1
|
Fondi M, Pini F, Riccardi C, Gemo P, Brilli M. A new selective force driving metabolic gene clustering. mSystems 2024:e0096024. [PMID: 39465945 DOI: 10.1128/msystems.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
The evolution of operons has puzzled evolutionary biologists since their discovery, and many theories exist to explain their emergence, spreading, and evolutionary conservation. In this work, we suggest that DNA replication introduces a selective force for the clustering of functionally related genes on chromosomes, which we interpret as a preliminary and necessary step in operon formation. Our reasoning starts from the observation that DNA replication produces copy number variations of genomic regions, and we propose that such changes perturb metabolism. The formalization of this effect by exploiting concepts from metabolic control analysis suggests that the minimization of such perturbations during evolution could be achieved through the formation of gene clusters and operons. We support our theoretical derivations with simulations based on a realistic metabolic network, and we confirm that present-day genomes have a degree of compaction of functionally related genes, which is significantly correlated to the proposed perturbations introduced by replication. The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their first discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis. IMPORTANCE The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology, University of Florence, Florence, Italy
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari Aldo Moro, Bari, Italy
| | | | - Pietro Gemo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
3
|
Del Duca S, Semenzato G, Esposito A, Liò P, Fani R. The Operon as a Conundrum of Gene Dynamics and Biochemical Constraints: What We Have Learned from Histidine Biosynthesis. Genes (Basel) 2023; 14:genes14040949. [PMID: 37107707 PMCID: PMC10138114 DOI: 10.3390/genes14040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Operons represent one of the leading strategies of gene organization in prokaryotes, having a crucial influence on the regulation of gene expression and on bacterial chromosome organization. However, there is no consensus yet on why, how, and when operons are formed and conserved, and many different theories have been proposed. Histidine biosynthesis is a highly studied metabolic pathway, and many of the models suggested to explain operons origin and evolution can be applied to the histidine pathway, making this route an attractive model for the study of operon evolution. Indeed, the organization of his genes in operons can be due to a progressive clustering of biosynthetic genes during evolution, coupled with a horizontal transfer of these gene clusters. The necessity of physical interactions among the His enzymes could also have had a role in favoring gene closeness, of particular importance in extreme environmental conditions. In addition, the presence in this pathway of paralogous genes, heterodimeric enzymes and complex regulatory networks also support other operon evolution hypotheses. It is possible that histidine biosynthesis, and in general all bacterial operons, may result from a mixture of several models, being shaped by different forces and mechanisms during evolution.
Collapse
Affiliation(s)
- Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Kinateder T, Drexler L, Straub K, Merkl R, Sterner R. Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis. Protein Sci 2023; 32:e4536. [PMID: 36502290 PMCID: PMC9798254 DOI: 10.1002/pro.4536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non-homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ-Proteobacteria (HisB-N). It has been argued that HisB-N and its closest homologue d-glycero-d-manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d-glycero-d-manno-heptose-1,7-bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB-N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB-N sequences revealed that HisB-Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ- to γ-Proteobacteria where it evolved to the modern HisB-N.
Collapse
Affiliation(s)
- Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Lukas Drexler
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Kristina Straub
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| |
Collapse
|
5
|
Ashniev GA, Sernova NV, Shevkoplias AE, Rodionov ID, Rodionova IA, Vitreschak AG, Gelfand MS, Rodionov DA. Evolution of transcriptional regulation of histidine metabolism in Gram-positive bacteria. BMC Genomics 2022; 23:558. [PMID: 36008760 PMCID: PMC9413887 DOI: 10.1186/s12864-022-08796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The histidine metabolism and transport (his) genes are controlled by a variety of RNA-dependent regulatory systems among diverse taxonomic groups of bacteria including T-box riboswitches in Firmicutes and Actinobacteria and RNA attenuators in Proteobacteria. Using a comparative genomic approach, we previously identified a novel DNA-binding transcription factor (named HisR) that controls the histidine metabolism genes in diverse Gram-positive bacteria from the Firmicutes phylum. RESULTS Here we report the identification of HisR-binding sites within the regulatory regions of the histidine metabolism and transport genes in 395 genomes representing the Bacilli, Clostridia, Negativicutes, and Tissierellia classes of Firmicutes, as well as in 97 other HisR-encoding genomes from the Actinobacteria, Proteobacteria, and Synergistetes phyla. HisR belongs to the TrpR family of transcription factors, and their predicted DNA binding motifs have a similar 20-bp palindromic structure but distinct lineage-specific consensus sequences. The predicted HisR-binding motif was validated in vitro using DNA binding assays with purified protein from the human gut bacterium Ruminococcus gnavus. To fill a knowledge gap in the regulation of histidine metabolism genes in Firmicutes genomes that lack a hisR repressor gene, we systematically searched their upstream regions for potential RNA regulatory elements. As result, we identified 158 T-box riboswitches preceding the histidine biosynthesis and/or transport genes in 129 Firmicutes genomes. Finally, novel candidate RNA attenuators were identified upstream of the histidine biosynthesis operons in six species from the Bacillus cereus group, as well as in five Eubacteriales and six Erysipelotrichales species. CONCLUSIONS The obtained distribution of the HisR transcription factor and two RNA-mediated regulatory mechanisms for histidine metabolism genes across over 600 species of Firmicutes is discussed from functional and evolutionary points of view.
Collapse
Affiliation(s)
- German A Ashniev
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Natalia V Sernova
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Aleksei E Shevkoplias
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - Ivan D Rodionov
- University of California San Diego, La Jolla, San Diego, CA, USA
| | | | - Alexey G Vitreschak
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Mikhail S Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, CA, USA.
| |
Collapse
|
6
|
Kanai Y, Tsuru S, Furusawa C. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1673-1686. [PMID: 35066585 PMCID: PMC8860574 DOI: 10.1093/nar/gkac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Operons are a hallmark of the genomic and regulatory architecture of prokaryotes. However, the mechanism by which two genes placed far apart gradually come close and form operons remains to be elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion sequences can facilitate the formation of operons by consecutive insertion–deletion–excision reactions. This mechanism barely leaves traces of insertion sequences and thus difficult to detect in nature. In this study, as a proof-of-concept, we reproducibly demonstrated operon formation in the laboratory. The insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that, supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding IS3, closed a 2.7 kb gap between a pair of genes, and formed new operons. This study shows how insertion sequences can facilitate the rapid formation of operons through locally increasing the structural mutation rates and highlights how coevolution with mobile elements may shape the organization of prokaryotic genomes and gene regulation.
Collapse
Affiliation(s)
- Yuki Kanai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saburo Tsuru
- To whom correspondence should be addressed. Tel: +81 3 5841 4229; Fax: +81 3 5841 4229;
| | | |
Collapse
|
7
|
Del Duca S, Riccardi C, Vassallo A, Fontana G, Castronovo LM, Chioccioli S, Fani R. The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization. Microorganisms 2021; 9:microorganisms9071439. [PMID: 34361875 PMCID: PMC8305728 DOI: 10.3390/microorganisms9071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how his genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of his genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of his gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of his genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of his genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the his gene structure in this superphylum.
Collapse
|
8
|
Abstract
Syntenies are genomic segments of consecutive genes identified by a certain conservation in gene content and order. The notion of conservation may vary from one definition to another, the more constrained requiring identical gene contents and gene orders, while more relaxed definitions just require a certain similarity in gene content, and not necessarily in the same order. Regardless of the way they are identified, the goal is to characterize homologous genomic regions, i.e., regions deriving from a common ancestral region, reflecting a certain gene co-evolution that can enlighten important functional properties. In addition of being able to identify them, it is also necessary to infer the evolutionary history that has led from the ancestral segment to the extant ones. In this field, most algorithmic studies address the problem of inferring rearrangement scenarios explaining the disruption in gene order between segments with the same gene content, some of them extending the evolutionary model to gene insertion and deletion. However, syntenies also evolve through other events modifying their content in genes, such as duplications, losses or horizontal gene transfers, i.e., the movement of genes from one species to another. Although the reconciliation approach between a gene tree and a species tree addresses the problem of inferring such events for single-gene families, little effort has been dedicated to the generalization to segmental events and to syntenies. This paper reviews some of the main algorithmic methods for inferring ancestral syntenies and focus on those integrating both gene orders and gene trees.
Collapse
|
9
|
Nguyen HN, Markin A, Friedberg I, Eulenstein O. Finding orthologous gene blocks in bacteria: the computational hardness of the problem and novel methods to address it. Bioinformatics 2021; 36:i668-i674. [PMID: 33381825 PMCID: PMC7773486 DOI: 10.1093/bioinformatics/btaa794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Motivation The evolution of complexity is one of the most fascinating and challenging problems in modern biology, and tracing the evolution of complex traits is an open problem. In bacteria, operons and gene blocks provide a model of tractable evolutionary complexity at the genomic level. Gene blocks are structures of co-located genes with related functions, and operons are gene blocks whose genes are co-transcribed on a single mRNA molecule. The genes in operons and gene blocks typically work together in the same system or molecular complex. Previously, we proposed a method that explains the evolution of orthologous gene blocks (orthoblocks) as a combination of a small set of events that take place in vertical evolution from common ancestors. A heuristic method was proposed to solve this problem. However, no study was done to identify the complexity of the problem. Results Here, we establish that finding the homologous gene block problem is NP-hard and APX-hard. We have developed a greedy algorithm that runs in polynomial time and guarantees an O(lnn) approximation. In addition, we formalize our problem as an integer linear program problem and solve it using the PuLP package and the standard CPLEX algorithm. Our exploration of several candidate operons reveals that our new method provides more optimal results than the results from the heuristic approach, and is significantly faster. Availability and implementation The software and data accompanying this paper are available under the GPLv3 and CC0 license respectively on: https://github.com/nguyenngochuy91/Relevant-Operon.
Collapse
Affiliation(s)
- Huy N Nguyen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.,Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Alexey Markin
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Oliver Eulenstein
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Seitzer P, Yao AI, Cisneros A, Facciotti MT. The Exploration of Novel Regulatory Relationships Drives Haloarchaeal Operon-Like Structural Dynamics over Short Evolutionary Distances. Microorganisms 2020; 8:E1900. [PMID: 33266086 PMCID: PMC7760734 DOI: 10.3390/microorganisms8121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Operons are a dominant feature of bacterial and archaeal genome organization. Numerous investigations have related aspects of operon structure to operon function, making operons exemplars for studies aimed at deciphering Nature's design principles for genomic organization at a local scale. We consider this understanding to be both fundamentally important and ultimately useful in the de novo design of increasingly complex synthetic circuits. Here we analyze the evolution of the genomic context of operon-like structures in a set of 76 sequenced and annotated species of halophilic archaea. The phylogenetic depth and breadth of this dataset allows insight into changes in operon-like structures over shorter evolutionary time scales than have been studied in previous cross-species analysis of operon evolution. Our analysis, implemented in the updated software package JContextExplorer finds that operon-like context as measured by changes in structure frequently differs from a sequence divergence model of whole-species phylogeny and that changes seem to be dominated by the exploration of novel regulatory relationships.
Collapse
Affiliation(s)
- Phillip Seitzer
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Andrew I. Yao
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Ariana Cisneros
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
| | - Marc T. Facciotti
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Nguyen HN, Jain A, Eulenstein O, Friedberg I. Tracing the ancestry of operons in bacteria. Bioinformatics 2020; 35:2998-3004. [PMID: 30689726 DOI: 10.1093/bioinformatics/btz053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Complexity is a fundamental attribute of life. Complex systems are made of parts that together perform functions that a single component, or subsets of components, cannot. Examples of complex molecular systems include protein structures such as the F1Fo-ATPase, the ribosome, or the flagellar motor: each one of these structures requires most or all of its components to function properly. Given the ubiquity of complex systems in the biosphere, understanding the evolution of complexity is central to biology. At the molecular level, operons are classic examples of a complex system. An operon's genes are co-transcribed under the control of a single promoter to a polycistronic mRNA molecule, and the operon's gene products often form molecular complexes or metabolic pathways. With the large number of complete bacterial genomes available, we now have the opportunity to explore the evolution of these complex entities, by identifying possible intermediate states of operons. RESULTS In this work, we developed a maximum parsimony algorithm to reconstruct ancestral operon states, and show a simple vertical evolution model of how operons may evolve from the individual component genes. We describe several ancestral states that are plausible functional intermediate forms leading to the full operon. We also offer Reconstruction of Ancestral Gene blocks Using Events or ROAGUE as a software tool for those interested in exploring gene block and operon evolution. AVAILABILITY AND IMPLEMENTATION The software accompanying this paper is available under GPLv3 license on: https://github.com/nguyenngochuy91/Ancestral-Blocks-Reconstruction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huy N Nguyen
- Department of Veterinary Microbiology and Preventive Medicine, lowa State University, Ames, IA, USA.,Department of Computer Science, Iowa State University, Ames, IA, USA
| | - Ashish Jain
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Oliver Eulenstein
- Department of Computer Science, Iowa State University, Ames, IA, USA.,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, lowa State University, Ames, IA, USA.,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
13
|
Ravindran A, Sunderrajan S, Pennathur G. Phylogenetic Studies on the Prodigiosin Biosynthetic Operon. Curr Microbiol 2019; 76:597-606. [DOI: 10.1007/s00284-019-01665-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
|
14
|
Effector Gene xopAE of Xanthomonas euvesicatoria 85-10 Is Part of an Operon and Encodes an E3 Ubiquitin Ligase. J Bacteriol 2018; 200:JB.00104-18. [PMID: 29784884 DOI: 10.1128/jb.00104-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023] Open
Abstract
The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles (AEal) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) comprise a single open reading frame (ORF) (xopAE), while in 5 alleles, including AEal 37 of the X. euvesicatoria 85-10 strain, a frameshift splits the locus into two ORFs (hpaF and a truncated xopAE). To test whether the second ORF of AEal 37 (xopAE85-10 ) is translated, we examined expression of yellow fluorescent protein (YFP) fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity to an internal ribosome binding site upstream of a rare ATT start codon in the xopAE85-10 ORF but was severely reduced when these elements were abolished. In agreement with the notion that xopAE85-10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system, and translocation was dependent on its upstream ORF, hpaF Homology modeling predicted that XopAE85-10 contains an E3 ligase XL box domain at the C terminus, and in vitro assays demonstrated that this domain displays monoubiquitination activity. Remarkably, the XL box was essential for XopAE85-10 to inhibit pathogen-associated molecular pattern (PAMP)-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT and encodes a novel XL box E3 ligase.IMPORTANCEXanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into the evolution, translocation, and biochemical function of the XopAE type III secreted effector, contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as a core effector of seven Xanthomonas species and elucidate the evolution of the Xanthomonas euvesicatoriaxopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multidomain gene into two ORFs that conserved the original domain function. Analysis of xopAE85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE85-10 is an XL box E3 ubiquitin ligase and provide insights into the structure and function of this effector family.
Collapse
|
15
|
Muñoz-Villagrán CM, Mendez KN, Cornejo F, Figueroa M, Undabarrena A, Morales EH, Arenas-Salinas M, Arenas FA, Castro-Nallar E, Vásquez CC. Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ 2018; 6:e4402. [PMID: 29479501 PMCID: PMC5822837 DOI: 10.7717/peerj.4402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI’s RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.
Collapse
Affiliation(s)
- Claudia Melissa Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencia, Universidad Santo Tomas Sede Santiago, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Fabian Cornejo
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Maximiliano Figueroa
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Eduardo Hugo Morales
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Felipe Alejandro Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Christian Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
16
|
Liu Y, Li Y, Wang X. Molecular evolution of acetohydroxyacid synthase in bacteria. Microbiologyopen 2017; 6. [PMID: 28782269 PMCID: PMC5727371 DOI: 10.1002/mbo3.524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) is the key enzyme in the biosynthetic pathways of branched chain amino acids in bacteria. Since it does not exist in animal and plant cells, AHAS is an attractive target for developing antimicrobials and herbicides. In some bacteria, there is a single copy of AHAS, while in others there are multiple copies. Therefore, it is necessary to investigate the origin and evolutionary pathway of various AHASs in bacteria. In this study, all the available protein sequences of AHAS in bacteria were investigated, and an evolutionary model of AHAS in bacteria is proposed, according to gene structure, organization and phylogeny. Multiple copies of AHAS in some bacteria might be evolved from the single copy of AHAS, the ancestor. Gene duplication, domain deletion and horizontal gene transfer might occur during the evolution of this enzyme. The results show the biological significance of AHAS, help to understand the functions of various AHASs in bacteria, and would be useful for developing industrial production strains of branched chain amino acids or novel antimicrobials.
Collapse
Affiliation(s)
- Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep 2017; 7:46484. [PMID: 28429731 PMCID: PMC5399355 DOI: 10.1038/srep46484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/21/2017] [Indexed: 11/08/2022] Open
Abstract
Although clustering of genes from the same metabolic pathway is a widespread phenomenon, the evolution of the polysaccharide biosynthetic gene cluster remains poorly understood. To determine the evolution of this pathway, we identified a scattered production pathway of the polysaccharide sanxan by Sphingomonas sanxanigenens NX02, and compared the distribution of genes between sphingan-producing and other Sphingomonadaceae strains. This allowed us to determine how the scattered sanxan pathway developed, and how the polysaccharide gene cluster evolved. Our findings suggested that the evolution of microbial polysaccharide biosynthesis gene clusters is a lengthy cyclic process comprising cluster 1 → scatter → cluster 2. The sanxan biosynthetic pathway proved the existence of a dispersive process. We also report the complete genome sequence of NX02, in which we identified many unstable genetic elements and powerful secretion systems. Furthermore, nine enzymes for the formation of activated precursors, four glycosyltransferases, four acyltransferases, and four polymerization and export proteins were identified. These genes were scattered in the NX02 genome, and the positive regulator SpnA of sphingans synthesis could not regulate sanxan production. Finally, we concluded that the evolution of the sanxan pathway was independent. NX02 evolved naturally as a polysaccharide producing strain over a long-time evolution involving gene acquisitions and adaptive mutations.
Collapse
|
18
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
19
|
Pearce SL, Oakeshott JG, Pandey G. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3 (BETHESDA, MD.) 2015; 5:1081-94. [PMID: 25850427 PMCID: PMC4478539 DOI: 10.1534/g3.114.015933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed.
Collapse
Affiliation(s)
| | | | - Gunjan Pandey
- CSIRO Ecosystem Sciences, Acton, ACT-2601, Australia
| |
Collapse
|
20
|
Ream DC, Bankapur AR, Friedberg I. An event-driven approach for studying gene block evolution in bacteria. ACTA ACUST UNITED AC 2015; 31:2075-83. [PMID: 25717195 PMCID: PMC4481853 DOI: 10.1093/bioinformatics/btv128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 11/24/2022]
Abstract
Motivation: Gene blocks are genes co-located on the chromosome. In many cases, gene blocks are conserved between bacterial species, sometimes as operons, when genes are co-transcribed. The conservation is rarely absolute: gene loss, gain, duplication, block splitting and block fusion are frequently observed. An open question in bacterial molecular evolution is that of the formation and breakup of gene blocks, for which several models have been proposed. These models, however, are not generally applicable to all types of gene blocks, and consequently cannot be used to broadly compare and study gene block evolution. To address this problem, we introduce an event-based method for tracking gene block evolution in bacteria. Results: We show here that the evolution of gene blocks in proteobacteria can be described by a small set of events. Those include the insertion of genes into, or the splitting of genes out of a gene block, gene loss, and gene duplication. We show how the event-based method of gene block evolution allows us to determine the evolutionary rateand may be used to trace the ancestral states of their formation. We conclude that the event-based method can be used to help us understand the formation of these important bacterial genomic structures. Availability and implementation: The software is available under GPLv3 license on http://github.com/reamdc1/gene_block_evolution.git. Supplementary online material: http://iddo-friedberg.net/operon-evolution Contact:i.friedberg@miamioh.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David C Ream
- Department of Microbiology, Miami University, Oxford, OH, USA and Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| | - Asma R Bankapur
- Department of Microbiology, Miami University, Oxford, OH, USA and Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, OH, USA and Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA Department of Microbiology, Miami University, Oxford, OH, USA and Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
21
|
Brilli M, Liò P, Lacroix V, Sagot MF. Short and long-term genome stability analysis of prokaryotic genomes. BMC Genomics 2013; 14:309. [PMID: 23651581 PMCID: PMC3683328 DOI: 10.1186/1471-2164-14-309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 04/11/2013] [Indexed: 11/21/2022] Open
Abstract
Background Gene organization dynamics is actively studied because it provides useful evolutionary information, makes functional annotation easier and often enables to characterize pathogens. There is therefore a strong interest in understanding the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome organization: on one hand translocations and recombinations change the relative position of genes shared by two genomes (i.e. the backbone gene order); on the other, insertions and deletions leave the backbone gene order unchanged but they alter the gene neighborhoods by breaking the syntenic regions. A complete picture about genome organization evolution therefore requires to account for both kinds of events. Results We developed an approach where we model chromosomes as graphs on which we compute different stability estimators; we consider genome rearrangements as well as the effect of gene insertions and deletions. In a first part of the paper, we fit a measure of backbone gene order conservation (hereinafter called backbone stability) against phylogenetic distance for over 3000 genome comparisons, improving existing models for the divergence in time of backbone stability. Intra- and inter-specific comparisons were treated separately to focus on different time-scales. The use of multiple genomes of a same species allowed to identify genomes with diverging gene order with respect to their conspecific. The inter-species analysis indicates that pathogens are more often unstable with respect to non-pathogens. In a second part of the text, we show that in pathogens, gene content dynamics (insertions and deletions) have a much more dramatic effect on genome organization stability than backbone rearrangements. Conclusion In this work, we studied genome organization divergence taking into account the contribution of both genome order rearrangements and genome content dynamics. By studying species with multiple sequenced genomes available, we were able to explore genome organization stability at different time-scales and to find significant differences for pathogen and non-pathogen species. The output of our framework also allows to identify the conserved gene clusters and/or partial occurrences thereof, making possible to explore how gene clusters assembled during evolution.
Collapse
|
22
|
Norris V, Merieau A. Plasmids as scribbling pads for operon formation and propagation. Res Microbiol 2013; 164:779-87. [PMID: 23587635 DOI: 10.1016/j.resmic.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
Many bacterial genes are in operons and the process whereby operons are formed is therefore fundamental. To help elucidate this process, we propose in the Scribbling Pad hypothesis that bacteria have been constantly using plasmids for genetic experimentation and, in particular, for the construction of operons. This hypothesis simultaneously solves the problems of the creation of operons and the way operons are propagated. We cite results in the literature to support the hypothesis and make experimental predictions to test it.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, Department of Biology, University of Rouen, 76821 Mont Saint Aignan cedex, France.
| | | |
Collapse
|
23
|
Geddes BA, Hausner G, Oresnik IJ. Phylogenetic analysis of erythritol catabolic loci within the Rhizobiales and proteobacteria. BMC Microbiol 2013; 13:46. [PMID: 23432981 PMCID: PMC3599248 DOI: 10.1186/1471-2180-13-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to use erythritol as a sole carbon source is not universal among the Rhizobiaceae. Based on the relatedness to the catabolic genes in Brucella it has been suggested that the eryABCD operon may have been horizontally transferred into Rhizobium. During work characterizing a locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti, we became interested in the differences between the erythritol loci of S. meliloti and R. leguminosarum. Utilizing the Ortholog Neighborhood Viewer from the DOE Joint Genome Institute database it appeared that loci for erythritol and polyol utilization had distinct arrangements that suggested these loci may have undergone genetic rearrangements. RESULTS A data set was established of genetic loci containing erythritol/polyol orthologs for 19 different proteobacterial species. These loci were analyzed for genetic content and arrangement of genes associated with erythritol, adonitol and L-arabitol catabolism. Phylogenetic trees were constructed for core erythritol catabolic genes and contrasted with the species phylogeny. Additionally, phylogenetic trees were constructed for genes that showed differences in arrangement among the putative erythritol loci in these species. CONCLUSIONS Three distinct erythritol/polyol loci arrangements have been identified that reflect metabolic need or specialization. Comparison of the phylogenetic trees of core erythritol catabolic genes with species phylogeny provides evidence that is consistent with these loci having been horizontally transferred from the alpha-proteobacteria into both the beta and gamma-proteobacteria. ABC transporters within these loci adopt 2 unique genetic arrangements, and although biological data suggests they are functional erythritol transporters, phylogenetic analysis suggests they may not be orthologs and probably should be considered analogs. Finally, evidence for the presence of paralogs, and xenologs of erythritol catabolic genes in some of the genomes included in the analysis is provided.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
| | | | | |
Collapse
|
24
|
Ray JCJ, Igoshin OA. Interplay of gene expression noise and ultrasensitive dynamics affects bacterial operon organization. PLoS Comput Biol 2012; 8:e1002672. [PMID: 22956903 PMCID: PMC3431296 DOI: 10.1371/journal.pcbi.1002672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022] Open
Abstract
Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-minimizing operon organization compared with randomized controls. Among constitutively expressed physically interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes. In some species, most notably bacteria, chromosomal genes are arranged into clusters called operons. In operons, the process of transcription is physically coupled: a single pass of the RNA polymerase enzyme reading that region of the chromosome simultaneously produces messenger RNA encoding multiple proteins. So far, we do not have a satisfying explanation for what evolutionary forces have maintained operons on bacterial chromosomes. We hypothesized that different types of interactions between operon-coded proteins affect how strongly operons are selected for between two genes. The proposed mechanism for this effect is that operons correlate gene expression noise, changing how it manifests in the post-translational network depending on the type of protein interaction. Mathematical models demonstrate that operons reduce noise for some types of interactions but not others. We found that operon-dependent noise reduction has an underlying dependence on surprisingly high sensitivity of the network to the ratio of proteins from each gene. Databases of genetic information show that E. coli has operons more frequently than random if operons reduce noise for the type of interaction various gene pairs have, but not otherwise. Our study thus provides an example of how the architecture of post-translational networks affects bacterial evolution.
Collapse
Affiliation(s)
- J. Christian J Ray
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
List F, Sterner R, Wilmanns M. Related (βα)8-barrel proteins in histidine and tryptophan biosynthesis: a paradigm to study enzyme evolution. Chembiochem 2011; 12:1487-94. [PMID: 21656890 DOI: 10.1002/cbic.201100082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Felix List
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | |
Collapse
|
26
|
Chu HY, Wegel E, Osbourn A. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:66-79. [PMID: 21443624 DOI: 10.1111/j.1365-313x.2011.04503.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
27
|
Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens. Appl Environ Microbiol 2010; 76:3575-89. [PMID: 20363778 DOI: 10.1128/aem.03136-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, the connection between iron homeostasis and the osmostress response in the halophile Chromohalobacter salexigens was investigated. A decrease in the requirement for both iron and histidine and a lower level of siderophore synthesis were observed at high salinity, and these findings were correlated with a lower protein content in salt-stressed cells. A six-gene operon (cfuABC-fur-hisI-orf6 operon) located downstream of the ectABC ectoine synthesis genes was characterized. A fur strain (in which the ferric iron uptake regulator Fur was affected) had the Mn resistance phenotype typical of fur mutants, was deregulated for siderophore production, and displayed delayed growth under iron limitation conditions, indicating that fur encodes a functional iron regulator. hisI was essential for histidine synthesis, which in turn was necessary for siderophore production. Fur boxes were found in the promoters of the cfuABC-fur-hisI-orf6 and ectABC operons, suggesting that Fur directly interacts with DNA in these regions. Fur mediated the osmoregulated inhibition of cfuABC-fur-hisI-orf6 operon expression by iron and functioned as a positive regulator of the ectABC genes under high-salinity conditions, linking the salt stress response with iron homeostasis. Excess iron led to a higher cytoplasmic hydroxyectoine content, suggesting that hydroxyectoine protects against the oxidative stress caused by iron better than ectoine. This study provides the first evidence of involvement of the iron homeostasis regulator Fur as part of the complex circuit that controls the response to osmotic stress in halophilic bacteria.
Collapse
|
28
|
Papaleo MC, Russo E, Fondi M, Emiliani G, Frandi A, Brilli M, Pastorelli R, Fani R. Structural, evolutionary and genetic analysis of the histidine biosynthetic “core” in the genus Burkholderia. Gene 2009; 448:16-28. [DOI: 10.1016/j.gene.2009.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/25/2009] [Accepted: 08/05/2009] [Indexed: 11/28/2022]
|
29
|
The evolution of histidine biosynthesis in archaea: insights into the his genes structure and organization in LUCA. J Mol Evol 2009; 69:512-26. [PMID: 19888544 DOI: 10.1007/s00239-009-9286-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
The available sequences of genes encoding the enzymes associated with histidine biosynthesis suggest that this is an ancient metabolic pathway that was assembled prior to the diversification of Bacteria, Archaea, and Eucarya. Paralogous duplication, gene elongation, and fusion events of several different his genes have played a major role in shaping this biosynthetic route. We have analyzed the structure and organization of histidine biosynthetic genes from 55 complete archaeal genomes and combined it with phylogenetic inference in order to investigate the mechanisms responsible for the assembly of the his pathway and the origin of his operons. We show that a wide variety of different organizations of his genes exists in Archaea and that some his genes or entire his (sub-)operons have been likely transferred horizontally between Archaea and Bacteria. However, we show that, in most Archaea, his genes are monofunctional (except for hisD) and scattered throughout the genome, suggesting that his operons might have been assembled multiple times during evolution and that in some cases they are the result of recent evolutionary events. An evolutionary model for the structure and organization of his genes in LUCA is proposed.
Collapse
|
30
|
Fondi M, Emiliani G, Fani R. Origin and evolution of operons and metabolic pathways. Res Microbiol 2009; 160:502-12. [DOI: 10.1016/j.resmic.2009.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
|
31
|
Organization and analysis of the histidine biosynthetic genes fromCorynebacterium glutamicum. Genes Genomics 2009. [DOI: 10.1007/bf03191204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
33
|
Almagro-Moreno S, Boyd EF. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 2009; 9:118. [PMID: 19470179 PMCID: PMC2693436 DOI: 10.1186/1471-2148-9-118] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 05/26/2009] [Indexed: 11/11/2022] Open
Abstract
Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA), epimerase (NanE), and kinase (NanK), necessary for the catabolism of sialic acid (the Nan cluster), are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body. The Nan region shows a mosaic evolution with NanA from Bacteroidetes, Vibrio and Yersinia branching closely together with NanA from eukaryotes.
Collapse
|
34
|
Stochasticity in protein levels drives colinearity of gene order in metabolic operons of Escherichia coli. PLoS Biol 2009; 7:e1000115. [PMID: 19492041 PMCID: PMC2684527 DOI: 10.1371/journal.pbio.1000115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
Gene order in some bacterial metabolic operons reflects ordering in the metabolic pathway. That this is true uniquely for operons expressed at low levels highlights the selective importance of fluctuations in protein levels. In bacterial genomes, gene order is not random. This is most evident when looking at operons, these often encoding enzymes involved in the same metabolic pathway or proteins from the same complex. Is gene order within operons nonrandom, however, and if so why? We examine this issue using metabolic operons as a case study. Using the metabolic network of Escherichia coli, we define the temporal order of reactions. We find a pronounced trend for genes to appear in operons in the same order as they are needed in metabolism (colinearity). This is paradoxical as, at steady state, enzymes abundance should be independent of order within the operon. We consider three extensions of the steady-state model that could potentially account for colinearity: (1) increased productivity associated with higher expression levels of the most 5′ genes, (2) a faster metabolic processing immediately after up-regulation, and (3) metabolic stalling owing to stochastic protein loss. We establish the validity of these hypotheses by employing deterministic and stochastic models of enzyme kinetics. The stochastic stalling hypothesis correctly and uniquely predicts that colinearity is more pronounced both for lowly expressed operons and for genes that are not physically adjacent. The alternative models fail to find any support. These results support the view that stochasticity is a pervasive problem to a cell and that gene order evolution can be driven by the selective consequences of fluctuations in protein levels. In bacteria, different enzymes from the same metabolic pathway are often encoded within one transcriptional unit, an operon. There is also, we show, a tendency for the enzymes that are needed earlier in the pathway to feature earlier in the operon, so-called colinearity. Why might this be? We test three ideas, one old and two new. The prior suggestion supposes that proteins of genes early in operons will be at a higher dose. Although some operons are like this, in general, we see no relationship of protein dose with colinearity. We also find no evidence that operons that frequently need up-regulation are any more likely to be colinear. A third model is, however, supported. If an operon is rarely expressed, then all the proteins for this part of metabolism can be lost by chance. Rebooting such metabolism is fastest if the operon is colinear. This model predicts, correctly, that colinearity should be more frequent in operons that are expressed at a low level. This result is important for at least two reasons. First, it supports the view that chance events (such as protein loss) within cells are important on a day-to-day basis. Second, it challenges the supposition that natural selection will be weakest on lowly expressed genes. Where chance events are concerned, natural selection can be strong on genes expressed at a low level.
Collapse
|
35
|
Martin FJ, McInerney JO. Recurring cluster and operon assembly for Phenylacetate degradation genes. BMC Evol Biol 2009; 9:36. [PMID: 19208251 PMCID: PMC2653477 DOI: 10.1186/1471-2148-9-36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 02/10/2009] [Indexed: 12/03/2022] Open
Abstract
Background A large number of theories have been advanced to explain why genes involved in the same biochemical processes are often co-located in genomes. Most of these theories have been dismissed because empirical data do not match the expectations of the models. In this work we test the hypothesis that cluster formation is most likely due to a selective pressure to gradually co-localise protein products and that operon formation is not an inevitable conclusion of the process. Results We have selected an exemplar well-characterised biochemical pathway, the phenylacetate degradation pathway, and we show that its complex history is only compatible with a model where a selective advantage accrues from moving genes closer together. This selective pressure is likely to be reasonably weak and only twice in our dataset of 102 genomes do we see independent formation of a complete cluster containing all the catabolic genes in the pathway. Additionally, de novo clustering of genes clearly occurs repeatedly, even though recombination should result in the random dispersal of such genes in their respective genomes. Interspecies gene transfer has frequently replaced in situ copies of genes resulting in clusters that have similar content but very different evolutionary histories. Conclusion Our model for cluster formation in prokaryotes, therefore, consists of a two-stage selection process. The first stage is selection to move genes closer together, either because of macromolecular crowding, chromatin relaxation or transcriptional regulation pressure. This proximity opportunity sets up a separate selection for co-transcription.
Collapse
Affiliation(s)
- Fergal J Martin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | | |
Collapse
|
36
|
Fani R, Fondi M. Origin and evolution of metabolic pathways. Phys Life Rev 2009; 6:23-52. [PMID: 20416849 DOI: 10.1016/j.plrev.2008.12.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.
Collapse
Affiliation(s)
- Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Evolutionary Biology, Via Romana 17-19, University of Florence, Italy
| | | |
Collapse
|
37
|
Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities. Microbiol Mol Biol Rev 2008; 72:13-53, table of contents. [PMID: 18322033 DOI: 10.1128/mmbr.00026-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated.
Collapse
|
38
|
Fani R, Brilli M, Fondi M, Lió P. The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case. BMC Evol Biol 2007; 7 Suppl 2:S4. [PMID: 17767732 PMCID: PMC1963479 DOI: 10.1186/1471-2148-7-s2-s4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histidine biosynthesis is one of the best characterized anabolic pathways. There is a large body of genetic and biochemical information available, including operon structure, gene expression, and increasingly larger sequence databases. For over forty years this pathway has been the subject of extensive studies, mainly in Escherichia coli and Salmonella enterica, in both of which details of histidine biosynthesis appear to be identical. In these two enterobacteria the pathway is unbranched, includes a number of unusual reactions, and consists of nine intermediates; his genes are arranged in a compact operon (hisGDC [NB]HAF [IE]), with three of them (hisNB, hisD and hisIE) coding for bifunctional enzymes. We performed a detailed analysis of his gene fusions in available genomes to understand the role of gene fusions in shaping this pathway. RESULTS The analysis of HisA structures revealed that several gene elongation events are at the root of this protein family: internal duplication have been identified by structural superposition of the modules composing the TIM-barrel protein. Several his gene fusions happened in distinct taxonomic lineages; hisNB originated within gamma-proteobacteria and after its appearance it was transferred to Campylobacter species (epsilon-proteobacteria) and to some Bacteria belonging to the CFB group. The transfer involved the entire his operon. The hisIE gene fusion was found in several taxonomic lineages and our results suggest that it probably happened several times in distinct lineages. Gene fusions involving hisIE and hisD genes (HIS4) and hisH and hisF genes (HIS7) took place in the Eukarya domain; the latter has been transferred to some delta-proteobacteria. CONCLUSION Gene duplication is the most widely known mechanism responsible for the origin and evolution of metabolic pathways; however, several other mechanisms might concur in the process of pathway assembly and gene fusion appeared to be one of the most important and common.
Collapse
Affiliation(s)
- Renato Fani
- Dept. of Animal Biology and Genetics, via Romana 17, 50125 Florence, Italy
| | - Matteo Brilli
- Dept. of Animal Biology and Genetics, via Romana 17, 50125 Florence, Italy
| | - Marco Fondi
- Dept. of Animal Biology and Genetics, via Romana 17, 50125 Florence, Italy
| | - Pietro Lió
- Computer Laboratory, University of Cambridge, CB3 0FD, Cambridge, UK
| |
Collapse
|
39
|
Juliao PC, Marrs CF, Xie J, Gilsdorf JR. Histidine auxotrophy in commensal and disease-causing nontypeable Haemophilus influenzae. J Bacteriol 2007; 189:4994-5001. [PMID: 17496076 PMCID: PMC1951860 DOI: 10.1128/jb.00146-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Histidine biosynthesis is one of the best studied metabolic pathways in bacteria. Although this pathway is thought to be highly conserved within and between bacterial species, a previous study identified a genetic region within the histidine operon (his) of nontypeable strains of Haemophilus influenzae (NTHI) that was more prevalent among otitis media strains than among throat commensal NTHI strains. In the present study, we further characterized this region and showed that genes in the complete his operon (hisG, -D, -C, -NB, -H, -A, -F, and -IE) are >99% conserved among four fully sequenced NTHI strains, are present in the same location in these four genomes, and are situated in the same gene order. Using PCR and dot blot hybridization, we determined that the his operon was significantly more prevalent in otitis media NTHI strains (106/121; 87.7%) than in throat strains (74/137; 54%) (prevalence ratio, 1.62; P<0.0001), suggesting a possible role in middle ear survival and/or acute otitis media. NTHI strains lacking the his operon showed attenuated growth in histidine-restricted media, confirming them as his-negative auxotrophs. Our results suggest that the ability to make histidine is an important factor in bacterial growth and survival in the middle ear, where nutrients such as histidine may be found in limited amounts. Those isolates lacking the histidine pathway were still able to survive well in the throat, which suggests that histidine is readily available in the throat environment.
Collapse
Affiliation(s)
- Patricia C Juliao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
40
|
Fondi M, Brilli M, Fani R. On the origin and evolution of biosynthetic pathways: integrating microarray data with structure and organization of the Common Pathway genes. BMC Bioinformatics 2007; 8 Suppl 1:S12. [PMID: 17430556 PMCID: PMC1885841 DOI: 10.1186/1471-2105-8-s1-s12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lysine, threonine, and methionine biosynthetic pathways share the three initial enzymatic steps, which are referred to as the Common Pathway (CP). In Escherichia coli three different aspartokinases (AKI, AKII, AKIII, the products of thrA, metL and lysC, respectively) can perform the first step of the CP. Moreover, two of them (AKI and AKII) are bifunctional, carrying also homoserine dehydrogenasic activity (hom product). The second step of the CP is catalyzed by a single aspartate semialdehyde dehydrogenase (ASDH, the product of asd). Thus, in the CP of E. coli while a single copy of ASDH performs the same reaction for three different metabolic routes, three different AKs perfom a unique step. Why and how such a situation did emerge and maintain? How is it correlated to the different regulatory mechanisms acting on these genes? The aim of this work was to trace the evolutionary pathway leading to the extant scenario in proteobacteria. RESULTS The analysis of the structure, organization, phylogeny, and distribution of ask and hom genes revealed that the presence of multiple copies of these genes and their fusion events are restricted to the gamma-subdivision of proteobacteria. This allowed us to depict a model to explain the evolution of ask and hom according to which the fused genes are the outcome of a cascade of gene duplication and fusion events that can be traced in the ancestor of gamma-proteobacteria. Moreover, the appearance of fused genes paralleled the assembly of operons of different sizes, suggesting a strong correlation between the structure and organization of these genes. A statistic analysis of microarray data retrieved from experiments carried out on E. coli and Pseudomonas aeruginosa was also performed. CONCLUSION The integration of data concerning gene structure, organization, phylogeny, distribution, and microarray experiments allowed us to depict a model for the evolution of ask and hom genes in proteobacteria and to suggest a biological significance for the extant scenario.
Collapse
Affiliation(s)
- Marco Fondi
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy
| | - Matteo Brilli
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy
| | - Renato Fani
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy
| |
Collapse
|
41
|
Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PSG, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hügler M, Kerfeld CA, Klotz MG, Kong WW, Land M, Lapidus A, Larimer FW, Longo DL, Lucas S, Malfatti SA, Massey SE, Martin DD, McCuddin Z, Meyer F, Moore JL, Ocampo LH, Paul JH, Paulsen IT, Reep DK, Ren Q, Ross RL, Sato PY, Thomas P, Tinkham LE, Zeruth GT. The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 2006; 4:e383. [PMID: 17105352 PMCID: PMC1635747 DOI: 10.1371/journal.pbio.0040383] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 09/14/2006] [Indexed: 12/25/2022] Open
Abstract
Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.
Collapse
Affiliation(s)
- Kathleen M Scott
- Biology Department, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fani R, Brilli M, Liò P. Inference from proteobacterial operons shows piecewise organization: a reply to Price et al. J Mol Evol 2006; 63:577-80. [PMID: 16955235 DOI: 10.1007/s00239-006-0074-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
|
43
|
Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 2006; 6:165-85. [PMID: 16773396 DOI: 10.1007/s10142-006-0027-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/24/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information.
Collapse
Affiliation(s)
- Tim T Binnewies
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Price MN, Alm EJ, Arkin AP. The histidine operon is ancient. J Mol Evol 2006; 62:807-8. [PMID: 16612542 DOI: 10.1007/s00239-005-0191-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 12/22/2005] [Indexed: 10/24/2022]
|