1
|
Fahlström M, Sousa JM, Svedung Wettervik T, Berglund J, Enblad P, Lewén A, Wikström J. A mathematical model for temporal cerebral blood flow response to acetazolamide evaluated in patients with Moyamoya disease. Magn Reson Imaging 2024; 110:35-42. [PMID: 38574981 DOI: 10.1016/j.mri.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Paired cerebral blood flow (CBF) measurement is usually acquired before and after vasoactive stimulus to estimate cerebrovascular reserve (CVR). However, CVR may be confounded because of variations in time-to-maximum CBF response (tmax) following acetazolamide injection. With a mathematical model, CVR can be calculated insensitive to variations in tmax, and a model offers the possibility to calculate additional model-derived parameters. A model that describes the temporal CBF response following a vasodilating acetazolamide injection is proposed and evaluated. METHODS A bi-exponential model was adopted and fitted to four CBF measurements acquired using arterial spin labelling before and initialised at 5, 15 and 25 min after acetazolamide injection in a total of fifteen patients with Moyamoya disease. Curve fitting was performed using a non-linear least squares method with a priori constraints based on simulations. RESULTS Goodness of fit (mean absolute error) varied between 0.30 and 0.62 ml·100 g-1·min-1. Model-derived CVR was significantly higher compared to static CVR measures. Maximum CBF increase occurred earlier in healthy- compared to diseased vascular regions. CONCLUSIONS The proposed mathematical model offers the possibility to calculate CVR insensitive to variations in time to maximum CBF response which gives a more detailed characterisation of CVR compared to static CVR measures. Although the mathematical model adapts generally well to this dataset of patients with MMD it should be considered as experimental; hence, further studies in healthy populations and other patient cohorts are warranted.
Collapse
Affiliation(s)
- Markus Fahlström
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Joao M Sousa
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | | | - Johan Berglund
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Per Enblad
- Neurosurgery, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Anders Lewén
- Neurosurgery, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Johan Wikström
- Neuroradiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Zhao MY, Tong E, Duarte Armindo R, Fettahoglu A, Choi J, Bagley J, Yeom KW, Moseley M, Steinberg GK, Zaharchuk G. Short- and Long-Term MRI Assessed Hemodynamic Changes in Pediatric Moyamoya Patients After Revascularization. J Magn Reson Imaging 2024; 59:1349-1357. [PMID: 37515518 DOI: 10.1002/jmri.28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change following a vasodilation challenge. Decreased CVR is associated with a higher stroke risk in patients with cerebrovascular diseases. While revascularization can improve CVR and reduce this risk in adult patients with vasculopathy such as those with Moyamoya disease, its impact on hemodynamics in pediatric patients remains to be elucidated. Arterial spin labeling (ASL) is a quantitative MRI technique that can measure CBF, CVR, and arterial transit time (ATT) non-invasively. PURPOSE To investigate the short- and long-term changes in hemodynamics after bypass surgeries in patients with Moyamoya disease. STUDY TYPE Longitudinal. POPULATION Forty-six patients (11 months-18 years, 28 females) with Moyamoya disease. FIELD STRENGTH/SEQUENCE 3-T, single- and multi-delay ASL, T1-weighted, T2-FLAIR, 3D MRA. ASSESSMENT Imaging was performed 2 weeks before and 1 week and 6 months after surgical intervention. Acetazolamide was employed to induce vasodilation during the imaging procedure. CBF and ATT were measured by fitting the ASL data to the general kinetic model. CVR was computed as the percentage change in CBF. The mean CBF, ATT, and CVR values were measured in the regions affected by vasculopathy. STATISTICAL TESTS Pre- and post-revascularization CVR, CBF, and ATT were compared for different regions of the brain. P-values <0.05 were considered statistically significant. RESULTS ASL-derived CBF in flow territories affected by vasculopathy significantly increased after bypass by 41 ± 31% within a week. At 6 months, CBF significantly increased by 51 ± 34%, CVR increased by 68 ± 33%, and ATT was significantly reduced by 6.6 ± 2.9%. DATA CONCLUSION There may be short- and long-term improvement in the hemodynamic parameters of pediatric Moyamoya patients after bypass surgery. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Rui Duarte Armindo
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Neuroradiology, Hospital Beatriz Ângelo, Lisbon, Portugal
| | - Ates Fettahoglu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jason Choi
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Jacob Bagley
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Woodward OB, Driver I, Schwarz ST, Hart E, Wise R. Assessment of brainstem function and haemodynamics by MRI: challenges and clinical prospects. Br J Radiol 2023; 96:20220940. [PMID: 37721043 PMCID: PMC10607409 DOI: 10.1259/bjr.20220940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 09/19/2023] Open
Abstract
MRI offers techniques for non-invasively measuring a range of aspects of brain tissue function. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used to assess neural activity, based on the brain's haemodynamic response, while arterial spin labelling (ASL) MRI is a non-invasive method of quantitatively mapping cerebral perfusion. Both techniques can be applied to measure cerebrovascular reactivity (CVR), an important marker of the health of the cerebrovascular system. BOLD, ASL and CVR have been applied to study a variety of disease processes and are already used in certain clinical circumstances. The brainstem is a critical component of the central nervous system and is implicated in a variety of disease processes. However, its function is difficult to study using MRI because of its small size and susceptibility to physiological noise. In this article, we review the physical and biological underpinnings of BOLD and ASL and their application to measure CVR, discuss the challenges associated with applying them to the brainstem and the opportunities for brainstem MRI in the research and clinical settings. With further optimisation, functional MRI techniques could feasibly be used to assess brainstem haemodynamics and neural activity in the clinical setting.
Collapse
Affiliation(s)
- Owen Bleddyn Woodward
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Ian Driver
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | | | - Emma Hart
- University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
4
|
Zhao MY, Armindo RD, Gauden AJ, Yim B, Tong E, Moseley M, Steinberg GK, Zaharchuk G. Revascularization improves vascular hemodynamics - a study assessing cerebrovascular reserve and transit time in Moyamoya patients using MRI. J Cereb Blood Flow Metab 2023; 43:138-151. [PMID: 36408536 PMCID: PMC10638998 DOI: 10.1177/0271678x221140343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change. Decreased CVR implies poor hemodynamics and is linked to a higher risk for stroke. Revascularization has been shown to improve CBF in patients with vasculopathy such as Moyamoya disease. Dynamic susceptibility contrast (DSC) can measure transit time to evaluate patients suspected of stroke. Arterial spin labeling (ASL) is a non-invasive technique for CBF, CVR, and arterial transit time (ATT) measurements. Here, we investigate the change in hemodynamics 4-12 months after extracranial-to-intracranial direct bypass in 52 Moyamoya patients using ASL with single and multiple post-labeling delays (PLD). Images were collected using ASL and DSC with acetazolamide. CVR, CBF, ATT, and time-to-maximum (Tmax) were measured in different flow territories. Results showed that hemodynamics improved significantly in regions affected by arterial occlusions after revascularization. CVR increased by 16 ± 11% (p < 0.01) and 25 ± 13% (p < 0.01) for single- and multi-PLD ASL, respectively. Transit time measured by multi-PLD ASL and post-vasodilation DSC reduced by 13 ± 7% (p < 0.01) and 9 ± 5% (p < 0.01), respectively. For all regions, ATT correlated significantly with Tmax (R2 = 0.59, p < 0.01). Thus, revascularization improved CVR and decreased transit times. Multi-PLD ASL can serve as an effective and non-invasive modality to examine vascular hemodynamics in Moyamoya patients.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Rui Duarte Armindo
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Neuroradiology, Hospital Beatriz Ângelo, Loures, Lisbon, Portugal
| | - Andrew J Gauden
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Benjamin Yim
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Gao F, Cong J, Duan Y, Zhao W, Zhu Z, Zheng Y, Jin L, Ji M, Li M. Screening of postoperative cerebral hyperperfusion syndrome in moyamoya disease: a three-dimensional pulsed arterial-spin labeling magnetic resonance imaging approach. Front Neurosci 2023; 17:1274038. [PMID: 37928741 PMCID: PMC10620603 DOI: 10.3389/fnins.2023.1274038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Moyamoya disease (MMD) is associated with a risk of postoperative cerebral hyperperfusion syndrome (CHS) after revascularization surgery. This study aimed to explore the feasibility of using three-dimensional pulsed arterial spin labeling (3D PASL) and phase contrast (PC) magnetic resonance imaging (MRI) for predicting CHS occurrence in patients with MMD before revascularization surgery. Methods Overall, 191 adult patients (207 hemispheres) with MMD who underwent combined revascularization surgery were included in this study. Preoperative 3D PASL-MRI and PC-MRI were performed before surgery. The PASL-MRI data were analyzed using SPM12. Patient clinical information, average flow, and preoperative cerebral blood flow (CBF) were compared between the non-CHS and CHS groups. Results Among the patients, 45 (21.74%) developed CHS after revascularization surgery. No significant differences were noted in age, sex, clinical symptoms, hypertension, diabetes, surgical side, or history of revascularization surgery between the non-CHS and CHS groups. However, the average flow in the superficial temporal artery was significantly lower in the CHS group than in the non-CHS group (p < 0.05). Furthermore, 11 clusters of preoperative CBF values were significantly greater in the CHS group than in the non-CHS group [p < 0.05, false discovery rate (FDR) corrected]. A significant correlation was also observed between the preoperative time-to-flight MR angiography (MRA) scores and CBF values in patients with MMD (p < 0.05). Conclusion Compare patients with lower preoperative CBF and higher preoperative average flow in the STA, patients with higher preoperative CBF and lower preoperative average flow in the STA are more likely to develop postoperative CHS Preoperative PASL-MRI and PC-MRI examinations may help to screen patients at high risk of developing CHS after revascularization surgery.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Jianhua Cong
- Department of Medical Centre, Huadong Hospital Fudan University, Shanghai, China
| | - Yu Duan
- Department of Neurosurgery, Huadong Hospital Fudan University, Shanghai, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenfang Zhu
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Ming Ji
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Ming Li
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lewén A, Fahlström M, Borota L, Larsson EM, Wikström J, Enblad P. ASL-MRI-guided evaluation of multiple burr hole revascularization surgery in Moyamoya disease. Acta Neurochir (Wien) 2023; 165:2057-2069. [PMID: 37326844 PMCID: PMC10409847 DOI: 10.1007/s00701-023-05641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Moyamoya (MM) disease is characterized by progressive intracranial arterial stenosis. Patients commonly need revascularization surgery to optimize cerebral blood flow (CBF). Estimation of CBF and cerebrovascular reserve (CVR) is therefore necessary before and after surgery. However, assessment of CBF before and after indirect revascularization surgery with the multiple burr hole (MBH) technique in MM has not been studied extensively. In this study, we describe our initial experience using arterial spin labeling magnetic resonance perfusion imaging (ASL-MRI) for CBF and CVR assessment before and after indirect MBH revascularization surgery in MM patients. METHODS Eleven MM patients (initial age 6-50 years, 1 male/10 female) with 19 affected hemispheres were included. A total of 35 ASL-MRI examinations were performed using a 3D-pCASL acquisition before and after i.v. acetazolamide challenge (1000 mg in adults and 10 mg/kg in children). Twelve MBH procedures were performed in seven patients. The first follow-up ASL-MRI was performed 7-21 (mean 12) months after surgery. RESULTS Before surgery, CBF was 46 ± 16 (mean ± SD) ml/100 g/min and CVR after acetazolamide challenge was 38.5 ± 9.9 (mean ± SD)% in the most affected territory (middle cerebral artery). In cases in which surgery was not performed, CVR was 56 ± 12 (mean ± SD)% in affected hemispheres. After MBH surgery, there was a relative change in CVR compared to baseline (preop) of + 23.5 ± 23.3% (mean ± SD). There were no new ischemic events. CONCLUSION Using ASL-MRI we followed changes in CBF and CVR in patients with MM. The technique was encouraging for assessments before and after revascularization surgery.
Collapse
Affiliation(s)
- Anders Lewén
- Department of Medical Sciences, Neurosurgery, Uppsala University, Uppsala University Hospital, SE 751 85, Uppsala, Sweden.
| | - Markus Fahlström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Ljubisa Borota
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Neurosurgery, Uppsala University, Uppsala University Hospital, SE 751 85, Uppsala, Sweden
| |
Collapse
|
7
|
Hou X, Guo P, Wang P, Liu P, Lin DDM, Fan H, Li Y, Wei Z, Lin Z, Jiang D, Jin J, Kelly C, Pillai JJ, Huang J, Pinho MC, Thomas BP, Welch BG, Park DC, Patel VM, Hillis AE, Lu H. Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI. NPJ Digit Med 2023; 6:116. [PMID: 37344684 PMCID: PMC10284915 DOI: 10.1038/s41746-023-00859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously used for mapping neural activity, is available in most hospitals. Here we show that rs-fMRI can be used to map cerebral hemodynamic function and delineate impairment. By exploiting time variations in breathing pattern during rs-fMRI, deep learning enables reproducible mapping of cerebrovascular reactivity (CVR) and bolus arrival time (BAT) of the human brain using resting-state CO2 fluctuations as a natural "contrast media". The deep-learning network is trained with CVR and BAT maps obtained with a reference method of CO2-inhalation MRI, which includes data from young and older healthy subjects and patients with Moyamoya disease and brain tumors. We demonstrate the performance of deep-learning cerebrovascular mapping in the detection of vascular abnormalities, evaluation of revascularization effects, and vascular alterations in normal aging. In addition, cerebrovascular maps obtained with the proposed method exhibit excellent reproducibility in both healthy volunteers and stroke patients. Deep-learning resting-state vascular imaging has the potential to become a useful tool in clinical cerebrovascular imaging.
Collapse
Affiliation(s)
- Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pengfei Guo
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Puyang Wang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peiying Liu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Doris D M Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongli Fan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Jin
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catherine Kelly
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco C Pinho
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Binu P Thomas
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Babu G Welch
- Department of Neurologic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Vishal M Patel
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
8
|
Imaging of Suspected Stroke in Children, From the AJR Special Series on Emergency Radiology. AJR Am J Roentgenol 2023; 220:330-342. [PMID: 36043606 DOI: 10.2214/ajr.22.27816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pediatric stroke encompasses different causes, clinical presentations, and associated conditions across ages. Although it is relatively uncommon, pediatric stroke presents with poor short- and long-term outcomes in many cases. Because of a wide range of overlapping presenting symptoms between pediatric stroke and other more common conditions, such as migraine and seizures, stroke diagnosis can be challenging or delayed in children. When combined with a comprehensive medical history and physical examination, neuroimaging plays a crucial role in diagnosing stroke and differentiating stroke mimics. This review highlights the current neuroimaging workup for diagnosing pediatric stroke in the emergency department, describes advantages and disadvantages of different imaging modalities, highlights disorders that predispose children to infarct or hemorrhage, and presents an overview of stroke mimics. Key differences in the initial approach to suspected stroke between children and adults are also discussed.
Collapse
|
9
|
Yamashita K, Sugimori H, Nakamizo A, Amano T, Kuwashiro T, Watanabe T, Kawamata K, Furuya K, Harada S, Kamei R, Maehara J, Okada Y, Noguchi T. Different hemodynamics of basal ganglia between moyamoya and non-moyamoya diseases using intravoxel incoherent motion imaging and single-photon emission computed tomography. Acta Radiol 2023; 64:769-775. [PMID: 35466686 DOI: 10.1177/02841851221092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Moyamoya disease (MMD) and non-MMD have different pathogenesis, clinical presentation, and treatment policy. PURPOSE To identify differences in hemodynamics between MMD and non-MMD using intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT). MATERIAL AND METHODS Patients who had undergone 99mTc-ECD or 123I-IMP SPECT, and IVIM imaging were retrospectively studied. IVIM imaging was acquired using six different b-values. Cerebral blood flow ratio (CBFR) in the basal ganglia was calculated using a standardized volume-of-interest template. The cerebellum was used as a reference region. IVIM perfusion fraction (f) was obtained using a two-step fitting algorithm. Elliptical regions of interest were placed in bilateral basal ganglia on the IVIM f map. Patients were classified into MMD and non-MMD groups. The correlation between CBFR and mean IVIM f (fmean) in the basal ganglia was evaluated using Spearman's rank correlation coefficient. RESULTS In total, 20 patients with MMD and 28 non-MMD patients were analyzed. No significant differences in fmean were observed among MMD, affected hemisphere with non-MMD (non-MMDaff), and unaffected hemispheres with non-MMD (non-MMDunaff). A negative correlation was seen between fmean and CBFR in the MMD group (r = -0.40, P = 0.0108), but not in the non-MMD group (non-MMDaff, r = 0.07, P = 0.69; non-MMDunaff, r = -0.22, P = 0.29). No significant differences were found among MMD and non-MMD patients, irrespective of SPECT tracers. CONCLUSION The combination of IVIM MRI and SPECT appears to allow non-invasive identification of differences in hemodynamics between MMD and non-MMD.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hiroshi Sugimori
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshiyuki Amano
- Department of Neurosurgery, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takahiro Kuwashiro
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takeharu Watanabe
- Department of Medical Technology, Division of Radiology, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Keisuke Kawamata
- Department of Medical Technology, Division of Radiology, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kiyomi Furuya
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shino Harada
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Ryotaro Kamei
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Junki Maehara
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasushi Okada
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Tomoyuki Noguchi
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
10
|
Tani K, Mio M, Toyofuku T, Maeda T, Inoue T, Nakamura H. [Feasibility of Cerebrovascular Reserve Assessment Using Stretched Exponential Model in Major Cerebral Artery Steno-occlusive Disease: Comparison with SPECT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:819-828. [PMID: 35753804 DOI: 10.6009/jjrt.2022-1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE To clarify whether diffusion-weighted imaging using stretched exponential model can assess cerebrovascular reserve (CVR) in patients with major cerebral artery steno-occlusive disease, we compared stretched exponential parameters and single-photon emission computed tomography (SPECT). METHODS Twenty-nine patients with unilateral major cerebral artery steno-occlusive disease (25 men and 4 women; age, 69±11 years) were analyzed in this study. The patients were divided into three groups: normal CVR (CVR≥30%), moderate CVR (10%≤CVR<30%), and severe CVR (CVR<10%). The distributed diffusion coefficient (DDC) and heterogeneity index (α) from the stretched exponential model, apparent diffusion coefficient (ADC) from the monoexponential model, and CVR and resting cerebral blood flow (CBF) from SPECT were measured in the bilateral middle cerebral artery territories, and ipsilateral-to-contralateral ratios (rDDC, rα, rADC, and rCBF) were obtained. RESULTS The rDDC values in severe CVR were significantly higher than those in normal CVR (P=0.003). The rDDC values were significantly negatively correlated with ipsilateral CVR (rho=-0.31, P=0.009). The rDDC values were not significantly correlated with rCBF (P=0.34). CONCLUSION We have shown that elevated rDDC values are associated with impaired CVR. Our results suggest that diffusion-weighted imaging using stretched exponential model has a potential to evaluate hemodynamic impairment.
Collapse
Affiliation(s)
- Kazuki Tani
- Department of Radiology, Fukuoka University Chikushi Hospital
| | - Motohira Mio
- Department of Radiology, Fukuoka University Chikushi Hospital
| | - Tatsuo Toyofuku
- Department of Radiology, Fukuoka University Chikushi Hospital
| | - Toshihiro Maeda
- Department of Radiology, Fukuoka University Chikushi Hospital
| | - Toshiro Inoue
- Department of Radiology, Fukuoka University Chikushi Hospital
| | | |
Collapse
|
11
|
Zhao MY, Fan AP, Chen DYT, Ishii Y, Khalighi MM, Moseley M, Steinberg GK, Zaharchuk G. Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI. J Cereb Blood Flow Metab 2022; 42:1493-1506. [PMID: 35236136 PMCID: PMC9274857 DOI: 10.1177/0271678x221083471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebrovascular reactivity (CVR) reflects the CBF change to meet different physiological demands. The reference CVR technique is PET imaging with vasodilators but is inaccessible to most patients. DSC can measure transit time to evaluate patients suspected of stroke, but the use of gadolinium may cause side-effects. Arterial spin labeling (ASL) is a non-invasive MRI technique for CBF measurements. Here, we investigate the effectiveness of ASL with single and multiple post labeling delays (PLD) to replace PET and DSC for CVR and transit time mapping in 26 Moyamoya patients. Images were collected using simultaneous PET/MRI with acetazolamide. CVR, CBF, arterial transit time (ATT), and time-to-maximum (Tmax) were measured in different flow territories. Results showed that CVR was lower in occluded regions than normal regions (by 68 ± 12%, 52 ± 5%, and 56 ± 9%, for PET, single- and multi-PLD PCASL, respectively, all p < 0.05). Multi-PLD PCASL correlated slightly higher with PET (CCC = 0.36 and 0.32 in affected and unaffected territories respectively). Vasodilation caused ATT to reduce by 4.5 ± 3.1% (p < 0.01) in occluded regions. ATT correlated significantly with Tmax (R2 > 0.35, p < 0.01). Therefore, multi-PLD ASL is recommended for CVR studies due to its high agreement with the reference PET technique and the capability of measuring transit time.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Audrey P Fan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.,Department of Neurology, University of California Davis, Davis, CA, USA
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuan-Ho Hospital, New Taipei City.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Yosuke Ishii
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
13
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
14
|
Johnson SE, McKnight CD, Jordan LC, Claassen DO, Waddle S, Lee C, Garza M, Patel NJ, Davis LT, Pruthi S, Trujillo P, Chitale R, Fusco M, Donahue MJ. Choroid plexus perfusion in sickle cell disease and moyamoya vasculopathy: Implications for glymphatic flow. J Cereb Blood Flow Metab 2021; 41:2699-2711. [PMID: 33906512 PMCID: PMC8504961 DOI: 10.1177/0271678x211010731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cerebrospinal fluid (CSF) and interstitial fluid exchange have been shown to increase following pharmacologically-manipulated increases in cerebral arterial pulsatility, consistent with arterial pulsatility improving CSF circulation along perivascular glymphatic pathways. The choroid plexus (CP) complexes produce CSF, and CP activity may provide a centralized indicator of perivascular flow. We tested the primary hypothesis that elevated cortical cerebral blood volume and flow, present in sickle cell disease (SCD), is associated with fractionally-reduced CP perfusion relative to healthy adults, and the supplementary hypothesis that reduced arterial patency, present in moyamoya vasculopathy, is associated with elevated fractional CP perfusion relative to healthy adults. Participants (n = 75) provided informed consent and were scanned using a 3-Tesla arterial-spin-labeling MRI sequence for CP and cerebral gray matter (GM) perfusion quantification. ANOVA was used to calculate differences in CP-to-GM perfusion ratios between groups, and regression analyses applied to evaluate the dependence of the CP-to-GM perfusion ratio on group after co-varying for age and sex. ANOVA yielded significant (p < 0.001) group differences, with CP-to-GM perfusion ratios increasing between SCD (ratio = 0.93 ± 0.28), healthy (ratio = 1.04 ± 0.32), and moyamoya (ratio = 1.29 ± 0.32) participants, which was also consistent with regression analyses. Findings are consistent with CP perfusion being inversely associated with cortical perfusion.
Collapse
Affiliation(s)
- Skylar E Johnson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea Lee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Garza
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rohan Chitale
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Fusco
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Spatial coefficient of variation of arterial spin labeling MRI for detecting hemodynamic disturbances measured with 15O-gas PET in patients with moyamoya disease. Neuroradiology 2021; 64:675-684. [PMID: 34499192 DOI: 10.1007/s00234-021-02802-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to investigate whether the spatial coefficient of variation of arterial spin labeling (ASL-CoV) acquired in clinical settings can be used to estimate the hemodynamic disturbances measured with 15O-gas positron emission tomography (PET), especially an increased oxygen extraction fraction (OEF), in patients with moyamoya disease. METHODS We evaluated 68 adult patients with moyamoya disease who underwent ASL (postlabeling delay (PLD) = 1525 ms and 2525 ms) and PET. Regional values were measured using the middle cerebral artery territorial atlas divided into proximal, middle, and distal regions based on the arterial transit time, and correlations of ASL-CoV with cerebral blood flow, cerebral blood volume, mean transit time, and OEF, as well as the relationship between increased OEF and ASL-CoV, were evaluated. RESULTS Regardless of the choice of region and PLD, ASL-CoV was significantly correlated with PET-measured parameters, including OEF (|ρ|= 0.30-0.80, P < 0.001). Regions with an increased OEF showed a significantly higher ASL-CoV than regions with a nonincreased OEF (P ≤ 0.03) regardless of the choice of region and PLD. The accuracy of identification of an increased OEF was highest when using a PLD of 1525 ms and the middle region (area under the curve = 0.750; using a cutoff value of 31.27, sensitivity = 97.4%, specificity = 41.7%, negative predictive value = 92.6%, and positive predictive value = 67.9%). CONCLUSION ASL-CoV may help identify patients with increased OEF.
Collapse
|
16
|
Fahlström M, Wikström J, Borota L, Enblad P, Lewén A. Variable Temporal Cerebral Blood Flow Response to Acetazolamide in Moyamoya Patients Measured Using Arterial Spin Labeling. Front Neurol 2021; 12:615017. [PMID: 34168605 PMCID: PMC8217767 DOI: 10.3389/fneur.2021.615017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular reserve capacity (CVR), an important predictor of ischaemic events and a prognostic factor for patients with moyamoya disease (MMD), can be assessed by measuring cerebral blood flow (CBF) before and after administration of acetazolamide (ACZ). Often, a single CBF measurement is performed between 5 and 20 min after ACZ injection. Assessment of the temporal response of the vasodilation secondary to ACZ administration using several repeated CBF measurements has not been studied extensively. Furthermore, the high standard deviations of the group-averaged CVRs reported in the current literature indicate a patient-specific dispersion of CVR values over a wide range. This study aimed to assess the temporal response of the CBF and derived CVR during ACZ challenge using arterial spin labeling in patients with MMD. Eleven patients with MMD were included before or after revascularisation surgery. CBF maps were acquired using pseudo-continuous arterial spin labeling before and 5, 15, and 25 min after an intravenous ACZ injection. A vascular territory template was spatially normalized to patient-specific space, including the bilateral anterior, middle, and posterior cerebral arteries. CBF increased significantly post-ACZ injection in all vascular territories and at all time points. Group-averaged CBF and CVR values remained constant throughout the ACZ challenge in most patients. The maximum increase in CBF occurred most frequently at 5 min post-ACZ injection. However, peaks at 15 or 25 min were also present in some patients. In 68% of the affected vascular territories, the maximum increase in CBF did not occur at 15 min. In individual cases, the difference in CVR between different time points was between 1 and 30% points (mean difference 8% points). In conclusion, there is a substantial variation in CVR between different time points after the ACZ challenge in patients with MMD. Thus, there is a risk that the use of a single post-ACZ measurement time point overestimates disease progression, which could have wide implications for decision-making regarding revascularisation surgery and the interpretation of the outcome thereof. Further studies with larger sample sizes using multiple CBF measurements post-ACZ injection in patients with MMD are encouraged.
Collapse
Affiliation(s)
- Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Ljubisa Borota
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Afzali-Hashemi L, Baas KPA, Schrantee A, Coolen BF, van Osch MJP, Spann SM, Nur E, Wood JC, Biemond BJ, Nederveen AJ. Impairment of Cerebrovascular Hemodynamics in Patients With Severe and Milder Forms of Sickle Cell Disease. Front Physiol 2021; 12:645205. [PMID: 33959037 PMCID: PMC8093944 DOI: 10.3389/fphys.2021.645205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
In patients with sickle cell disease (SCD), cerebral blood flow (CBF) is elevated to counteract anemia and maintain oxygen supply to the brain. This may exhaust the vasodilating capacity of the vessels, possibly increasing the risk of silent cerebral infarctions (SCI). To further investigate cerebrovascular hemodynamics in SCD patients, we assessed CBF, arterial transit time (ATT), cerebrovascular reactivity of CBF and ATT (CVR CBF and CVR ATT ) and oxygen delivery in patients with different forms of SCD and matched healthy controls. We analyzed data of 52 patients with severe SCD (HbSS and HbSβ0-thal), 20 patients with mild SCD (HbSC and HbSβ+-thal) and 10 healthy matched controls (HbAA and HbAS). Time-encoded arterial spin labeling (ASL) scans were performed before and after a vasodilatory challenge using acetazolamide (ACZ). To identify predictors of CBF and ATT after vasodilation, regression analyses were performed. Oxygen delivery was calculated and associated with hemoglobin and fetal hemoglobin (HbF) levels. At baseline, severe SCD patients showed significantly higher CBF and lower ATT compared to both the mild SCD patients and healthy controls. As CBF postACZ was linearly related to CBF preACZ , CVR CBF decreased with disease severity. CVR ATT was also significantly affected in severe SCD patients compared to mild SCD patients and healthy controls. Considering all groups, women showed higher CBF postACZ than men (p < 0.01) independent of baseline CBF. Subsequently, post ACZ oxygen delivery was also higher in women (p < 0.05). Baseline, but not post ACZ, GM oxygen delivery increased with HbF levels. Our data showed that baseline CBF and ATT and CVR CBF and CVR ATT are most affected in severe SCD patients and to a lesser extent in patients with milder forms of SCD compared to healthy controls. Cerebrovascular vasoreactivity was mainly determined by baseline CBF, sex and HbF levels. The higher vascular reactivity observed in women could be related to their lower SCI prevalence, which remains an area of future work. Beneficial effects of HbF on oxygen delivery reflect changes in oxygen dissociation affinity from hemoglobin and were limited to baseline conditions suggesting that high HbF levels do not protect the brain upon a hemodynamic challenge, despite its positive effect on hemolysis.
Collapse
Affiliation(s)
- Liza Afzali-Hashemi
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Koen P. A. Baas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location AMC, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Stefan M. Spann
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - John C. Wood
- Division of Cardiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bart J. Biemond
- Department of Hematology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| |
Collapse
|
18
|
Zhao MY, Fan AP, Chen DYT, Sokolska MJ, Guo J, Ishii Y, Shin DD, Khalighi MM, Holley D, Halbert K, Otte A, Williams B, Rostami T, Park JH, Shen B, Zaharchuk G. Cerebrovascular reactivity measurements using simultaneous 15O-water PET and ASL MRI: Impacts of arterial transit time, labeling efficiency, and hematocrit. Neuroimage 2021; 233:117955. [PMID: 33716155 PMCID: PMC8272558 DOI: 10.1016/j.neuroimage.2021.117955] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebrovascular reactivity (CVR) reflects the capacity of the brain to meet changing physiological demands and can predict the risk of cerebrovascular diseases. CVR can be obtained by measuring the change in cerebral blood flow (CBF) during a brain stress test where CBF is altered by a vasodilator such as acetazolamide. Although the gold standard to quantify CBF is PET imaging, the procedure is invasive and inaccessible to most patients. Arterial spin labeling (ASL) is a non-invasive and quantitative MRI method to measure CBF, and a consensus guideline has been published for the clinical application of ASL. Despite single post labeling delay (PLD) pseudo-continuous ASL (PCASL) being the recommended ASL technique for CBF quantification, it is sensitive to variations to the arterial transit time (ATT) and labeling efficiency induced by the vasodilator in CVR studies. Multi-PLD ASL controls for the changes in ATT, and velocity selective ASL is in theory insensitive to both ATT and labeling efficiency. Here we investigate CVR using simultaneous 15O-water PET and ASL MRI data from 19 healthy subjects. CVR and CBF measured by the ASL techniques were compared using PET as the reference technique. The impacts of blood T1 and labeling efficiency on ASL were assessed using individual measurements of hematocrit and flow velocity data of the carotid and vertebral arteries measured using phase-contrast MRI. We found that multi-PLD PCASL is the ASL technique most consistent with PET for CVR quantification (group mean CVR of the whole brain = 42 ± 19% and 40 ± 18% respectively). Single-PLD ASL underestimated the CVR of the whole brain significantly by 15 ± 10% compared with PET (p<0.01, paired t-test). Changes in ATT pre- and post-acetazolamide was the principal factor affecting ASL-based CVR quantification. Variations in labeling efficiency and blood T1 had negligible effects.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, United States.
| | - Audrey P Fan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA; Department of Neurology, University of California Davis, Davis, CA, USA
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuan-Ho Hospital, New Taipei City, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Magdalena J Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospitals, London, United Kingdom
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States
| | - Yosuke Ishii
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Kim Halbert
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Andrea Otte
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Brittney Williams
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Taghi Rostami
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jun-Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
19
|
Liu P, Liu G, Pinho MC, Lin Z, Thomas BP, Rundle M, Park DC, Huang J, Welch BG, Lu H. Cerebrovascular Reactivity Mapping Using Resting-State BOLD Functional MRI in Healthy Adults and Patients with Moyamoya Disease. Radiology 2021; 299:419-425. [PMID: 33687287 DOI: 10.1148/radiol.2021203568] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Cerebrovascular reserve, the potential capacity of brain tissue to receive more blood flow when needed, is a desirable marker in evaluating ischemic risk. However, current measurement methods require acetazolamide injection or hypercapnia challenge, prompting a clinical need for resting-state (RS) blood oxygen level-dependent (BOLD) functional MRI data to measure cerebrovascular reactivity (CVR). Purpose To optimize and evaluate an RS CVR MRI technique and demonstrate its relationship to neurosurgical treatment. Materials and Methods In this HIPAA-compliant study, RS BOLD functional MRI data collected in 170 healthy controls between December 2008 and September 2010 were retrospectively evaluated to identify the optimal frequency range of temporal filtering on the basis of spatial correlation with the reference standard CVR map obtained with CO2 inhalation. Next, the optimized RS method was applied in a new, prospective cohort of 50 participants with Moyamoya disease who underwent imaging between June 2014 and August 2019. Finally, CVR values were compared between brain hemispheres with and brain hemispheres without revascularization surgery by using Mann-Whitney U test. Results A total of 170 healthy controls (mean age ± standard deviation, 51 years ± 20; 105 women) and 100 brain hemispheres of 50 participants with Moyamoya disease (mean age, 41 years ± 12; 43 women) were evaluated. RS CVR maps based on a temporal filtering frequency of [0, 0.1164 Hz] yielded the highest spatial correlation (r = 0.74) with the CO2 inhalation CVR results. In patients with Moyamoya disease, 77 middle cerebral arteries (MCAs) had stenosis. RS CVR in the MCA territory was lower in the group that did not undergo surgery (n = 30) than in the group that underwent surgery (n = 47) (mean, 0.407 relative units [ru] ± 0.208 vs 0.532 ru ± 0.182, respectively; P = .006), which is corroborated with the CO2 inhalation CVR data (mean, 0.242 ru ± 0.273 vs 0.437 ru ± 0.200; P = .003). Conclusion Cerebrovascular reactivity mapping performed by using resting-state blood oxygen level-dependent functional MRI provided a task-free method to measure cerebrovascular reserve and depicted treatment effect of revascularization surgery in patients with Moyamoya disease comparable to that with the reference standard of CO2 inhalation MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wolf and Ware in this issue.
Collapse
Affiliation(s)
- Peiying Liu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Gongkai Liu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Marco C Pinho
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Zixuan Lin
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Binu P Thomas
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Melissa Rundle
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Denise C Park
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Judy Huang
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Babu G Welch
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Hanzhang Lu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| |
Collapse
|
20
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Hwang I, Sohn CH, Jung KH, Yeon EK, Lee JY, Yoo RE, Kang KM, Yun TJ, Choi SH, Kim JH. Cerebrovascular Reservoir and Arterial Transit Time Changes Assessed by Acetazolamide-Challenged Multi-Phase Arterial Spin Labeling Perfusion MRI in Chronic Cerebrovascular Steno-Occlusive Disease. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2021; 82:626-637. [PMID: 36238775 PMCID: PMC9432439 DOI: 10.3348/jksr.2020.0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 11/15/2022]
Abstract
Purpose To explore cerebrovascular reservoir (CVR) and arterial transit time (ATT) changes using acetazolamide-challenged multi-phase arterial spin labeling (MP-ASL) perfusion-weighted MRI in chronic cerebrovascular steno-occlusive disease. Materials and Methods This retrospective study enrolled patients with chronic steno-occlusion who underwent acetazolamide-challenged MP-ASL between June 2019 and October 2020. Cerebral blood flow, CVR, basal ATT, and ATT changes associated with severe stenosis, total occlusion, and chronic infarction lesions were compared. Results There were 32 patients (5 with bilateral steno-occlusion) in our study sample. The CVR was significantly reduced during total occlusion compared with severe stenosis (26.2% ± 28.8% vs. 41.4% ± 34.1%, respectively, p = 0.004). The ATT changes were not significantly different (p = 0.717). The CVR was marginally lower in patients with chronic infarction (29.6% ± 39.1% vs. 38.9% ± 28.7%, respectively, p = 0.076). However, the ATT was less shortened in patients with chronic infarction (−54 ± 135 vs. −117 ± 128 ms, respectively, p = 0.013). Conclusion Acetazolamide-challenged MP-ASL provides an MRI-based CVR evaluation tool for chronic steno-occlusive disease.
Collapse
Affiliation(s)
- Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Keun-Hwa Jung
- Departments of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Eung Koo Yeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji Ye Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji-hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
22
|
Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders. J Magn Reson Imaging 2020; 55:698-719. [PMID: 33314349 DOI: 10.1002/jmri.27438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast magnetic resonance imaging (MRI) technique that enables quantitative evaluation of brain perfusion. To optimize the clinical and research utilization of ASL, radiologists and physicists must understand the technical considerations and age-related variations in normal and disease states. We discuss advanced applications of ASL across the lifespan, with example cases from children and adults covering a wide variety of pathologies. Through literature review and illustrated clinical cases, we highlight the subtleties as well as pitfalls of ASL interpretation. First, we review basic physical principles, techniques, and artifacts. This is followed by a discussion of normal perfusion variants based on age and physiology. The three major categories of perfusion abnormalities-hypoperfusion, hyperperfusion, and mixed patterns-are covered with an emphasis on clinical interpretation and relationship to the disease process. Major etiologies of hypoperfusion include large artery, small artery, and venous disease; other vascular conditions; global hypoxic-ischemic injury; and neurodegeneration. Hyperperfusion is characteristic of vascular malformations and tumors. Mixed perfusion patterns can be seen with epilepsy, migraine, trauma, infection/inflammation, and toxic-metabolic encephalopathy. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sven Bambach
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - P Pearse Morris
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
23
|
Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting 15O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab 2020; 40:2240-2253. [PMID: 31722599 PMCID: PMC7585922 DOI: 10.1177/0271678x19888123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To improve the quality of MRI-based cerebral blood flow (CBF) measurements, a deep convolutional neural network (dCNN) was trained to combine single- and multi-delay arterial spin labeling (ASL) and structural images to predict gold-standard 15O-water PET CBF images obtained on a simultaneous PET/MRI scanner. The dCNN was trained and tested on 64 scans in 16 healthy controls (HC) and 16 cerebrovascular disease patients (PT) with 4-fold cross-validation. Fidelity to the PET CBF images and the effects of bias due to training on different cohorts were examined. The dCNN significantly improved CBF image quality compared with ASL alone (mean ± standard deviation): structural similarity index (0.854 ± 0.036 vs. 0.743 ± 0.045 [single-delay] and 0.732 ± 0.041 [multi-delay], P < 0.0001); normalized root mean squared error (0.209 ± 0.039 vs. 0.326 ± 0.050 [single-delay] and 0.344 ± 0.055 [multi-delay], P < 0.0001). The dCNN also yielded mean CBF with reduced estimation error in both HC and PT (P < 0.001), and demonstrated better correlation with PET. The dCNN trained with the mixed HC and PT cohort performed the best. The results also suggested that models should be trained on cases representative of the target population.
Collapse
Affiliation(s)
- Jia Guo
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Enhao Gong
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,Subtle Medical Inc., Menlo Park, CA, USA
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Quon JL, Kim LH, MacEachern SJ, Maleki M, Steinberg GK, Madhugiri V, Edwards MSB, Grant GA, Yeom KW, Forkert ND. In Reply. Neurosurgery 2020; 87:E436-E437. [DOI: 10.1093/neuros/nyaa265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Quon JL, Kim LH, MacEachern SJ, Maleki M, Steinberg GK, Madhugiri V, Edwards MSB, Grant GA, Yeom KW, Forkert ND. Early Diffusion Magnetic Resonance Imaging Changes in Normal-Appearing Brain in Pediatric Moyamoya Disease. Neurosurgery 2020; 86:530-537. [PMID: 31245817 DOI: 10.1093/neuros/nyz230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Moyamoya disease often leads to ischemic strokes visible on diffusion-weighted imaging (DWI) and T2-weighted magnetic resonance imaging (MRI) with subsequent cognitive impairment. In adults with moyamoya, apparent diffusion coefficient (ADC) is correlated with regions of steal phenomenon and executive dysfunction prior to white matter changes. OBJECTIVE To investigate quantitative global diffusion changes in pediatric moyamoya patients prior to explicit structural ischemic damage. METHODS We retrospectively reviewed children (<20 yr old) with moyamoya disease and syndrome who underwent bypass surgery at our institution. We identified 29 children with normal structural preoperative MRI and without findings of cortical infarction or chronic white matter ischemic changes. DWI datasets were used to calculate ADC maps for each subject as well as for 60 age-matched healthy controls. Using an atlas-based approach, the cerebral white matter, cerebral cortex, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens, and brainstem were segmented in each DWI dataset and used to calculate regional volumes and ADC values. RESULTS Multivariate analysis of covariance using the regional ADC and volume values as dependent variables and age and gender as covariates revealed a significant difference between the groups (P < .001). Post hoc analysis demonstrated significantly elevated ADC values for children with moyamoya in the cerebral cortex, white matter, caudate, putamen, and nucleus accumbens. No significant volume differences were found. CONCLUSION Prior to having bypass surgery, and in the absence of imaging evidence of ischemic stroke, children with moyamoya exhibit cerebral diffusion changes. These findings could reflect microstructural changes stemming from exhaustion of cerebrovascular reserve.
Collapse
Affiliation(s)
- Jennifer L Quon
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Sarah J MacEachern
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Maryam Maleki
- Division of Pediatric Neuroradiology, Department of Radiology, Lucile Packard Children's Hospital, Stanford, California
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Venkatesh Madhugiri
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Michael S B Edwards
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California.,Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford, California
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California.,Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford, California
| | - Kristen W Yeom
- Division of Pediatric Neuroradiology, Department of Radiology, Lucile Packard Children's Hospital, Stanford, California
| | - Nils D Forkert
- Division of Image Science, Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
26
|
Fahlström M, Lewén A, Enblad P, Larsson EM, Wikström J. High Intravascular Signal Arterial Transit Time Artifacts Have Negligible Effects on Cerebral Blood Flow and Cerebrovascular Reserve Capacity Measurement Using Single Postlabel Delay Arterial Spin-Labeling in Patients with Moyamoya Disease. AJNR Am J Neuroradiol 2020; 41:430-436. [PMID: 32115416 DOI: 10.3174/ajnr.a6411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/24/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling-derived CBF values may be affected by arterial transit time artefacts. Thus, our aim was to assess to what extent arterial spin-labeling-derived CBF and cerebrovascular reserve capacity values in major vascular regions are overestimated due to the arterial transit time artifacts in patients with Moyamoya disease. MATERIALS AND METHODS Eight patients with Moyamoya disease were included before or after revascularization surgery. CBF maps were acquired using a 3D pseudocontinuous arterial spin-labeling sequence, before and 5, 15, and 25 minutes after an IV acetazolamide injection and were registered to each patient's 3D-T1-weighted images. Vascular regions were defined by spatial normalization to a Montreal Neurological Institute-based vascular regional template. The arterial transit time artifacts were defined as voxels with high signal intensity corresponding to the right tail of the histogram for a given vascular region, with the cutoff selected by visual inspection. Arterial transit time artifact maps were created and applied as masks to exclude arterial transit time artifacts on CBF maps, to create corrected CBF maps. The cerebrovascular reserve capacity was calculated as CBF after acetazolamide injection relative to CBF at baseline for corrected and uncorrected CBF values, respectively. RESULTS A total of 16 examinations were analyzed. Arterial transit time artifacts were present mostly in the MCA, whereas the posterior cerebral artery was generally unaffected. The largest differences between corrected and uncorrected CBF and cerebrovascular reserve capacity values, reported as patient group average ratio and percentage point difference, respectively, were 0.978 (95% CI, 0.968-0.988) and 1.8 percentage points (95% CI, 0.3-3.2 percentage points). Both were found in the left MCA, 15 and 5 minutes post-acetazolamide injection, respectively. CONCLUSIONS Arterial transit time artifacts have negligible overestimation effects on calculated vascular region-based CBF and cerebrovascular reserve capacity values derived from single-delay 3D pseudocontinuous arterial spin-labeling.
Collapse
Affiliation(s)
- M Fahlström
- From the Departments of Surgical Sciences (M.F., E.-M.L., J.W.) and Neuroscience (A.L., P.E.), Uppsala University, Uppsala, Sweden.
| | - A Lewén
- From the Departments of Surgical Sciences (M.F., E.-M.L., J.W.) and Neuroscience (A.L., P.E.), Uppsala University, Uppsala, Sweden
| | - P Enblad
- From the Departments of Surgical Sciences (M.F., E.-M.L., J.W.) and Neuroscience (A.L., P.E.), Uppsala University, Uppsala, Sweden
| | - E-M Larsson
- From the Departments of Surgical Sciences (M.F., E.-M.L., J.W.) and Neuroscience (A.L., P.E.), Uppsala University, Uppsala, Sweden
| | - J Wikström
- From the Departments of Surgical Sciences (M.F., E.-M.L., J.W.) and Neuroscience (A.L., P.E.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Watchmaker JM, Frederick BD, Fusco MR, Davis LT, Juttukonda MR, Lants SK, Kirshner HS, Donahue MJ. Clinical Use of Cerebrovascular Compliance Imaging to Evaluate Revascularization in Patients With Moyamoya. Neurosurgery 2020. [PMID: 29528447 DOI: 10.1093/neuros/nyx635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Surgical revascularization is often performed in patients with moyamoya, however routine tools for efficacy evaluation are underdeveloped. The gold standard is digital subtraction angiography (DSA); however, DSA requires ionizing radiation and procedural risk, and therefore is suboptimal for routine surveillance of parenchymal health. OBJECTIVE To determine whether parenchymal vascular compliance measures, obtained noninvasively using magnetic resonance imaging (MRI), provide surrogates to revascularization success by comparing measures with DSA before and after surgical revascularization. METHODS Twenty surgical hemispheres with DSA and MRI performed before and after revascularization were evaluated. Cerebrovascular reactivity (CVR)-weighted images were acquired using hypercapnic 3-Tesla gradient echo blood oxygenation level-dependent MRI. Standard and novel analysis algorithms were applied (i) to quantify relative CVR (rCVRRAW), and decompose this response into (ii) relative maximum CVR (rCVRMAX) and (iii) a surrogate measure of the time for parenchyma to respond maximally to the stimulus, CVRDELAY. Measures between time points in patients with good and poor surgical outcomes based on DSA-visualized neoangiogenesis were contrasted (signed-rank test; significance: 2-sided P < .050). RESULTS rCVRRAW increases (P = .010) and CVRDELAY decreases (P = .001) were observed pre- vs post-revascularization in hemispheres with DSA-confirmed collateral formation; no difference was found pre- vs post-revascularization in hemispheres with poor revascularization. No significant change in rCVRMAX post-revascularization was observed in either group, or between any of the MRI measures, in the nonsurgical hemisphere. CONCLUSION Improvement in parenchymal compliance measures post-revascularization, primarily attributed to reductions in microvascular response time, is concurrent with collateral formation visualized on DSA, and may be useful for longitudinal monitoring of surgical outcomes.
Collapse
Affiliation(s)
- Jennifer M Watchmaker
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Blaise deB Frederick
- Brain Imaging Center, McLean Hospital, Belmont, Massachusetts.,Consolidated Department of Psychiatry, Harvard Medical School, Boston Massachusetts
| | - Matthew R Fusco
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meher R Juttukonda
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah K Lants
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Howard S Kirshner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Manus J Donahue
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
Harriott A. Idiopathic Non-atherosclerotic Carotid Artery Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:64. [DOI: 10.1007/s11936-019-0780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Fan AP, Khalighi MM, Guo J, Ishii Y, Rosenberg J, Wardak M, Park JH, Shen B, Holley D, Gandhi H, Haywood T, Singh P, Steinberg GK, Chin FT, Zaharchuk G. Identifying Hypoperfusion in Moyamoya Disease With Arterial Spin Labeling and an [ 15O]-Water Positron Emission Tomography/Magnetic Resonance Imaging Normative Database. Stroke 2019; 50:373-380. [PMID: 30636572 DOI: 10.1161/strokeaha.118.023426] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Noninvasive imaging of brain perfusion has the potential to elucidate pathophysiological mechanisms underlying Moyamoya disease and enable clinical imaging of cerebral blood flow (CBF) to select revascularization therapies for patients. We used hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) technology to characterize the distribution of hypoperfusion in Moyamoya disease and its relationship to vessel stenosis severity, through comparisons with a normative perfusion database of healthy controls. Methods- To image CBF, we acquired [15O]-water PET as a reference and simultaneously acquired arterial spin labeling (ASL) MRI scans in 20 Moyamoya patients and 15 age-matched, healthy controls on a PET/MRI scanner. The ASL MRI scans included a standard single-delay ASL scan with postlabel delay of 2.0 s and a multidelay scan with 5 postlabel delays (0.7-3.0s) to estimate and account for arterial transit time in CBF quantification. The percent volume of hypoperfusion in patients (determined as the fifth percentile of CBF values in the healthy control database) was the outcome measure in a logistic regression model that included stenosis grade and location. Results- Logistic regression showed that anterior ( P<0.0001) and middle cerebral artery territory regions ( P=0.003) in Moyamoya patients were susceptible to hypoperfusion, whereas posterior regions were not. Cortical regions supplied by arteries with stenosis on MR angiography showed more hypoperfusion than normal arteries ( P=0.001), but the extent of hypoperfusion was not different between mild-moderate versus severe stenosis. Multidelay ASL did not perform differently from [15O]-water PET in detecting perfusion abnormalities, but standard ASL overestimated the extent of hypoperfusion in patients ( P=0.003). Conclusions- This simultaneous PET/MRI study supports the use of multidelay ASL MRI in clinical evaluation of Moyamoya disease in settings where nuclear medicine imaging is not available and application of a normative perfusion database to automatically identify abnormal CBF in patients.
Collapse
Affiliation(s)
- Audrey P Fan
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | | | - Jia Guo
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA.,Department of Bioengineering, University of California Riverside (J.G.)
| | - Yosuke Ishii
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA.,Department of Neurosurgery, Tokyo Medical and Dental University, Japan (Y.I.)
| | - Jarrett Rosenberg
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Mirwais Wardak
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Jun Hyung Park
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Bin Shen
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Dawn Holley
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Harsh Gandhi
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Tom Haywood
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Prachi Singh
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | | | - Frederick T Chin
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| | - Greg Zaharchuk
- From the Department of Radiology (A.P.F., J.G., Y.I., J.R., M.W., J.H.P., B.S., D.H., H.G., T.H., P.S., F.T.C., G.Z.), Stanford University, CA
| |
Collapse
|
30
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
31
|
Ishii Y, Thamm T, Guo J, Khalighi MM, Wardak M, Holley D, Gandhi H, Park JH, Shen B, Steinberg GK, Chin FT, Zaharchuk G, Fan AP. Simultaneous phase-contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. J Magn Reson Imaging 2019; 51:183-194. [PMID: 31044459 DOI: 10.1002/jmri.26773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND H2 15 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H2 15 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE Observational. SUBJECTS Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES 3T/2D cardiac-gated phase-contrast MRI and H2 15 O-PET. ASSESSMENT PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H2 15 O-PET in future studies. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Thoralf Thamm
- Department of Radiology, Stanford University, Stanford, California, USA.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jia Guo
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Mirwais Wardak
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Harsh Gandhi
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Audrey Peiwen Fan
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Quon JL, Kim LH, Lober RM, Maleki M, Steinberg GK, Yeom KW. Arterial spin-labeling cerebral perfusion changes after revascularization surgery in pediatric moyamoya disease and syndrome. J Neurosurg Pediatr 2019; 23:486-492. [PMID: 30738390 DOI: 10.3171/2018.11.peds18498] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Moyamoya disease is a dynamic cerebrovascular condition that often requires vascular surveillance. Arterial spin labeling (ASL) is an MR perfusion method that is increasingly used for stroke and other various neurovascular pathologies. Unlike perfusion-weighted MRI, ASL uses endogenous water molecules for signal and therefore obviates gadolinium use; and provides direct, not relative, quantitative cerebral blood flow (CBF) measures. Presently, the potential role of ASL for evaluating postoperative pediatric moyamoya patients is relatively unexplored. This study investigated the role for ASL in evaluating cerebral hemodynamic changes in children who underwent revascularization surgery. METHODS This retrospective study examined 15 consecutive pediatric patients with moyamoya disease (n = 7) or moyamoya syndrome (n = 8) presenting between 2010 and 2014 who underwent revascularization and in whom 3T ASL was performed pre- and postoperatively. Postoperative MRI at least 3 months after revascularization procedure was used for analysis. Quantitative CBF in various vascular territories was interrogated: anterior, middle, and posterior cerebral arteries, and basal ganglia supplied by the lenticulostriate collaterals, resulting in evaluation of 20 brain regions. RESULTS After revascularization, CBF in the high middle cerebral artery territory significantly increased (p = 0.0059), accompanied by a decrease in CBF to the ipsilateral lenticulostriate-supplied basal ganglia (p = 0.0053). No perfusion changes occurred in the remaining cerebral vascular territories after surgery. CONCLUSIONS ASL-based quantitative CBF showed improved cerebral perfusion to the middle cerebral artery territory after revascularization in children with both moyamoya syndrome and disease. Reduced perfusion to the basal ganglia might reflect pruning of the lenticulostriate collaterals, potentially from effects of revascularization. ASL can quantitatively evaluate hemodynamic changes in children with moyamoya after revascularization, and it may be a useful adjunct to routine clinical MRI surveillance.
Collapse
Affiliation(s)
- Jennifer L Quon
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Lily H Kim
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Robert M Lober
- 2Department of Neurosurgery, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Maryam Maleki
- 3John Wayne Cancer Institute, Santa Monica, California; and
| | - Gary K Steinberg
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Kristen W Yeom
- 4Division of Pediatric Neuroradiology, Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
33
|
Juttukonda MR, Donahue MJ. Neuroimaging of vascular reserve in patients with cerebrovascular diseases. Neuroimage 2019; 187:192-208. [PMID: 29031532 PMCID: PMC5897191 DOI: 10.1016/j.neuroimage.2017.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular reactivity, defined broadly as the ability of brain parenchyma to adjust cerebral blood flow in response to altered metabolic demand or a vasoactive stimulus, is being measured with increasing frequency and may have a use for portending new or recurrent stroke risk in patients with cerebrovascular disease. The purpose of this review is to outline (i) the physiological basis of variations in cerebrovascular reactivity, (ii) available approaches for measuring cerebrovascular reactivity in research and clinical settings, and (iii) clinically-relevant cerebrovascular reactivity findings in the context of patients with cerebrovascular disease, including atherosclerotic arterial steno-occlusion, non-atherosclerotic arterial steno-occlusion, anemia, and aging. Literature references summarizing safety considerations for these procedures and future directions for standardizing protocols and post-processing procedures across centers are presented in the specific context of major unmet needs in the setting of cerebrovascular disease.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
34
|
Zhang H, Zheng L, Feng L. Epidemiology, diagnosis and treatment of moyamoya disease. Exp Ther Med 2019; 17:1977-1984. [PMID: 30867689 DOI: 10.3892/etm.2019.7198] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/26/2018] [Indexed: 11/06/2022] Open
Abstract
Moyamoya disease (MMD) is a type of chronic cerebrovascular occlusion disease, which frequently occurs in East Asian populations, including pediatric and adult patients, and may lead to ischemic or hemorrhagic stroke, headache, epilepsy or transient ischemic attack. To date, the underlying mechanisms of MMD have remained to be fully elucidated, but certain studies have indicated that genetic factors may be an important component of its development. Cerebral angiography is the best approach for diagnosing MMD. However, with technological advances, non-invasive techniques are increasingly used to accurately evaluate MMD. MMD is commonly treated via surgery, and an increasing number of patients are benefitting from the intra- and extra-cranial revascularization. The present article provides a comprehensive review of MMD on the basis of previous research.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| | - Lijian Zheng
- Department of Neurosurgery, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| | - Lei Feng
- Department of Neurosurgery, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| |
Collapse
|
35
|
Ibaraki M, Nakamura K, Toyoshima H, Takahashi K, Matsubara K, Umetsu A, Pfeuffer J, Kuribayashi H, Kinoshita T. Spatial coefficient of variation in pseudo-continuous arterial spin labeling cerebral blood flow images as a hemodynamic measure for cerebrovascular steno-occlusive disease: A comparative 15O positron emission tomography study. J Cereb Blood Flow Metab 2019; 39:173-181. [PMID: 29869933 PMCID: PMC6311663 DOI: 10.1177/0271678x18781667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudo-continuous arterial spin labeling (pCASL) is a completely non-invasive method of cerebral perfusion measurement. However, cerebral blood flow (CBF) quantification is hampered by arterial transit artifacts characterized by bright vascular signals surrounded by decreased signals in tissue regions, which commonly appear in patients with reduced cerebral perfusion pressure. The spatial coefficient of variation (CoV) of pCASL CBF images has been proposed as an alternative region-of-interest (ROI)-based hemodynamic measure to predict prolonged arterial transit time (ATT). This retrospective study investigates the utility of spatial CoV by comparison with 15O positron emission tomography (PET). For patients with cerebrovascular steno-occlusive disease ( n = 17), spatial CoV was positively correlated with ATT independently measured by pulsed arterial spin labeling ( r = 0.597, p < 0.001), confirming its role as an ATT-like hemodynamic measure. Comparisons with 15O PET demonstrated that spatial CoV was positively correlated with vascular mean transit time ( r = 0.587, p < 0.001) and negatively correlated with both resting CBF ( r = -0.541, p = 0.001) and CBF response to hypercapnia ( r = -0.373, p = 0.030). ROI-based spatial CoV calculated from single time-point pCASL can potentially detect subtle perfusion abnormalities in clinical settings.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | - Kazuhiro Nakamura
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | - Hideto Toyoshima
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | - Kazuhiro Takahashi
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | - Keisuke Matsubara
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | - Atsushi Umetsu
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | | | | | - Toshibumi Kinoshita
- 1 Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| |
Collapse
|
36
|
Multi-phase 3D arterial spin labeling brain MRI in assessing cerebral blood perfusion and arterial transit times in children at 3T. Clin Imaging 2018; 53:210-220. [PMID: 30439588 DOI: 10.1016/j.clinimag.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND 3D pseudocontinuous arterial spin labeling (pCASL) with a single post-labeling delay time is commonly used to measure cerebral blood flow (CBF). Multi-phase pCASL has been developed to simultaneously estimate CBF and arterial transit time (ATT). PURPOSE To evaluate the clinical feasibility of multi-phase 3D pCASL in pediatric patients, and to compare the estimation of ATT and CBF via linear weighted-delay and traditional non-linear iterative curve-fitting routines. MATERIAL & METHODS Forty patients (average age: 8.6 y, 5 d-22.4 y) referred for routine brain MRI underwent additional 5-7 min of pCASL scans at 3T using 5 PLDs between 300 and 2300 ms. Data were post-processed by two algorithms for estimating CBF and ATT. Average CBF and ATT values were computed for vascular territories including the anterior, middle and posterior cerebral arteries as well as regions based on the Alberta Stroke Program Early CT Score template. Pearson correlation coefficients and linear regression were used for statistical analysis. The clinical value of multi-phase CASL was evaluated by a neuroradiologist based on asymmetric CBF and ATT maps in patients. RESULTS All pCASL scans were successfully completed, generating diagnostic results. CBF computed from weighted-delay and curve-fitting methods agreed strongly, with Pearson correlation coefficients ranging from 0.97-0.99 across the measured regions (p < 0.05). Correlation coefficients for ATT ranged from 0.87-0.96 (p < 0.05). CBF and ATT maps were found to add valuable information to clinical diagnosis in 17 of 40 pediatric patients. CONCLUSION Our preliminary results demonstrate the feasibility and potential clinical utility of multi-phase pCASL for simultaneous CBF and ATT quantification in pediatric patients.
Collapse
|
37
|
Mugikura S, Fujimura M, Takahashi S, Takase K. Further Implications of Off-Label Use of Acetazolamide in the Management of Moyamoya Disease in Japan. Radiology 2017; 284:301-303. [DOI: 10.1148/radiol.2017170252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Miki Fujimura
- Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | |
Collapse
|