1
|
Pan W, Niu H, Luo S, Chen L, Wu ZS. Intelligent Reconfiguration-Promoted Cellular Internalization of Core-Shell DNA Nanoprobe Equipped with Successive Dual Stimuli-Responsive Protective Satellites for Amplification Fluorescence Imaging of Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311388. [PMID: 38282377 DOI: 10.1002/smll.202311388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Although DNA probes have attracted increasing interest for precise tumor cell identification by imaging intracellular biomarkers, the requirement of commercial transfection reagents, limited targeting ligands, and/or non-biocompatible inorganic nanostructures has hampered the clinic translation. To circumvent these shortcomings, a reconfigurable ES-NC (Na+-dependent DNAzyme (E)-based substrate (S) cleavage core/shell DNA nanocluster (NC)) entirely from DNA strands is assembled for precise imaging of cancerous cells in a successive dual-stimuli-responsive manner. This nanoprobe is composed of a strung DNA tetrahedral satellites-based protective (DTP) shell, parallelly aligned target-responsive sensing (PTS) interlayer, and hydrophobic cholesterol-packed innermost layer (HCI core). Tetrahedral axial rotation-activated reconfiguration of DTP shell promotes the exposure of interior hydrophobic moieties, enabling cholesterol-mediated cellular internalization without auxiliary elements. Within cells, over-expressed glutathione triggers the disassembly of the DTP protective shell (first stimulus), facilitating target-stimulated signal transduction/amplification process (second stimuli). Target miRNA-21 is detected down to 10.6 fM without interference from coexisting miRNAs. Compared with transfection reagent-mediated counterpart, ES-NC displays a higher imaging ability, resists nuclease degradation, and has no detectable damage to healthy cells. The blind test demonstrates that the ES-NC is suitable for the identification of cancerous cells from healthy cells, indicating a promising tool for early diagnosis and prediction of cancer.
Collapse
Affiliation(s)
- Wenhao Pan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
2
|
Wu Y, Torabi SF, Lake RJ, Hong S, Yu Z, Wu P, Yang Z, Nelson K, Guo W, Pawel GT, Van Stappen J, Shao X, Mirica LM, Lu Y. Simultaneous Fe 2+/Fe 3+ imaging shows Fe 3+ over Fe 2+ enrichment in Alzheimer's disease mouse brain. SCIENCE ADVANCES 2023; 9:eade7622. [PMID: 37075105 PMCID: PMC10115418 DOI: 10.1126/sciadv.ade7622] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Visualizing redox-active metal ions, such as Fe2+ and Fe3+ ions, are essential for understanding their roles in biological processes and human diseases. Despite the development of imaging probes and techniques, imaging both Fe2+ and Fe3+ simultaneously in living cells with high selectivity and sensitivity has not been reported. Here, we selected and developed DNAzyme-based fluorescent turn-on sensors that are selective for either Fe2+ or Fe3+, revealing a decreased Fe3+/Fe2+ ratio during ferroptosis and an increased Fe3+/Fe2+ ratio in Alzheimer's disease mouse brain. The elevated Fe3+/Fe2+ ratio was mainly observed in amyloid plaque regions, suggesting a correlation between amyloid plaques and the accumulation of Fe3+ and/or conversion of Fe2+ to Fe3+. Our sensors can provide deep insights into the biological roles of labile iron redox cycling.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Seyed-Fakhreddin Torabi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhengxin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin Nelson
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory T. Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Xiangli Shao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author.
| |
Collapse
|
3
|
Saran R, Piccolo KA, He Y, Kang Y, Huang PJJ, Wei C, Chen D, Dieckmann T, Liu J. Thioflavin T fluorescence and NMR spectroscopy suggesting a non-G-quadruplex structure for a sodium binding aptamer embedded in DNAzymes. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a Na+-binding aptamer was reported to be embedded in a few RNA-cleaving DNAzymes, including NaA43, Ce13d, and NaH1. The Na+ aptamer consists of multiple GG stretches, which is a prerequisite for the formation of G-quadruplex (G4) structures. These DNAzymes require Na+ for activity but show no activity in the presence of K+ or other metal ions. Given that DNA can selectively bind K+ by forming a G4 structure, this work aims to answer whether this Na+ aptamer also uses a G4 to bind Na+. Through comparative ThT fluorescence spectrometry studies, while a control G4 DNA exhibited notable fluorescence enhancement up to 5 mM K+ with a Kd of 0.28 ± 0.06 mM, the Ce13d DNAzyme fluorescence was negligibly perturbed with similar concentrations of K+. Opposed to this, Ce13d displayed specific remarkable fluorescence decrease with low millimolar concentrations of Na+. NMR experiments at two different pH values suggest that Ce13d adopts a significantly different conformation or equilibrium of conformations in the presence of Na+ versus K+ and has a more stable structure in the presence of Na+. Additionally, absence of characteristic G4 peaks in one-dimensional 1H NMR suggest that G4 is not responsible for the Na+ binding. This hypothesis is confirmed by the absence of characteristic peaks in the CD spectra of this sequence. Therefore, we concluded that the aptamer must be selective for Na+ and that it binds Na+ using a structural element that does not contain G4.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kyle A. Piccolo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yanping He
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China
| | - Yongqiang Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Development of a DNAzyme-based colorimetric biosensor assay for dual detection of Cd 2+ and Hg 2. Anal Bioanal Chem 2021; 413:7081-7091. [PMID: 34585255 DOI: 10.1007/s00216-021-03677-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
A colorimetric biosensor assay has been developed for Cd2+ and Hg2+ detection based on Cd2+-dependent DNAzyme cleavage and Hg2+-binding-induced conformational switching of the G-quadruplex fragment. Two types of multifunctional magnetic beads (Cd-MBs and Hg-MBs) were synthesized by immobilizing two functionalized DNA sequences on magnetic beads via avidin-biotin chemistry. For Cd2+ detection, Cd-MBs are used as recognition probes, which are modified with a single phosphorothioate ribonucleobase (rA) substrate (PS substrate) and a Cd2+-specific DNAzyme (Cdzyme). In the presence of Cd2+, the PS substrate is cleaved by Cdzyme, and single-stranded DNA is released as the signal transduction sequence. After molecular assembly with the other two oligonucleotides, duplex DNA is produced, and it can be recognized and cleaved by FokI endonuclease. Thus, a signal output component consisting of a G-quadruplex fragment is released, which catalyzes the oxidation of ABTS with the addition of hemin and H2O2, inducing a remarkably amplified colorimetric signal. To rule out false-positive results and reduce interference signals, Hg-MBs modified with poly-T fragments were used as Hg2+ accumulation probes during the course of Cd2+ detection. On the other hand, Hg-MBs can perform their second function in Hg2+ detection by changing the catalytic activity of the G-quadruplex/hemin DNAzyme. In the presence of Hg2+, the G-quadruplex structure in Hg-MBs is disrupted upon Hg2+ binding. In the absence of Hg2+, an intensified color change can be observed by the naked eye for the formation of intact G-quadruplex/hemin DNAzymes. The biosensor assay exhibits excellent selectivity and high sensitivity. The detection limits for Cd2+ and Hg2+ are 1.9 nM and 19.5 nM, respectively. Moreover, the constructed sensors were used to detect environmental water samples, and the results indicate that the detection system is reliable and could be further used in environmental monitoring. The design strategy reported in this study could broadly extend the application of metal ion-specific DNAzyme-based biosensors.
Collapse
|
5
|
Lake RJ, Yang Z, Zhang J, Lu Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Acc Chem Res 2019; 52:3275-3286. [PMID: 31721559 PMCID: PMC7103667 DOI: 10.1021/acs.accounts.9b00419] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can be beneficial or toxic depending on their identity, oxidation state, and concentration. Therefore, the ability to detect and quantify different types of metal ions using portable sensors or in situ imaging agents is important for better environmental monitoring, in vitro medical diagnostics, and imaging of biological systems. While numerous metal ions in different oxidation states are present in the environment and biological systems, only a limited number of them can be detected effectively using current methods. In this Account, we summarize research results from our group that overcome this limitation by the development of a novel class of activity-based sensors based on metal-dependent DNAzymes, which are DNA molecules with enzymatic activity. First, we have developed an in vitro selection method to obtain DNAzymes from a large DNA library of up to 1015 sequences that can carry out cleavage of an oligonucleotide substrate only in the presence of a specific metal ion with high selectivity. Negative selection steps can further be used to improve the selectivity against potentially competing targets by removing sequences that recognize the competing metal ions. Second, we have developed a patented catalytic beacon method to transform the metal-dependent DNAzyme cleavage reaction into a turn-on fluorescent signal by attaching a fluorophore and quenchers to the DNAzyme complex. Because of the difference in the melting temperatures of DNA hybridization before and after metal-ion-dependent cleavage of the DNAzyme substrate, the fluorophore on the DNA cleavage product can be released from its quenchers to create a turn-on fluorescent signal. Because DNAzymes are easy to conjugate with other signaling moieties, such as gold nanoparticles, lanthanide-doped upconversion nanoparticles, electrochemical agents, and gadolinium complexes, these DNAzymes can also readily be converted into colorimetric sensors, upconversion luminescence sensors, electrochemical sensors, or magnetic resonance contrast agents. In addition to describing recent progress in developing and applying these metal ion sensors for environmental monitoring, point-of-care diagnostics, cellular imaging, and in vivo imaging in zebrafish, we summarize major advantages of this class of activity-based sensors. In addition to advantages common to most activity-based sensors, such as enzymatic turnovers that allow for signal amplification and the use of initial rates instead of absolute signals for quantification to avoid interferences from sample matrices, the DNAzyme-based sensors allow for in vitro selection to expand the method to almost any metal ion under a variety of conditions, negative selection to improve the selectivity against competing targets, and reselection of DNAzymes and combination of active and inactive variants to fine-tune the dynamic range of detection. The use of melting temperature differences to separate target binding from signaling moieties in the catalytic beacon method allows the use of different fluorophores and nanomaterials to extend the versatility and modularity of this sensing platform. Furthermore, sensing and imaging artifacts can be minimized by using an inactive mutant DNAzyme as a negative control, while spatiotemporal control of sensing/imaging can be achieved using optical, photothermal, and endogenous orthogonal caging methods. Finally, current challenges, opportunities, and future perspectives for DNAzymes as activity-based sensors are also discussed.
Collapse
Affiliation(s)
- Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Ma L, Kartik S, Liu B, Liu J. From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation. Nucleic Acids Res 2019; 47:8154-8162. [PMID: 31276580 PMCID: PMC6736077 DOI: 10.1093/nar/gkz578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes were reported, where nucleobases are likely to play critical roles in catalysis. The NaA43 and NaH1 DNAzymes share the same 16-nt Na+-binding motif, but differ in one or two nucleotides in a small catalytic loop. Nevertheless, they display an opposite pH-dependency, implicating distinct catalytic mechanisms. In this work, rational mutation studies locate a catalytic adenine residue, A22, in NaH1, while previous studies found a guanine (G23) to be important for the catalysis of NaA43. Mutation with pKa-perturbed analogs, such as 2-aminopurine (∼3.8), 2,6-diaminopurine (∼5.6) and hypoxanthine (∼8.7) affected the overall reaction rate. Therefore, we propose that the N1 position of G23 (pKa ∼6.6) in NaA43 functions as a general base, while that of A22 (pKa ∼6.3) in NaH1 as a general acid. Further experiments with base analogs and a phosphorothioate-modified substrate suggest that the exocyclic amine in A22 and both of the non-bridging oxygens at the scissile phosphate are important for catalysis for NaH1. This is an interesting example where single point mutations can change the mechanism of cleavage from general base to general acid, and it can also explain this Na+-dependent DNAzyme scaffold being sensitive to a broad range of metal ions and molecules.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sanjana Kartik
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
|
8
|
He Y, Chang Y, Chen D, Liu J. Probing Local Folding Allows Robust Metal Sensing Based on a Na + -Specific DNAzyme. Chembiochem 2019; 20:2241-2247. [PMID: 30989776 DOI: 10.1002/cbic.201900143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 12/26/2022]
Abstract
Fluorescent metal sensors based on DNA often rely on changes in end-to-end distance or local environmental near fluorophore labels. Because metal ions can also nonspecifically interact with DNA through various mechanisms, such as charge screening, base binding, and increase or decrease in duplex stability, robust and specific sensing of metal ions has been quite challenging. In this work, a side-by-side comparison of two signaling strategies on a Na+ -specific DNAzyme that contained a Na+ -binding aptamer was performed. The duplex regions of the DNAzyme was systematically shortened and its effect was studied by using a 2-aminopurine (2AP)-labeled substrate strand. Na+ binding affected the local environmental of the 2AP label and increased its fluorescence. A synergistic process of Na+ binding and forming the duplex on the 5'-end of the enzyme strand was observed, and this end was close to the aptamer loop. Effective Na+ binding was achieved with a five base-pair stem. The effect on the 3'-end is more continuous, and the stem needs to form first before Na+ can bind. With an optimized substrate binding arm, a FRET-based sensor has been designed by labeling the two ends of a cis form of the DNAzyme with two fluorophores. In this case, Na+ failed to show a distinct difference from that of Li+ or K+ ; thus indicating that probing changes to the local environment allows more robust sensing of metal ions.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and, Instruments, Tianjin University, Tianjin, 300072, P.R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yangyang Chang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and, Instruments, Tianjin University, Tianjin, 300072, P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
He Y, Chen D, Huang PJJ, Zhou Y, Ma L, Xu K, Yang R, Liu J. Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Res 2019; 46:10262-10271. [PMID: 30215808 PMCID: PMC6212836 DOI: 10.1093/nar/gky807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, the excellent Na+ selectivity of a few RNA-cleaving DNAzymes was exploited, where Na+ can be around 3000-fold more effective than K+ for promoting catalysis. By using a double mutant based on the Ce13d DNAzyme, and by lowering the temperature, increased 2-aminopurine (2AP) fluorescence was observed with addition of both Na+ and K+. The fluorescence increase was similar for these two metals at below 10 mM, after which K+ took a different pathway. Since 2AP probes its local base stacking environment, K+ can be considered to induce misfolding. Binding of both Na+ and K+ was specific, since single base mutations could fully inhibit 2AP fluorescence for both metals. The binding thermodynamics was measured by temperature-dependent experiments revealing enthalpy-driven binding for both metals and less coordination sites compared to G-quadruplex DNA. Cleavage activity assays indicated a moderate cleavage activity with 10 mM K+, while further increase of K+ inhibited the activity, also supporting its misfolding of the DNAzyme. For comparison, a G-quadruplex DNA was also studied using the same system, where Na+ and K+ led to the same final state with only around 8-fold difference in Kd. This study provides interesting insights into strategies for discriminating Na+ and K+.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yibo Zhou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kexin Xu
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
He Y, Zhou Y, Chen D, Liu J. Global Folding of a Na
+
‐Specific DNAzyme Studied by FRET. Chembiochem 2018; 20:385-393. [DOI: 10.1002/cbic.201800548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Zhou
- School of Chemistry and Biological EngineeringChangsha University of Science and Technology Changsha 410114 P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
11
|
Jimmy Huang PJ, Moon WJ, Liu J. Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. Biochemistry 2018; 58:422-429. [PMID: 30272443 DOI: 10.1021/acs.biochem.8b00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions play a critical role in the RNA-cleavage reaction by interacting with the scissile phosphate and stabilizing the highly negatively charged transition state. Many metal-dependent DNAzymes have been selected for RNA cleavage. Herein, we report that the Ce13d DNAzyme can use nonmetallic iodine (I2) to cleave a phosphorothioate (PS)-modified substrate. The cleavage yield exceeded 60% for both the Rp and Sp stereoisomers in 10 s, while the yield without the enzyme strand was only ∼10%. The Ce13d cleavage with I2 also required Na+, consistent with the property of Ce13d and confirming the similar role of I2 as a metal ion. Ce13d had the highest yield among eight tested DNAzymes, with the second highest DNAzyme showing only 20% cleavage. The incomplete cleavage was due to competition from desulfurization and isomerization reactions. This DNAzyme was engineered for fluorescence-based I2 detection. With EDTA for masking metal ions, I2 was selectively detected down to 4.7 nM. Oxidation of I- with Fe3+ produced I2 in situ, allowing detection of Fe3+ down to 78 nM. By harnessing nonelectrostatic interactions, such as the I2/sulfur interaction observed here, more nonmetal species might be discovered to assist DNAzyme-based RNA cleavage.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
12
|
Ma L, Liu J. An in Vitro-Selected DNAzyme Mutant Highly Specific for Na + under Slightly Acidic Conditions. Chembiochem 2018; 20:537-542. [PMID: 29989277 DOI: 10.1002/cbic.201800322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 12/19/2022]
Abstract
Sodium is one of the most common metal ions in biology; however, DNA-based sodium probes have only been reported recently. A Na+ -specific RNA-cleaving DNAzyme named NaA43 is active with Na+ alone. In this work, we were using Co(NH3 )6 3+ as the intended metal cofactor for in vitro selection, but obtained a mutant of the NaA43 DNAzyme. The mutant was named NaH1, and differs from NaA43 by only two nucleotides. NaA43 has an optimal pH of 7.0, whereas the optimal pH for NaH1 is 6.0. This difference might be due to our selection having been performed at pH 6.0. NaH1 also displays an excellent selectivity for sodium relative to other competing monovalent ions, as well as a fast catalytic rate of (0.11±0.01) min-1 with 50 mm Na+ . At low Na+ concentrations, the selected DNAzyme exhibited a higher cleavage rate than NaA43 and thus a tighter apparent Kd of (12.0±1.6) mm Na+ . Furthermore, the NaH1 DNAzyme was engineered into a fluorescent Na+ biosensor by attaching a fluorophore/quencher pair to the DNAzyme with a detection limit of 223 μm Na+ . Preliminary work on detection of Na+ in serum was demonstrated as well. This study provides a useful mutant that works in a slightly acidic environment, which might be useful for sensing Na+ in acidic in vivo environments.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
13
|
Affiliation(s)
- Tianmeng Yu
- Department of Chemistry and Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Wenhu Zhou
- Department of Chemistry and Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
- Xiangya School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
14
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
15
|
Zhou W, Ding J, Liu J. Splitting a DNAzyme enables a Na +-dependent FRET signal from the embedded aptamer. Org Biomol Chem 2018; 15:6959-6966. [PMID: 28792040 DOI: 10.1039/c7ob01709j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes have been reported, and a Na+ aptamer was identified from the NaA43 and Ce13d DNAzymes. These DNAzymes and the embedded aptamer have been used for Na+ detection. In this work, we studied the Na+-dependent folding of the Ce13d DNAzyme using fluorescence resonance energy transfer (FRET). When a FRET donor and an acceptor were respectively labeled at the ends of the DNAzyme, Na+ failed to induce an obvious end-to-end distance change, suggesting a rigid global structure. To relax this rigidity, the Ce13d DNAzyme was systematically split at various sites on both the enzyme and the substrate strands. The Na+ binding activity of the split structures was characterized by 2-aminopurine fluorescence, enzymatic activity, Tb3+-sensitized luminescence, and DMS footprinting. Among the various constructs, the only one that retained Na+ binding was the split at the cleavage site, and this construct was further labeled with two dyes near the split site. This FRET result showed Na+-dependent folding with a Kd of 26 mM Na+. This study provides important structural information related to Na+ binding to this new aptamer, which might also be useful for future work in biosensor design.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | | | | |
Collapse
|
16
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
17
|
Zhou W, Saran R, Ding J, Liu J. Two Completely Different Mechanisms for Highly Specific Na + Recognition by DNAzymes. Chembiochem 2017; 18:1828-1835. [PMID: 28658518 DOI: 10.1002/cbic.201700184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Our view of the interaction between Na+ and nucleic acids was changed by a few recently discovered Na+ -specific RNA-cleaving DNAzymes. In addition to nonspecific electrostatic interactions, highly specific recognition is also possible. Herein, two such DNAzymes, named EtNa and Ce13d, are compared to elucidate their mechanisms of Na+ binding. Mutation studies indicate that they have different sequence requirements. Phosphorothioate (PS) substitution at the scissile phosphate drops the activity of EtNa 140-fold, and it cannot be rescued by thiophilic Cd2+ or Mn2+ , whereas the activity of PS-modified Ce13d can be rescued. Na+ -dependent activity assays indicate that two Na+ ions bind cooperatively in EtNa, and each Na+ likely interacts with a nonbridging oxygen atom in the scissile phosphate, whereas Ce13d binds only one Na+ ion in a well-defined Na+ aptamer, and this Na+ ion does not directly interact with the scissile phosphate. Both DNAzymes display a normal pH-rate profile, with a single deprotonation reaction required for catalysis. For EtNa, Na+ fails to protect the conserved nucleotides from dimethyl sulfate attack, and no specific Na+ binding is detected by 2-aminopurine fluorescence, both of which are different from those observed for Ce13d. This work suggests that EtNa binds Na+ mainly through its scissile phosphate without significant involvement of the nucleotides in the enzyme strand, whereas Ce13d has a well-defined aptamer for Na+ binding. Therefore, DNA has at least two distinct ways to achieve highly selective Na+ binding.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Runjhun Saran
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
18
|
Folding of the silver aptamer in a DNAzyme probed by 2-aminopurine fluorescence. Biochimie 2017; 145:145-150. [PMID: 28711684 DOI: 10.1016/j.biochi.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
The RNA-cleaving Ag10c DNAzyme was recently isolated via in vitro selection and it can bind two Ag+ ions for activity. The Ag10c contains a well-defined Ag+ binding aptamer as indicated by DMS footprinting. Since aptamer binding is often accompanied with conformational changes, we herein used 2-aminopurine (2AP) to probe its folding in the presence of Ag+. The Ag10c was respectively labeled with 2AP at three different positions, both in the substrate strand and in the enzyme strand, one at a time. Ag+-induced folding was observed at the substrate cleavage junction and the A9 position of the enzyme strand, consistent with aptamer binding. The measured Kd at the A9 position was 18 μM Ag+ with a Hill coefficient of 2.17, similar to those obtained from the previous cleavage activity based assays. However, labeling a 2AP at the A2 position inhibited the activity and folding. Compared to other metal ions, Ag+ has a unique sigmoidal folding profile indicative of multiple silver binding cooperatively. This suggests that Ag+ can induce a local folding in the enzyme loop and this folding is important for activity. This study provides important biophysical insights into this new DNAzyme, suggesting the possibility of designing folding-based biosensors for Ag+.
Collapse
|
19
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Saran R, Kleinke K, Zhou W, Yu T, Liu J. A Silver-Specific DNAzyme with a New Silver Aptamer and Salt-Promoted Activity. Biochemistry 2017; 56:1955-1962. [PMID: 28345892 DOI: 10.1021/acs.biochem.6b01131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most RNA-cleaving DNAzymes require a metal ion to interact with the scissile phosphate for activity. Therefore, few unmodified DNAzymes work with thiophilic metals because of their low affinity for phosphate. Recently, an Ag+-specific Ag10c DNAzyme was reported via in vitro selection. Herein, Ag10c is characterized to rationalize the role of the strongly thiophilic Ag+. Systematic mutation studies indicate that Ag10c is a highly conserved DNAzyme and its Ag+ binding is unrelated to C-Ag+-C interaction. Its activity is enhanced by increasing Na+ concentrations in buffer. At the same metal concentration, activity decreases in the following order: Li+ > Na+ > K+. Ag10c binds one Na+ ion and two Ag+ ions for catalysis. The pH-rate profile has a slope of ∼1, indicating a single deprotonation step. Phosphorothioate substitution at the scissile phosphate suggests that Na+ interacts with the pro-Rp oxygen of the phosphate, and dimethyl sulfate footprinting indicates that the DNAzyme loop is a silver aptamer binding two Ag+ ions. Therefore, Ag+ exerts its function allosterically, while the scissile phosphate interacts with Na+, Li+, Na+, or Mg2+. This work suggests the possibility of isolating thiophilic metal aptamers based on DNAzyme selection, and it also demonstrates a new Ag+ aptamer.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kimberly Kleinke
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Wenhu Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Tianmeng Yu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Abstract
DNAzymes are catalytically active DNA molecules that are obtained via in vitro selection. RNA-cleaving DNAzymes have attracted significant attention for both therapeutic and diagnostic applications due to their excellent programmability, stability, and activity. They can be designed to cleave a specific mRNA to down-regulate gene expression. At the same time, DNAzymes can sense a broad range of analytes. By combining these two functions, theranostic DNAzymes are obtained. This review summarizes the progress of DNAzyme for theranostic applications. First, in vitro selection of DNAzymes is briefly introduced, and some representative DNAzymes related to biological applications are summarized. Then, the applications of DNAzyme for RNA cleaving are reviewed. DNAzymes have been used to cleave RNA for treating various diseases, such as viral infection, cancer, inflammation and atherosclerosis. Several formulations have entered clinical trials. Next, the use of DNAzymes for detecting metal ions, small molecules and nucleic acids related to disease diagnosis is summarized. Finally, the theranostic applications of DNAzyme are reviewed. The challenges to be addressed include poor DNAzyme activity under biological conditions, mRNA accessibility, delivery, and quantification of gene expression. Possible solutions to overcome these challenges are discussed, and future directions of the field are speculated.
Collapse
|
22
|
Zhou W, Ding J, Liu J. A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing. Nucleic Acids Res 2016; 44:10377-10385. [PMID: 27655630 PMCID: PMC5137442 DOI: 10.1093/nar/gkw845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Sodium is one of the most abundant metals in the environment and in biology, playing critical ecological and physiological roles. Na+ is also the most common buffer salt for nucleic acids research, while its specific interaction with DNA has yet to be fully studied. Herein, we probe a highly selective and robust Na+ aptamer using 2-aminopurine (2AP), a fluorescent adenine analog. This aptamer has two DNA strands derived from the Ce13d DNAzyme. By introducing a 2AP at the cleavage site of the substrate strand, Na+ induces ∼40% fluorescence increase. The signaling is improved by a series of rational mutations, reaching >600% with the C10A20 double mutant. This fluorescence enhancement suggests relaxed base stacking near the 2AP label upon Na+ binding. By replacing a non-conserved adenine in the enzyme strand by 2AP, Na+-dependent fluorescence quenching is observed, suggesting that the enzyme loop folds into a more compact structure upon Na+ binding. The fluorescence changes allow for Na+ detection. With an optimized sequence, a detection limit of 0.4 mM Na+ is achieved, reaching saturated signal in less than 10 s. The sensor response is insensitive to ionic strength, which is critical for Na+ detection.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China .,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Zhang W, Feng Q, Chang D, Tram K, Li Y. In vitro selection of RNA-cleaving DNAzymes for bacterial detection. Methods 2016; 106:66-75. [DOI: 10.1016/j.ymeth.2016.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/23/2022] Open
|
24
|
Zhou W, Yu T, Vazin M, Ding J, Liu J. Cr3+ Binding to DNA Backbone Phosphate and Bases: Slow Ligand Exchange Rates and Metal Hydrolysis. Inorg Chem 2016; 55:8193-200. [DOI: 10.1021/acs.inorgchem.6b01357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tianmeng Yu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Vazin
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Zhou W, Ding J, Liu J. A Selective Na(+) Aptamer Dissected by Sensitized Tb(3+) Luminescence. Chembiochem 2016; 17:1563-70. [PMID: 27238890 DOI: 10.1002/cbic.201600174] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 02/04/2023]
Abstract
A previous study of two RNA-cleaving DNAzymes, NaA43 and Ce13d, revealed the possibility of a common Na(+) aptamer motif. Because Na(+) binding to DNA is a fundamental biochemical problem, the interaction between Ce13d and Na(+) was studied in detail by using sensitized Tb(3+) luminescence spectroscopy. Na(+) displaces Tb(3+) from the DNAzyme, and thus quenches the emission from Tb(3+) . The overall requirement for Na(+) binding includes the hairpin and the highly conserved 16-nucleotide loop in the enzyme strand, along with a few unpaired nucleotides in the substrate. Mutation studies indicate good correlation between Na(+) binding and cleavage activity, thus suggesting a critical role of Na(+) binding for the enzyme activity. Ce13d displayed a Kd of ∼20 mm with Na(+) (other monovalent cations: 40-60 mm). The Kd values for other metal ions are mainly due to non-specific competition. With a single nucleotide mutation, the specific Na(+) binding was lost. Another mutant improved Kd to 8 mm with Na(+) . This study has demonstrated a Na(+) aptamer with important biological implications and analytical applications. It has also defined the structural requirements for Na(+) binding and produced an improved mutant.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China. .,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
26
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
27
|
Huang PJJ, Vazin M, Liu J. In Vitro Selection of a DNAzyme Cooperatively Binding Two Lanthanide Ions for RNA Cleavage. Biochemistry 2016; 55:2518-25. [PMID: 27054549 DOI: 10.1021/acs.biochem.6b00132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trivalent lanthanide ions (Ln(3+)) were recently employed to select RNA-cleaving DNAzymes, and three new DNAzymes have been reported so far. In this work, dysprosium (Dy(3+)) was used with a library containing 50 random nucleotides. After six rounds of in vitro selection, a new DNAzyme named Dy10a was obtained and characterized. Dy10a has a bulged hairpin structure cleaving a RNA/DNA chimeric substrate. Dy10a is highly active in the presence of the five Ln(3+) ions in the middle of the lanthanide series (Sm(3+), Eu(3+), Gd(3+), Tb(3+), and Dy(3+)), while its activity descends on the two sides. The cleavage rate reaches 0.6 min(-1) at pH 6 with just 200 nM Sm(3+), which is the fastest among all known Ln(3+)-dependent enzymes. Dy10a binds two Ln(3+) ions cooperatively. When a phosphorothioate (PS) modification is introduced at the cleavage junction, the activity decreases by >2500-fold for both the Rp and Sp diastereomers, and thiophilic Cd(2+) cannot rescue the activity. The pH-rate profile has a slope of 0.37 between pH 4.2 and 5.2, and the slope was even lower at higher pH. On the basis of these data, a model of metal binding is proposed. Finally, a catalytic beacon sensor that can detect Ho(3+) down to 1.7 nM is constructed.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Mahsa Vazin
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
28
|
Pobanz K, Lupták A. Improving the odds: Influence of starting pools on in vitro selection outcomes. Methods 2016; 106:14-20. [PMID: 27109058 DOI: 10.1016/j.ymeth.2016.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
As with any outcome of an evolutionary process, the success of in vitro selection experiments depends critically on the starting population. In vitro selections isolate functional nucleic acids that fold into specific structures and form unique binding and catalytic sites. The selection outcomes therefore depend on the molecular and structural diversity of the initial pools. In addition, the experiments are strongly influenced by the length of the starting pool. Longer randomized regions support the formation of more complex structures and presumably allow formation of more intricate tertiary interactions, but they also tend to misfold and aggregate, whereas shorter pools are sufficient to yield simpler motifs. Furthermore, introducing a sequence bias that promotes secondary structure formation appears to prejudice the population towards more functional macromolecules. We review the literature on the influence of the starting pools on the predicted and actual outcomes of laboratory evolution experiments.
Collapse
Affiliation(s)
- Kelsey Pobanz
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Andrej Lupták
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1
| |
Collapse
|
30
|
Zhou W, Zhang Y, Huang PJJ, Ding J, Liu J. A DNAzyme requiring two different metal ions at two distinct sites. Nucleic Acids Res 2015; 44:354-63. [PMID: 26657636 PMCID: PMC4705669 DOI: 10.1093/nar/gkv1346] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Most previously reported RNA-cleaving DNAzymes require only a single divalent metal ion for catalysis. We recently reported a general trivalent lanthanide-dependent DNAzyme named Ce13d. This work shows that Ce13d requires both Na+ and a trivalent lanthanide (e.g. Ce3+), simultaneously. This discovery is facilitated by the sequence similarity between Ce13d and a recently reported Na+-specific DNAzyme, NaA43. The Ce13d cleavage rate linearly depends on the concentration of both metal ions. Sensitized Tb3+ luminescence and DMS footprinting experiments indicate that the guanines in the enzyme loop are important for Na+-binding. The Na+ dissociation constants of Ce13d measured from the cleavage activity assay, Tb3+ luminescence and DMS footprinting are 24.6, 16.3 and 47 mM, respectively. Mutation studies indicate that the role of Ce3+ might be replaced by G23 in NaA43. Ce3+ functions by stabilizing the transition state phosphorane, thus promoting cleavage. G23 competes favorably with low concentration Ce3+ (below 1 μM). The G23-to-hypoxanthine mutation suggests the N1 position of the guanine as a hydrogen bond donor. Together, Ce13d has two distinct metal binding sites, each fulfilling a different role. DNAzymes can be quite sophisticated in utilizing metal ions for catalysis and molecular recognition, similar to protein metalloenzymes.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yupei Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
31
|
A Quarter Century of In Vitro Selection. J Mol Evol 2015; 81:137-9. [PMID: 26597944 DOI: 10.1007/s00239-015-9723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 01/16/2023]
|