1
|
de Miranda GS, Kulkarni SS, Tagliatela J, Baker CM, Giupponi APL, Labarque FM, Gavish-Regev E, Rix MG, Carvalho LS, Fusari LM, Harvey MS, Wood HM, Sharma PP. The Rediscovery of a Relict Unlocks the First Global Phylogeny of Whip Spiders (Amblypygi). Syst Biol 2024; 73:495-505. [PMID: 38733598 DOI: 10.1093/sysbio/syae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/20/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.
Collapse
Affiliation(s)
- Gustavo S de Miranda
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Siddharth S Kulkarni
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Jéssica Tagliatela
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Alessandro P L Giupponi
- Lab. de Carrapatos e outros Vetores Ápteros LAC - CAVAISC; IOC - FIOCRUZ, Rio de Janeiro, Brazil
| | - Facundo M Labarque
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Leonardo S Carvalho
- Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, 64808-605 Floriano, PI, Brazil
| | - Lívia Maria Fusari
- Departamento de Hidrobiologia, Universidade Federal de São Carlos, campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Mark S Harvey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
2
|
Zhang Q, Lu YW, Liu XY, Li Y, Gao WN, Sun JT, Hong XY, Shao R, Xue XF. Phylogenomics resolves the higher-level phylogeny of herbivorous eriophyoid mites (Acariformes: Eriophyoidea). BMC Biol 2024; 22:70. [PMID: 38519936 PMCID: PMC10960459 DOI: 10.1186/s12915-024-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yi-Wen Lu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin-Yu Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ye Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei-Nan Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
3
|
Harvey MS, Burger MAA, Abrams KM, Finston TL, Huey JA, Perina G. The systematics of the pseudoscorpion genus Indohya (Pseudoscorpiones: Hyidae) in Australia. Zootaxa 2023; 5342:1-119. [PMID: 38221391 DOI: 10.11646/zootaxa.5342.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 01/16/2024]
Abstract
The pseudoscorpion genus Indohya Beier, 1974 is known to occur in three Gondwanan fragments around the Indian Oceansouthern India, Madagascar and north-western Australiasuggesting that the genus had evolved prior to the breakup of Gondwana and was present on each landmass as they rifted apart during the Mesozoic. The Australian fauna is the most diverse, with nine species previously described from Cape Range and the Kimberley region of north-western Australia. The present study documents the genus Indohya in Australia using a combination of morphology and DNA sequence data. We found a total of 36 species, including 27 new species. The majority of the Pilbara fauna consist of blind troglobites collected from subterranean ecosystems, with an additional three eyed species from epigean habitats. The new species consist of one from Cape Range (I. anastomosa Harvey & Burger, n. sp.), 21 from the Pilbara (I. adlardi Harvey & Burger, n. sp., I. alexanderi Harvey & Burger, n. sp., I. aphana Harvey & Burger, n. sp., I. aquila Harvey & Burger, n. sp., I. arcana Harvey & Burger, n. sp., I. arnoldstrongi Harvey & Burger, n. sp., I. boltoni Harvey & Burger, n. sp., I. cardo Harvey & Burger, n. sp., I. catherineae Harvey & Burger, n. sp., I. cockingi Harvey & Burger, n. sp., I. cribbi Harvey & Burger, n. sp., I. draconis Harvey & Burger, n. sp., I. furtiva Harvey & Burger, n. sp., I. incomperta Harvey & Burger, n. sp., I. jessicae Harvey & Burger, n. sp., I. lynbeazlyeae Harvey & Burger, n. sp., I. morganstrongi Harvey & Burger, n. sp., I. rixi Harvey & Burger, n. sp., I. sagmata Harvey & Burger, n. sp., I. scanloni Harvey & Burger, n. sp. and I. silenda Harvey & Burger, n. sp.) and five from the Kimberley (I. currani Harvey & Burger, n. sp., I. finitima Harvey & Burger, n. sp., I. julianneae Harvey & Burger, n. sp., I. karenae Harvey & Burger, n. sp. and I. sachsei Harvey & Burger, n. sp.). The study is augmented with sequence data from 29 species of Indohya, including all of the 24 species recorded from the Pilbara and Cape Range, and five of the 12 known Kimberley species. Seven clades recovered during the molecular analysis are only represented by nymphs, but we used COI sequence data to diagnose these species in the absence of adult morphological data.
Collapse
Affiliation(s)
- Mark S Harvey
- Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Adjunct; School of Biological Sciences; University of Western Australia; Crawley; Western Australia 6009; Australia.
| | - Mieke A A Burger
- Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia.
| | - Kym M Abrams
- Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Present address: Department of Water and Environmental Regulation; Locked Bag 10; Joondalup DC; Western Australia 6919; Australia.
| | - Terrie L Finston
- Adjunct; School of Biological Sciences; University of Western Australia; Crawley; Western Australia 6009; Australia; Helix Molecular Solutions Pty Ltd; PO Box 155; Leederville; Western Australia 6153; Australia.
| | - Joel A Huey
- Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Adjunct; School of Biological Sciences; University of Western Australia; Crawley; Western Australia 6009; Australia; Present address: Biologic Environmental Survey; East Perth; Western Australia 6004; Australia.
| | - Giulia Perina
- Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Present address: Biologic Environmental Survey; East Perth; Western Australia 6004; Australia; Subterranean Research and Groundwater Ecology (SuRGE) Group; Trace and Environmental DNA (TrEnD) Laboratory; School of Molecular and Life Sciences; Curtin University; Perth; Western Australia 6102; Australia.
| |
Collapse
|
4
|
Sabroux R, Corbari L, Hassanin A. Phylogeny of sea spiders (Arthropoda: Pycnogonida) inferred from mitochondrial genome and 18S ribosomal RNA gene sequences. Mol Phylogenet Evol 2023; 182:107726. [PMID: 36754337 DOI: 10.1016/j.ympev.2023.107726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The phylogeny of sea spiders has been debated for more than a century. Despite several molecular studies in the last twenty years, interfamilial relationships remain uncertain. In the present study, relationships within Pycnogonida are examined in the light of a new dataset composed of 160 mitochondrial genomes (including 152 new sequences) and 130 18S rRNA gene sequences (including 120 new sequences), from 141 sea spider morphospecies representing 26 genera and 9 families. Node congruence between mitochondrial and nuclear markers was analysed to identify the most reliable relationships. We also reanalysed a multilocus dataset previously published and showed that the high percentages of missing data make phylogenetic conclusions difficult and uncertain. Our results support the monophyly of most families currently accepted, except Callipallenidae and Nymphonidae, the monophyly of the superfamilies Ammotheoidea (Ammotheidae + Pallenopsidae), Nymphonoidea (Nymphonidae + Callipallenidae), Phoxichilidioidea (Phoxichilidiidae + Endeidae) and Colossendeoidea (Colossendeidae + Pycnogonidae + Rhynchothoracidae), and the sister-group relationship between Ammotheoidea and Phoxichilidioidea. We discuss the morphological evolution of sea spiders, identifying homoplastic characters and possible synapomorphies. We also discuss the palaeontological and phylogenetic arguments supporting either a radiation of sea spiders prior to Jurassic or a progressive diversification from Ordovician or Cambrian.
Collapse
Affiliation(s)
- Romain Sabroux
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Laure Corbari
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Alexandre Hassanin
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, 57 rue Cuvier, CP 51, 75005 Paris, France.
| |
Collapse
|
5
|
Christophoryová J, Krajčovičová K, Šťáhlavský F, Španiel S, Opatova V. Integrative Taxonomy Approach Reveals Cryptic Diversity within the Phoretic Pseudoscorpion Genus Lamprochernes (Pseudoscorpiones: Chernetidae). INSECTS 2023; 14:122. [PMID: 36835691 PMCID: PMC9964657 DOI: 10.3390/insects14020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Pseudoscorpions represent an ancient, but homogeneous group of arachnids. The genus Lamprochernes comprises several morphologically similar species with wide and overlapping distributions. We implemented an integrative approach combining molecular barcoding (cox1), with cytogenetic and morphological analyses in order to assess species boundaries in European Lamprochernes populations. The results suggest ancient origins of Lamprochernes species accompanied by morphological stasis within the genus. Our integrative approach delimited three nominal Lamprochernes species and one cryptic lineage Lamprochernes abditus sp. nov. Despite its Oligocene origin, L. abditus sp. nov. can be distinguished from its closest relative only by molecular and cytogenetic differences, or alternatively, by a complex multivariate morphometric analysis involving other Lamprochernes species. The population structure and common haplotype sharing across geographically distant populations in most Lamprochernes species suggest that a phoretic manner of dispersal is efficient in this group.
Collapse
Affiliation(s)
- Jana Christophoryová
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Katarína Krajčovičová
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - František Šťáhlavský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Praha, Czech Republic
| | - Stanislav Španiel
- Institute of Botany, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 23 Bratislava, Slovakia
| | - Vera Opatova
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Praha, Czech Republic
| |
Collapse
|
6
|
Ban XC, Shao ZK, Wu LJ, Sun JT, Xue XF. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics 2022; 38:452-464. [PMID: 35349189 DOI: 10.1111/cla.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 12/11/2022] Open
Abstract
Arachnida is an exceptionally diverse class in the Arthropoda, consisting of 20 orders and playing crucial roles in the terrestrial ecosystems. However, their interordinal relationships have been debated for over a century. Rearranged or highly rearranged mitochondrial genomes (mitogenomes) were consistently found in this class, but their various extent in different lineages and efficiency for resolving arachnid phylogenies are unclear. Here, we reconstructed phylogenetic trees using mitogenome sequences of 290 arachnid species to decipher interordinal relationships as well as diversification through time. Our results recovered monophyly of ten orders (i.e. Amblypygi, Araneae, Ixodida, Mesostigmata, Opiliones, Pseudoscorpiones, Ricinulei, Sarcoptiformes, Scorpiones and Solifugae), while rejecting monophyly of the Trombidiformes due to the unstable position of the Eriophyoidea. The monophyly of Acari (subclass) was rejected, possibly due to the long-branch attraction of the Pseudoscorpiones. The monophyly of Arachnida was further rejected because the Xiphosura nested within arachnid orders with unstable positions. Mitogenomes that are highly rearranged in mites but less rearranged or conserved in the remaining lineages point to their exceptional diversification in mite orders; however, shared derived mitochondrial (mt) gene clusters were found within superfamilies rather than interorders, confusing phylogenetic signals in arachnid interordinal relationships. Molecular dating results show that arachnid orders have ancient origins, ranging from the Ordovician to the Carboniferous, yet have significantly diversified since the Cretaceous in orders Araneae, Mesostigmata, Sarcoptiformes, and Trombidiformes. By summarizing previously resolved key positions of some orders, we propose a plausible arachnid tree of life. Our results underline a more precise framework for interordinal phylogeny in the Arachnida and provide new insights into their ancient evolution.
Collapse
Affiliation(s)
- Xin-Chao Ban
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi-Kai Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li-Jun Wu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
7
|
How Phylogenetics Can Elucidate the Chemical Ecology of Poison Frogs and Their Arthropod Prey. J Chem Ecol 2022; 48:384-400. [PMID: 35352271 DOI: 10.1007/s10886-022-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 10/18/2022]
Abstract
The sequestration by neotropical poison frogs (Dendrobatidae) of an amazing array of defensive alkaloids from oribatid soil mites has motivated an exciting research theme in chemical ecology, but the details of mite-to-frog transfer remain hidden. To address this, McGugan et al. (2016, Journal of Chemical Ecology 42:537-551) used the little devil poison frog (Oophaga sylvatica) and attempted to simultaneously characterize the prey mite alkaloids, the predator skin alkaloids, and identify the mites using DNA sequences. Heethoff et al. (2016, Journal of Chemical Ecology 42:841-844) argued that none of the mite families to which McGugan et al. allocated the prey was thought to possess alkaloids. Heethoff et al. concluded from analyses including additional sequences that the mite species were unlikely to be close relatives of the defended mites. We re-examine this by applying more appropriate phylogenetic methods to broader and denser taxonomic samples of mite sequences using the same gene (CO1). We found, over trees based on CO1 datasets, only weak support (except in one case) for branches critical to connecting the evolution of alkaloid sequestration with the phylogeny of mites. In contrast, a well-supported analysis of the 18S ribosomal gene suggests at least two independent evolutionary origins of oribatid alkaloids. We point out impediments in the promising research agenda, namely a paucity of genetic, chemical, and taxonomic information, and suggest how phylogenetics can elucidate at a broader level the evolution of chemical defense in prey arthropods, sequestration by predators, and the impact of alkaloids on higher-order trophic interactions.
Collapse
|
8
|
Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Ontano AZ, Setton EVW, Arango CP, Gavish-Regev E, Harvey MS, Wheeler WC, Hormiga G, Giribet G, Sharma PP. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 2022; 39:6522129. [PMID: 35137183 PMCID: PMC8845124 DOI: 10.1093/molbev/msac021] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Tauana J Cunha
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Claudia P Arango
- Office for Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western, Crawley, Western Australia, 6009, Australia; Australia
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Muster C, Spelda J, Rulik B, Thormann J, von der Mark L, Astrin JJ. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol Evol 2021; 11:13815-13829. [PMID: 34707820 PMCID: PMC8525104 DOI: 10.1002/ece3.8088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding is particularly useful for identification and species delimitation in taxa with conserved morphology. Pseudoscorpions are arachnids with high prevalence of morphological crypsis. Here, we present the first comprehensive DNA barcode library for Central European Pseudoscorpiones, covering 70% of the German pseudoscorpion fauna (35 out of 50 species). For 21 species, we provide the first publicly available COI barcodes, including the rare Anthrenochernes stellae Lohmander, a species protected by the FFH Habitats Directive. The pattern of intraspecific COI variation and interspecific COI variation (i.e., presence of a barcode gap) generally allows application of the DNA barcoding approach, but revision of current taxonomic designations is indicated in several taxa. Sequences of 36 morphospecies were assigned to 74 BINs (barcode index numbers). This unusually high number of intraspecific BINs can be explained by the presence of overlooked cryptic species and by the accelerated substitution rate in the mitochondrial genome of pseudoscorpions, as known from previous studies. Therefore, BINs may not be an appropriate proxy for species numbers in pseudoscorpions, while partitions built with the ASAP algorithm (Assemble Species by Automatic Partitioning) correspond well with putative species. ASAP delineated 51 taxonomic units from our data, an increase of 42% compared with the present taxonomy. The Neobisium carcionoides complex, currently considered a polymorphic species, represents an outstanding example of cryptic diversity: 154 sequences from our dataset were allocated to 23 BINs and 12 ASAP units.
Collapse
Affiliation(s)
- Christoph Muster
- Zoologisches Institut und MuseumUniversität GreifswaldGreifswaldGermany
| | - Jörg Spelda
- SNSB‐Zoologische Staatssammlung MünchenMunichGermany
| | - Björn Rulik
- Zoologisches Forschungsmuseum A. KoenigZFMKBonnGermany
| | - Jana Thormann
- Zoologisches Forschungsmuseum A. KoenigZFMKBonnGermany
| | | | | |
Collapse
|
10
|
Young MR, deWaard JR, Hebert PDN. DNA barcodes enable higher taxonomic assignments in the Acari. Sci Rep 2021; 11:15922. [PMID: 34354125 PMCID: PMC8342613 DOI: 10.1038/s41598-021-95147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
Although mites (Acari) are abundant in many terrestrial and freshwater ecosystems, their diversity is poorly understood. Since most mite species can be distinguished by variation in the DNA barcode region of cytochrome c oxidase I, the Barcode Index Number (BIN) system provides a reliable species proxy that facilitates large-scale surveys. Such analysis reveals many new BINs that can only be identified as Acari until they are examined by a taxonomic specialist. This study demonstrates that the Barcode of Life Datasystem's identification engine (BOLD ID) generally delivers correct ordinal and family assignments from both full-length DNA barcodes and their truncated versions gathered in metabarcoding studies. This result was demonstrated by examining BOLD ID's capacity to assign 7021 mite BINs to their correct order (4) and family (189). Identification success improved with sequence length and taxon coverage but varied among orders indicating the need for lineage-specific thresholds. A strict sequence similarity threshold (86.6%) prevented all ordinal misassignments and allowed the identification of 78.6% of the 7021 BINs. However, higher thresholds were required to eliminate family misassignments for Sarcoptiformes (89.9%), and Trombidiformes (91.4%), consequently reducing the proportion of BINs identified to 68.6%. Lineages with low barcode coverage in the reference library should be prioritized for barcode library expansion to improve assignment success.
Collapse
Affiliation(s)
- Monica R Young
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Hassanin A, Veron G, Ropiquet A, Jansen van Vuuren B, Lécu A, Goodman SM, Haider J, Nguyen TT. Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. PLoS One 2021; 16:e0240770. [PMID: 33591975 PMCID: PMC7886153 DOI: 10.1371/journal.pone.0240770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
The order Carnivora, which currently includes 296 species classified into 16 families, is distributed across all continents. The phylogeny and the timing of diversification of members of the order are still a matter of debate. Here, complete mitochondrial genomes were analysed to reconstruct the phylogenetic relationships and to estimate divergence times among species of Carnivora. We assembled 51 new mitogenomes from 13 families, and aligned them with available mitogenomes by selecting only those showing more than 1% of nucleotide divergence and excluding those suspected to be of low-quality or from misidentified taxa. Our final alignment included 220 taxa representing 2,442 mitogenomes. Our analyses led to a robust resolution of suprafamilial and intrafamilial relationships. We identified 21 fossil calibration points to estimate a molecular timescale for carnivorans. According to our divergence time estimates, crown carnivorans appeared during or just after the Early Eocene Climatic Optimum; all major groups of Caniformia (Cynoidea/Arctoidea; Ursidae; Musteloidea/Pinnipedia) diverged from each other during the Eocene, while all major groups of Feliformia (Nandiniidae; Feloidea; Viverroidea) diversified more recently during the Oligocene, with a basal divergence of Nandinia at the Eocene/Oligocene transition; intrafamilial divergences occurred during the Miocene, except for the Procyonidae, as Potos separated from other genera during the Oligocene.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Géraldine Veron
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Anne Ropiquet
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - Alexis Lécu
- Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris, France
| | - Steven M. Goodman
- Field Museum of Natural History, Chicago, IL, United States of America
| | - Jibran Haider
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
- Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Forest Parks & Wildlife Department Gilgit-Baltistan, Skardu, Pakistan
| | - Trung Thanh Nguyen
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| |
Collapse
|
12
|
Zhang YX, Chen X, Wang JP, Zhang ZQ, Wei H, Yu HY, Zheng HK, Chen Y, Zhang LS, Lin JZ, Sun L, Liu DY, Tang J, Lei Y, Li XM, Liu M. Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 2019; 20:954. [PMID: 31818245 PMCID: PMC6902594 DOI: 10.1186/s12864-019-6281-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Predatory mites (Acari: Phytoseiidae) are the most important beneficial arthropods used in augmentative biological pest control of protected crops around the world. However, the genomes of mites are far less well understood than those of insects and the evolutionary relationships among mite and other chelicerate orders are contested, with the enigmatic origin of mites at one of the centres in discussion of the evolution of Arachnida. RESULTS We here report the 173 Mb nuclear genome (from 51.75 Gb pairs of Illumina reads) of the predatory mite, Neoseiulus cucumeris, a biocontrol agent against pests such as mites and thrips worldwide. We identified nearly 20.6 Mb (~ 11.93% of this genome) of repetitive sequences and annotated 18,735 protein-coding genes (a typical gene 2888 bp in size); the total length of protein-coding genes was about 50.55 Mb (29.2% of this assembly). About 37% (6981) of the genes are unique to N. cucumeris based on comparison with other arachnid genomes. Our phylogenomic analysis supported the monophyly of Acari, therefore rejecting the biphyletic origin of mites advocated by other studies based on limited gene fragments or few taxa in recent years. Our transcriptomic analyses of different life stages of N. cucumeris provide new insights into genes involved in its development. Putative genes involved in vitellogenesis, regulation of oviposition, sex determination, development of legs, signal perception, detoxification and stress-resistance, and innate immune systems are identified. CONCLUSIONS Our genomics and developmental transcriptomics analyses of N. cucumeris provide invaluable resources for further research on the development, reproduction, and fitness of this economically important mite in particular and Arachnida in general.
Collapse
Affiliation(s)
- Yan-Xuan Zhang
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Xia Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 People’s Republic of China
| | - Zhi-Qiang Zhang
- Landcare Research, Auckland and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Hui Wei
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Hai-Yan Yu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Hong-Kun Zheng
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yong Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Jian-Zhen Lin
- Fujian Yanxuan Bio-preventing and Technology Biocontrol Corporation, Fuzhou, People’s Republic of China
| | - Li Sun
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Dong-Yuan Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yan Lei
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Xu-Ming Li
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| |
Collapse
|
13
|
Blattner L, Gerecke R, von Fumetti S. Hidden biodiversity revealed by integrated morphology and genetic species delimitation of spring dwelling water mite species (Acari, Parasitengona: Hydrachnidia). Parasit Vectors 2019; 12:492. [PMID: 31639027 PMCID: PMC6805402 DOI: 10.1186/s13071-019-3750-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Water mites are among the most diverse organisms inhabiting freshwater habitats and are considered as substantial part of the species communities in springs. As parasites, Hydrachnidia influence other invertebrates and play an important role in aquatic ecosystems. In Europe, 137 species are known to appear solely in or near springheads. New species are described frequently, especially with the help of molecular species identification and delimitation methods. The aim of this study was to verify the mainly morphology-based taxonomic knowledge of spring-inhabiting water mites of central Europe and to build a genetic species identification library. METHODS We sampled 65 crenobiontic species across the central Alps and tested the suitability of mitochondrial (cox1) and nuclear (28S) markers for species delimitation and identification purposes. To investigate both markers, distance- and phylogeny-based approaches were applied. The presence of a barcoding gap was tested by using the automated barcoding gap discovery tool and intra- and interspecific genetic distances were investigated. Furthermore, we analyzed phylogenetic relationships between different taxonomic levels. RESULTS A high degree of hidden diversity was observed. Seven taxa, morphologically identified as Bandakia concreta Thor, 1913, Hygrobates norvegicus (Thor, 1897), Ljania bipapillata Thor, 1898, Partnunia steinmanni Walter, 1906, Wandesia racovitzai Gledhill, 1970, Wandesia thori Schechtel, 1912 and Zschokkea oblonga Koenike, 1892, showed high intraspecific cox1 distances and each consisted of more than one phylogenetic clade. A clear intraspecific threshold between 5.6-6.0% K2P distance is suitable for species identification purposes. The monophyly of Hydrachnidia and the main superfamilies is evident with different species clearly separated into distinct clades. cox1 separates water mite species but is unsuitable for resolving higher taxonomic levels. CONCLUSIONS Water mite species richness in springs is higher than has been suggested based on morphological species identification alone and further research is needed to evaluate the true diversity. The standard molecular species identification marker cox1 can be used to identify species but should be complemented by a nuclear marker, e.g. 28S, to resolve taxonomic relationships. Our results contribute to the taxonomical knowledge on spring inhabiting Hydrachnida, which is indispensable for the development and implementation of modern environment assessment methods, e.g. metabarcoding, in spring ecology.
Collapse
Affiliation(s)
- Lucas Blattner
- Department of Environmental Sciences, Geoecology Research Group, University of Basel, St. Johanns-Vorstadt 10, 4056 Basel, Switzerland
| | - Reinhard Gerecke
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Stefanie von Fumetti
- Department of Environmental Sciences, Geoecology Research Group, University of Basel, St. Johanns-Vorstadt 10, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Benavides LR, Cosgrove JG, Harvey MS, Giribet G. Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. Mol Phylogenet Evol 2019; 139:106509. [DOI: 10.1016/j.ympev.2019.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
15
|
Ballesteros JA, Sharma PP. A Critical Appraisal of the Placement of Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error. Syst Biol 2019; 68:896-917. [DOI: 10.1093/sysbio/syz011] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/20/2018] [Accepted: 02/10/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractHorseshoe crabs (Xiphosura) are traditionally regarded as sister group to the clade of terrestrial chelicerates (Arachnida). This hypothesis has been challenged by recent phylogenomic analyses, but the non-monophyly of Arachnida has consistently been disregarded as artifactual. We re-evaluated the placement of Xiphosura among chelicerates using the most complete phylogenetic data set to date, expanding outgroup sampling, and including data from whole genome sequencing projects. In spite of uncertainty in the placement of some arachnid clades, all analyses show Xiphosura consistently nested within Arachnida as the sister group to Ricinulei (hooded tick spiders). It is apparent that the radiation of arachnids is an old one and occurred over a brief period of time, resulting in several consecutive short internodes, and thus is a potential case for the confounding effects of incomplete lineage sorting (ILS). We simulated coalescent gene trees to explore the effects of increasing levels of ILS on the placement of horseshoe crabs. In addition, common sources of systematic error were evaluated, as well as the effects of fast-evolving partitions and the dynamics of problematic long branch orders. Our results indicated that the placement of horseshoe crabs cannot be explained by missing data, compositional biases, saturation, or ILS. Interrogation of the phylogenetic signal showed that the majority of loci favor the derived placement of Xiphosura over a monophyletic Arachnida. Our analyses support the inference that horseshoe crabs represent a group of aquatic arachnids, comparable to aquatic mites, breaking a long-standing paradigm in chelicerate evolution and altering previous interpretations of the ancestral transition to the terrestrial habitat. Future studies testing chelicerate relationships should approach the task with a sampling strategy where the monophyly of Arachnida is not held as the premise.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Cameron E, Buddle CM. Pseudoscorpiones and Scorpiones of Canada. Zookeys 2019; 819:67-72. [PMID: 30713434 PMCID: PMC6355761 DOI: 10.3897/zookeys.819.27121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
Twenty-five species of pseudoscorpions are known from Canada, a five-fold increase since an assessment from 1979. The diversity and distribution of Canadian species are poorly known and at least 27 more species are expected to be found in the country. Currently 46 Barcode Index Numbers are assigned to Canadian specimens, suggesting a high level of undocumented diversity. Only one scorpion species is known from Canada and no other species are expected.
Collapse
Affiliation(s)
- Elyssa Cameron
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, CanadaMcGill UniversityMontrealCanada
| | - Christopher M. Buddle
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, CanadaMcGill UniversityMontrealCanada
| |
Collapse
|
17
|
Molecular phylogeny of marine mites (Acariformes: Halacaridae), the oldest radiation of extant secondarily marine animals. Mol Phylogenet Evol 2018; 129:182-188. [DOI: 10.1016/j.ympev.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/27/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022]
|
18
|
|
19
|
The origins of diversity in ancient landscapes: Deep phylogeographic structuring in a pseudoscorpion (Pseudotyrannochthoniidae: Pseudotyrannochthonius) reflects Plio-Pleistocene climate fluctuations. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Rubin M, Lamsdell JC, Prendini L, Hopkins MJ. Exocuticular hyaline layer of sea scorpions and horseshoe crabs suggests cuticular fluorescence is plesiomorphic in chelicerates. J Zool (1987) 2017. [DOI: 10.1111/jzo.12493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- M. Rubin
- Department of Geology Oberlin College Oberlin OH USA
- Division of Paleontology American Museum of Natural History New York NY USA
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
| | - J. C. Lamsdell
- Division of Paleontology American Museum of Natural History New York NY USA
- Department of Geology and Geography West Virginia University Morgantown WV USA
| | - L. Prendini
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
| | - M. J. Hopkins
- Division of Paleontology American Museum of Natural History New York NY USA
| |
Collapse
|
21
|
Xue XF, Dong Y, Deng W, Hong XY, Shao R. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol Phylogenet Evol 2017; 109:271-282. [PMID: 28119107 DOI: 10.1016/j.ympev.2017.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
Abstract
Eriophyoid mites (superfamily Eriophyoidea) comprise >4400 species worldwide. Despite over a century of study, the phylogenetic position of these mites within Acariformes is still poorly resolved. Currently, Eriophyoidea is placed in the order Trombidiformes. We inferred the high-level phylogeny of Acari with the mitochondrial (mt) genome sequences of 110 species including four eriophyoid species, and the nuclear small subunit (18S) rRNA gene sequences of 226 species including 25 eriophyoid species. Maximum likelihood (ML), Bayesian inference (BI) and Maximum parsimony (MP) methods were used to analyze the sequence data. Divergence times were estimated for major lineages of Acari using Bayesian approaches. Our analyses consistently recovered the monophyly of Eriophyoidea but rejected the monophyly of Trombidiformes. The eriophyoid mites were grouped with the sarcoptiform mites, or were the sister group of sarcoptiform mites+non-eriophyoid trombidiform mites, depending on data partition strategies. Eriophyoid mites diverged from other mites in the Devonian (384Mya, 95% HPD, 352-410Mya). The origin of eriophyoid mites was dated to the Permian (262Mya, 95% HPD 230-307Mya), mostly prior to the radiation of gymnosperms (Triassic-Jurassic) and angiosperms (early Cretaceous). We propose that the placement of Eriophyoidea in the order Trombidiformes under the current classification system should be reviewed.
Collapse
Affiliation(s)
- Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yan Dong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Deng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.
| |
Collapse
|
22
|
Luna-Ramirez K, Miller AD, Rašić G. Genetic and morphological analyses indicate that the Australian endemic scorpion Urodacus yaschenkoi (Scorpiones: Urodacidae) is a species complex. PeerJ 2017; 5:e2759. [PMID: 28123903 PMCID: PMC5244882 DOI: 10.7717/peerj.2759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Australian scorpions have received far less attention from researchers than their overseas counterparts. Here we provide the first insight into the molecular variation and evolutionary history of the endemic Australian scorpion Urodacus yaschenkoi. Also known as the inland robust scorpion, it is widely distributed throughout arid zones of the continent and is emerging as a model organism in biomedical research due to the chemical nature of its venom. METHODS We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions and divergence dating among lineages, using unique haplotype sequences from two mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species. Linear Discriminant Analysis was used to test whether the linear combination of 21 variables (ratios of morphological measurements) can predict individual's membership to a putative species. RESULTS Genetic and morphological data suggest that U. yaschenkoi is a species complex. High statistical support for the monophyly of several divergent lineages was found both at the mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The GMYC model and the PTP/bPTP approach identified major lineages and several sub-lineages as putative species. Ratios of several traits that approximate body shape had a strong predictive power (83-100%) in discriminating two major molecular lineages. A time-calibrated phylogeny dates the early divergence at the onset of continental-wide aridification in late Miocene and Pliocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. This structuring dynamics is congruent with the diversification history of other fauna of the Australian arid zones. DISCUSSION Our results indicate that the taxonomic status of U. yaschenkoi requires revision, and we provide recommendations for such future efforts. A complex evolutionary history and extensive diversity highlights the importance of conserving U. yaschenkoi populations from different Australian arid zones in order to preserve patterns of endemism and evolutionary potential.
Collapse
Affiliation(s)
| | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | | |
Collapse
|
23
|
Kornilios P, Thanou E, Kapli P, Parmakelis A, Chatzaki M. Peeking through the trapdoor: Historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae. Mol Phylogenet Evol 2016; 98:300-13. [DOI: 10.1016/j.ympev.2016.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/23/2015] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
|
24
|
Harvey MS, Abrams KM, Beavis AS, Hillyer MJ, Huey JA. Pseudoscorpions of the family Feaellidae (Pseudoscorpiones : Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism. INVERTEBR SYST 2016. [DOI: 10.1071/is16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phylogenetic relationships of the Australian species of Feaellidae are assessed with a molecular analysis using mitochondrial (CO1) and nuclear (ITS2) data. These results confirm the morphological analysis that three previously undescribed species occur in the Pilbara bioregion, which are named and described: Feaella (Tetrafeaella) callani, sp. nov., F. (T.) linetteae, sp. nov. and F. (T.) tealei, sp. nov. The males of these three species, as well as males of F. anderseni Harvey and other unnamed species from the Kimberley region of north-western Australia, have a pair of enlarged, thick-walled bursa that are not found in other feaellids. Despite numerous environmental impact surveys for short-range endemic invertebrates in the Pilbara, very few specimens have been collected, presumably due to their relictual distributions, restricted habitat preferences and low densities. http://zoobank.org/urn:lsid:zoobank.org:pub:131F0587-F2EE-405F-BE5A-772F072D9915
Collapse
|
25
|
Harvey MS, Huey JA, Hillyer MJ, McIntyre E, Giribet G. The first troglobitic species of Gymnobisiidae (Pseudoscorpiones : Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position. INVERTEBR SYST 2016. [DOI: 10.1071/is15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fully troglobitic pseudoscorpions are rare in the Afrotropical Region, and we explored the identity and phylogenetic relationships of specimens of a highly modified troglobite of the family Gymnobisiidae in the dark zone of the Wynberg Cave system, on Table Mountain, South Africa. This large pseudoscorpion – described as Gymnobisium inukshuk Harvey & Giribet, sp. nov. – lacks eyes and has extremely long appendages, and has been found together with other troglobitic fauna endemic only to this cave system. Phylogenetic analyses using the nuclear ribosomal genes 18S rRNA and 28S rRNA and the mitochondrial protein-encoding gene cytochrome c oxidase subunit I unambiguously place the new species with other surface Gymnobisium from South Africa. This placement receives strong support and is stable to analytical treatments, including static and dynamic homology, parsimony and maximum likelihood, and data removal for ambiguously aligned sites. This species is the first troglobitic species of the family and one of the most highly modified pseudoscorpions from the Afrotropical Region. http://zoobank.org/urn:lsid:zoobank.org:pub:5227092B-A64B-4DB3-AD90-F474F0BA6AED
Collapse
|
26
|
Pepato AR, Klimov PB. Origin and higher-level diversification of acariform mites - evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. BMC Evol Biol 2015; 15:178. [PMID: 26330076 PMCID: PMC4557820 DOI: 10.1186/s12862-015-0458-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acariformes is the most species-rich and morphologically diverse radiation of chelicerate arthropods, known from the oldest terrestrial ecosystems. It is also a key lineage in understanding the evolution of this group, with the most vexing question whether mites, or Acari (Parasitiformes and Acariformes) is monophyletic. Previous molecular studies recovered Acari either as monophyletic or non-monophyletic, albeit with a limited taxon sampling. Similarly, relationships between basal acariform groups (include little-known, deep-soil 'endeostigmatan' mites) and major lineages of Acariformes (Sarcoptiformes, Prostigmata) are virtually unknown. We infer phylogeny of chelicerate arthropods, using a large and representative dataset, comprising all main in- and outgroups (228 taxa). Basal diversity of Acariformes is particularly well sampled. With this dataset, we conduct a series of phylogenetically explicit tests of chelicerate and acariform relationships and present a phylogenetic framework for internal relationships of acariform mites. RESULTS Our molecular data strongly support a diphyletic Acari, with Acariformes as the sister group to Solifugae (PP =1.0; BP = 100), the so called Poecilophysidea. Among Acariformes, some representatives of the basal group Endeostigmata (mainly deep-soil mites) were recovered as sister-groups to the remaining Acariformes (i. e., Trombidiformes + and most of Sarcoptiformes). Desmonomatan oribatid mites (soil and litter mites) were recovered as the monophyletic sister group of Astigmata (e. g., stored product mites, house dust mites, mange mites, feather and fur mites). Trombidiformes (Sphaerolichida + Prostigmata) is strongly supported (PP =1.0; BP = 98-100). Labidostommatina was inferred as the basal lineage of Prostigmata. Eleutherengona (e. g., spider mites) and Parasitengona (e. g., chiggers, fresh water mites) were recovered as monophyletic. By contrast, Eupodina (e. g., snout mites and relatives) was not. Marine mites (Halacaridae) were traditionally regarded as the sister-group to Bdelloidea (Eupodina), but our analyses show their close relationships to Parasitengona. CONCLUSIONS Non-trivial relationships recovered by our analyses with high support (i.e., basal arrangement of endeostigmatid lineages, the position of marine mites, polyphyly of Eupodina) had been proposed by previous underappreciated morphological studies. Thus, we update currently the accepted taxonomic classification to reflect these results: the superfamily Halacaroidea Murray, 1877 is moved from the infraorder Eupodina Krantz, 1978 to Anystina van der Hammen, 1972; and the subfamily Erythracarinae Oudemans, 1936 (formerly in Anystidae Oudemans, 1902) is elevated to family rank, Erythracaridae stat. ressur., leaving Anystidae only with the nominal subfamily. Our study also shows that a clade comprising early derivative Endeostigmata (Alycidae, Nanorchestidae, Nematalycidae, and maybe Alicorhagiidae) should be treated as a taxon with the same rank as Sarcoptiformes and Trombidiformes, and the scope of the superfamily Bdelloidea should be changed. Before turning those findings into nomenclatural changes, however, we consider that our study calls for (i) finding shared apomorphies of the early derivative Endeostigmata clade and the clade including the remaining Acariformes; (ii) a well-supported hypothesis for Alicorhagiidae placement; (iii) sampling the families Proterorhagiidae, Proteonematalycidae and Grandjeanicidae not yet included in molecular analyses; (iv) undertake a denser sampling of clades traditionally placed in Eupodina, Anystina (Trombidiformes) and Palaeosomata (Sarcoptiformes), since consensus networks and Internode certainty (IC) and IC All (ICA) indices indicate high levels of conflict in these tree regions. Our study shows that regions of ambiguous alignment may provide useful phylogenetic signal when secondary structure information is used to guide the alignment procedure and provides an R implementation to the Bayesian Relative Rates test.
Collapse
Affiliation(s)
- A R Pepato
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil.
| | - P B Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI, 48109-1079, USA.
- Tyumen State University, 10 Semakova St, Tyumen, 625003, Russia.
| |
Collapse
|
27
|
Young MR, Hebert PDN. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida. PLoS One 2015; 10:e0135053. [PMID: 26308206 PMCID: PMC4550450 DOI: 10.1371/journal.pone.0135053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 01/01/2023] Open
Abstract
Because sequence information is now available for the 648bp barcode region of cytochrome c oxidase 1 (COI) from more than 400,000 animal species, this gene segment can be used to probe patterns of mitochondrial evolution. The present study examines levels of amino acid substitution and the frequency of indels in COI from 4177 species of arachnids, including representatives from all 16 orders and 43% of its families (267/625). It examines divergences at three taxonomic levels—among members of each order to an outgroup, among families in each order and among BINs, a species proxy, in each family. Order Distances vary fourfold (0.10–0.39), while the mean of the Family Distances for the ten orders ranges fivefold (0.07–0.35). BIN Distances show great variation, ranging from 0.01 or less in 12 families to more than 0.25 in eight families. Patterns of amino acid substitution in COI are generally congruent with previously reported variation in nucleotide substitution rates in arachnids, but provide some new insights, such as clear rate acceleration in the Opiliones. By revealing a strong association between elevated rates of nucleotide and amino acid substitution, this study builds evidence for the selective importance of the rate variation among arachnid lineages. Moreover, it establishes that groups whose COI genes have elevated levels of amino acid substitution also regularly possess indels, a dramatic form of protein reconfiguration. Overall, this study suggests that the mitochondrial genome of some arachnid groups is dynamic with high rates of amino acid substitution and frequent indels, while it is ‘locked down’ in others. Dynamic genomes are most prevalent in arachnids with short generation times, but the possible impact of breeding system deserves investigation since many of the rapidly evolving lineages reproduce by haplodiploidy, a mode of reproduction absent in ‘locked down’ taxa.
Collapse
Affiliation(s)
- Monica R Young
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Paul D. N. Hebert
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Hoebeke ER, Huffmaster W, Freeman BJ. Nephila clavata L Koch, the Joro Spider of East Asia, newly recorded from North America (Araneae: Nephilidae). PeerJ 2015; 3:e763. [PMID: 25699210 PMCID: PMC4327315 DOI: 10.7717/peerj.763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022] Open
Abstract
Nephila clavata L Koch, known as the Joro spider and native to East Asia (Japan, China, Korea, and Taiwan), is newly reported from North America. Specimens from several locations in northeast Georgia were collected from around residential properties in Barrow, Jackson, and Madison counties in late October and early November 2014. These are the first confirmed records of the species in the New World. Our collections, along with confirmed images provided by private citizens, suggest that the Joro spider is established in northeast Georgia. Genomic sequence data for the COI gene obtained from two specimens conforms to published sequences for N. clavata, providing additional confirmation of species identity. Known collection records are listed and mapped using geocoding. Our observations are summarized along with published background information on biology in Asia and we hypothesize on the invasion history and mode of introduction into North America. Recognition features are given and photographic images of the male and female are provided to aid in their differentiation from the one native species of the genus (Nephila clavipes) in North America.
Collapse
Affiliation(s)
- E. Richard Hoebeke
- Georgia Museum of Natural History and Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Byron J. Freeman
- Georgia Museum of Natural History and Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
29
|
Procheş S, Polgar G, Marshall DJ. K-Pg events facilitated lineage transitions between terrestrial and aquatic ecosystems. Biol Lett 2015; 10:rsbl.2014.0010. [PMID: 24919699 DOI: 10.1098/rsbl.2014.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We use dated phylogenetic trees for tetrapod vertebrates to identify lineages that shifted between terrestrial and aquatic ecosystems in terms of feeding or development, and to assess the timing of such events. Both stem and crown lineage ages indicate a peak in transition events in correspondence with the K-Pg mass extinction. This meets the prediction that changes in competitive pressure and resource availability following mass extinction events should facilitate such transitions.
Collapse
Affiliation(s)
- Serban Procheş
- Discipline of Geography, University of KwaZulu-Natal, Westville Campus, PO Box X54001, Durban 4000, South Africa Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link 1410, Brunei Darussalam
| | - Gianluca Polgar
- Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link 1410, Brunei Darussalam
| | - David J Marshall
- Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link 1410, Brunei Darussalam
| |
Collapse
|
30
|
Harvey MS, Lopes PC, Goldsmith GR, Halajian A, Hillyer MJ, Huey JA. A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones : Cheliferidae) in southern Africa. INVERTEBR SYST 2015. [DOI: 10.1071/is15027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Birds harbour a wide array of other taxa in their nests or in their plumage, which either have an ectoparasitic or commensal relationship with the host. We report on the discovery of a cheliferid pseudoscorpion found in the plumage and nests of the sociable weaver bird (Philetairus socius) in southern Africa. The nests of these communal birds are the largest of any bird, and may contain up to 500 individuals. The pseudoscorpion is likely to have a mutualistic relationship with the birds, most likely preying on other small invertebrates in the nests. Molecular data derived from two populations of the pseudoscorpion found divergence levels of 1.1% in cytochrome oxidase 1 (CO1), and an analysis of CO1 and two rRNA genes (18S and 28S) found a close relationship with Chelifer and Parachelifer in the tribe Cheliferini, which is supported by the morphology of the male genitalia. The molecular analysis also suggests that Beierius may not belong to the Cheliferini. The pseudoscorpion found in association with the sociable weaver represents a new genus and species, Sociochelifer metoecus Harvey, sp. nov.
Collapse
|
31
|
Liu M, Zhang Z, Peng Z. The mitochondrial genome of the water spiderArgyroneta aquatica(Araneae: Cybaeidae). ZOOL SCR 2014. [DOI: 10.1111/zsc.12090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mingxin Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education); Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education); School of Life Science; Southwest University; Chongqing 400715 China
| | - Zhisheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education); Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education); School of Life Science; Southwest University; Chongqing 400715 China
| | - Zuogang Peng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education); Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education); School of Life Science; Southwest University; Chongqing 400715 China
| |
Collapse
|
32
|
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G. Phylogenomic Interrogation of Arachnida Reveals Systemic Conflicts in Phylogenetic Signal. Mol Biol Evol 2014; 31:2963-84. [DOI: 10.1093/molbev/msu235] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Baek SY, Choi EH, Jang KH, Ryu SH, Park SM, Suk HY, Chang CY, Hwang UW. Complete mitochondrial genomes of Carcinoscorpius rotundicauda and Tachypleus tridentatus (Xiphosura, Arthropoda) and implications for chelicerate phylogenetic studies. Int J Biol Sci 2014; 10:479-89. [PMID: 24795529 PMCID: PMC4007361 DOI: 10.7150/ijbs.8739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/02/2014] [Indexed: 11/05/2022] Open
Abstract
Horseshoe crabs (order Xiphosura) are often referred to as an ancient order of marine chelicerates and have been considered as keystone taxa for the understanding of chelicerate evolution. However, the mitochondrial genome of this order is only available from a single species, Limulus polyphemus. In the present study, we analyzed the complete mitochondrial genomes from two Asian horseshoe crabs, Carcinoscorpius rotundicauda and Tachypleus tridentatus to offer novel data for the evolutionary relationship within Xiphosura and their position in the chelicerate phylogeny. The mitochondrial genomes of C. rotundicauda (15,033 bp) and T. tridentatus (15,006 bp) encode 13 protein-coding genes, two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Overall sequences and genome structure of two Asian species were highly similar to that of Limulus polyphemus, though clear differences among three were found in the stem-loop structure of the putative control region. In the phylogenetic analysis with complete mitochondrial genomes of 43 chelicerate species, C. rotundicauda and T. tridentatus were recovered as a monophyly, while L. polyphemus solely formed an independent clade. Xiphosuran species were placed at the basal root of the tree, and major other chelicerate taxa were clustered in a single monophyly, clearly confirming that horseshoe crabs composed an ancestral taxon among chelicerates. By contrast, the phylogenetic tree without the information of Asian horseshoe crabs did not support monophyletic clustering of other chelicerates. In conclusion, our analyses may provide more robust and reliable perspective on the study of evolutionary history for chelicerates than earlier analyses with a single Atlantic species.
Collapse
Affiliation(s)
- Su Youn Baek
- 1. School of Life Sciences, Graduate School, Kyungpook National University, Daegu 702-701, South Korea
| | - Eun Hwa Choi
- 2. Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 702-701, South Korea
| | - Kuem Hee Jang
- 2. Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 702-701, South Korea
| | - Shi Hyun Ryu
- 2. Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 702-701, South Korea
| | - Sang Myeon Park
- 3. Department of Science Education, Graduate School, Kyungpook National University, Daegu 702-701, South Korea
| | - Ho Young Suk
- 4. Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 705-717, South Korea
| | - Cheon Young Chang
- 5. Department of Biology, College of Natural Science, Daegu University, Gyeongsan, Gyeongsangbuk-do 712-714, South Korea
| | - Ui Wook Hwang
- 2. Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|