensively reported in the literature. Whole-brain volumetric reductions are almost universally reported by most studies irrespective of the characteristics of the samples studied (e.g., chronic/recent-onset; medicated/neuroleptic-naïve etc.). However, the same cannot be said of the reported regional morphometric abnormalities in schizophrenia. While certain regional morphometric abnormalities are more frequently reported than others, there are no such abnormalities that are universally reported across studies. Variability of socio-demographic and clinical characteristics across study samples as well as technical and methodological issues related to acquisition and analyses of brain structural images may contribute to inconsistency of brain morphometric findings in schizophrenia. The objective of the present study therefore was to systematically examine brain morphometry in patients with recent-onset schizophrenia to find out if there are significant whole-brain or regional volumetric differences detectable at the appropriate significance threshold, after attempting to control for various confounding factors that could impact brain volumes. Methods Structural magnetic resonance images of 90 subjects (schizophrenia = 45; healthy subjects = 45) were acquired using a 3 Tesla magnet. Morphometric analyses were carried out following standard analyses pipelines of three most commonly used strategies, viz., whole-brain voxel-based morphometry, whole-brain surface-based morphometry, and between-group comparisons of regional volumes generated by automated segmentation and parcellation. Results In our sample of patients having recent-onset schizophrenia with limited neuroleptic exposure, there were no significant whole brain or regional brain morphometric abnormalities noted at the appropriate statistical significance thresholds with or without including age, gender and intracranial volume or total brain volume in the statistical analyses. Conclusions In the background of the conflicting findings in the literature, our findings indicate that brain morphometric abnormalities may not be directly related to the schizophrenia phenotype. Analysis of the reasons for the inconsistent results across studies as well as consideration of alternate sources of variability of brain morphology in schizophrenia such as epistatic and epigenetic mechanisms could perhaps advance our understanding of structural brain alterations in schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12952-015-0030-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John P John
- Additional Professor of Psychiatry & Adjunct Faculty of Clinical Neurosciences, Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), P.B. No. 2900, Dharmaram P.O., Hosur Road, Bangalore, 560 029, Karnataka, India. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India. .,Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| | - Ammu Lukose
- Additional Professor of Psychiatry & Adjunct Faculty of Clinical Neurosciences, Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), P.B. No. 2900, Dharmaram P.O., Hosur Road, Bangalore, 560 029, Karnataka, India. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| | - Bhavani Shankara Bagepally
- Additional Professor of Psychiatry & Adjunct Faculty of Clinical Neurosciences, Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), P.B. No. 2900, Dharmaram P.O., Hosur Road, Bangalore, 560 029, Karnataka, India. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India. .,Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| | - Harsha N Halahalli
- Additional Professor of Psychiatry & Adjunct Faculty of Clinical Neurosciences, Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), P.B. No. 2900, Dharmaram P.O., Hosur Road, Bangalore, 560 029, Karnataka, India. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India. .,Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| | - Nagaraj S Moily
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India. .,Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| | - Anupa A Vijayakumari
- Additional Professor of Psychiatry & Adjunct Faculty of Clinical Neurosciences, Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), P.B. No. 2900, Dharmaram P.O., Hosur Road, Bangalore, 560 029, Karnataka, India. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India. .,Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.
| |
Collapse
|
11
|
Holleran L, Ahmed M, Anderson-Schmidt H, McFarland J, Emsell L, Leemans A, Scanlon C, Dockery P, McCarthy P, Barker GJ, McDonald C, Cannon DM. Altered interhemispheric and temporal lobe white matter microstructural organization in severe chronic schizophrenia. Neuropsychopharmacology 2014; 39:944-54. [PMID: 24150571 PMCID: PMC3924528 DOI: 10.1038/npp.2013.294] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 12/15/2022]
Abstract
Diffusion MRI investigations in schizophrenia provide evidence of abnormal white matter (WM) microstructural organization as indicated by reduced fractional anisotropy (FA) primarily in interhemispheric, left frontal and temporal WM. Using tract-based spatial statistics (TBSS), we examined diffusion parameters in a sample of patients with severe chronic schizophrenia. Diffusion MRI data were acquired on 19 patients with chronic severe schizophrenia and 19 age- and gender-matched healthy controls using a 64 gradient direction sequence, (b=1300 s/mm(2)) collected on a Siemens 1.5T MRI scanner. Diagnosis of schizophrenia was determined by Diagnostic and Statistical Manual for Mental Disorders 4th Edition (DSM-IV) Structured Clinical Interview for DSM disorder (SCID). Patients were treatment resistance, having failed to respond to at least two antipsychotic medications, and had prolonged periods of moderate to severe positive or negative symptoms. Analysis of diffusion parameters was carried out using TBSS. Individuals with chronic severe schizophrenia had significantly reduced FA with corresponding increased radial diffusivity in the genu, body, and splenium of the corpus callosum, the right posterior limb of the internal capsule, right external capsule, and the right temporal inferior longitudinal fasciculus. There were no voxels of significantly increased FA in patients compared with controls. A decrease in splenium FA was shown to be related to a longer illness duration. We detected widespread abnormal diffusivity properties in the callosal and temporal lobe WM regions in individuals with severe chronic schizophrenia who have not previously been exposed to clozapine. These deficits can be driven by a number of factors that are indistinguishable using in vivo diffusion-weighted imaging, but may be related to reduced axonal number or packing density, abnormal glial cell arrangement or function, and reduced myelin.
Collapse
Affiliation(s)
- Laurena Holleran
- Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland,Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland, Tel: +087 92 13388, Fax: +353 (0)91 494520, E-mail:
| | - Mohamed Ahmed
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Anderson-Schmidt
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland,Department of Psychiatry and Psychotherapy, University Medical Centre Goettingen, Goettingen, Germany
| | - John McFarland
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Louise Emsell
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland,Department of Radiology, University Hospital of KU Leuven, Leuven, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter Dockery
- Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Peter McCarthy
- Clinical Neuroimaging Laboratory, Department of Radiology, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gareth J Barker
- King's College London, Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Tully LM, Lincoln SH, Liyanage-Don N, Hooker CI. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia. Schizophr Res 2014; 152:358-64. [PMID: 24388000 DOI: 10.1016/j.schres.2013.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes.
Collapse
Affiliation(s)
- Laura M Tully
- Harvard University, Department of Psychology, 33 Kirkland St., Cambridge, MA 02138, USA.
| | - Sarah Hope Lincoln
- Harvard University, Department of Psychology, 33 Kirkland St., Cambridge, MA 02138, USA
| | - Nadia Liyanage-Don
- Harvard University, Department of Psychology, 33 Kirkland St., Cambridge, MA 02138, USA
| | - Christine I Hooker
- Harvard University, Department of Psychology, 33 Kirkland St., Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Lee DY, Smith GN, Su W, Honer WG, Macewan GW, Lapointe JS, Vertinsky AT, Vila-Rodriguez F, Kopala LC, Lang DJ. White matter tract abnormalities in first-episode psychosis. Schizophr Res 2012; 141:29-34. [PMID: 22863549 DOI: 10.1016/j.schres.2012.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/23/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Fibers connecting fronto-temporal and fronto-medial structures that pass through the anterior limb of the internal capsule (ALIC) subserve executive and psychomotor functioning. Both of these functions are adversely affected in schizophrenia, and may be abnormal at illness onset. In a study of first-episode psychosis, we used diffusion tensor imaging (DTI) and cognitive testing to examine ALIC integrity. Fourteen early psychosis patients and 29 healthy volunteers were included. Symptoms were assessed with the Positive and Negative Syndromes Scale (PANSS). All structural and diffusion scans were acquired on a GE Signa 1.5T scanner. A T1-weighted 3D FSPGR Inversion Recovery imaging series was acquired for manual seeding in structural space. Diffusion tensor imaging (DTI) was performed, and all DTI images were co-registered to structural space. Seeds were manually drawn bilaterally on the coronal plane at a specified location. Diffusion images were post-processed for subsequent Tract-based Spatial Statistics (TBSS) analysis. First-episode psychosis patients had significantly smaller fronto-medial and fronto-temporal AIC tract volumes compared to healthy volunteers on the left and the right (p-values<0.04). No differences in mean fractional anisotropy (FA) were seen within either left or right tracts (p-values>0.05), nor did TBSS reveal any other differences in FA values between groups in other regions. Relationships between tract volumes and symptom severity were not observed in this study.
Collapse
Affiliation(s)
- D Y Lee
- Department of Radiology, Royal Columbian Hospital, New Westminster, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prabhakaran V, Nair VA, Austin BP, La C, Gallagher TA, Wu Y, McLaren DG, Xu G, Turski P, Rowley H. Current status and future perspectives of magnetic resonance high-field imaging: a summary. Neuroimaging Clin N Am 2012; 22:373-97, xii. [PMID: 22548938 DOI: 10.1016/j.nic.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are several magnetic resonance (MR) imaging techniques that benefit from high-field MR imaging. This article describes a range of novel techniques that are currently being used clinically or will be used in the future for clinical purposes as they gain popularity. These techniques include functional MR imaging, diffusion tensor imaging, cortical thickness assessment, arterial spin labeling perfusion, white matter hyperintensity lesion assessment, and advanced MR angiography.
Collapse
Affiliation(s)
- Vivek Prabhakaran
- Division of Neuroradiology, Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oertel-Knochel V, Knochel C, Rotarska-Jagiela A, Reinke B, Prvulovic D, Haenschel C, Hampel H, Linden DEJ. Association between Psychotic Symptoms and Cortical Thickness Reduction across the Schizophrenia Spectrum. Cereb Cortex 2012; 23:61-70. [DOI: 10.1093/cercor/bhr380] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|