1
|
ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes. Nat Commun 2022; 13:4142. [PMID: 35842441 PMCID: PMC9288460 DOI: 10.1038/s41467-022-31829-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-β cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-β cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-β cells that are useful as a potential source for cell replacement therapies. Immature function and fragility hinder application of hESC-derived β cells (SC-β cell) for diabetes cell therapy. Here, the authors identify ZnT8 as a gene editing target to enhance the insulin secretion and cell survival under metabolic stress by abolishing zinc transport in SC-β cells.
Collapse
|
2
|
Barragán-Álvarez CP, Padilla-Camberos E, Díaz NF, Cota-Coronado A, Hernández-Jiménez C, Bravo-Reyna CC, Díaz-Martínez NE. Loss of Znt8 function in diabetes mellitus: risk or benefit? Mol Cell Biochem 2021; 476:2703-2718. [PMID: 33666829 DOI: 10.1007/s11010-021-04114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic β cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.
Collapse
Affiliation(s)
- Carla P Barragán-Álvarez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Nestor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Agustín Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Claudia Hernández-Jiménez
- Departamento de Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nestor E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.
| |
Collapse
|
3
|
Syring KE, Bosma KJ, Goleva SB, Singh K, Oeser JK, Lopez CA, Skaar EP, McGuinness OP, Davis LK, Powell DR, O’Brien RM. Potential positive and negative consequences of ZnT8 inhibition. J Endocrinol 2020; 246:189-205. [PMID: 32485672 PMCID: PMC7351606 DOI: 10.1530/joe-20-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
SLC30A8 encodes the zinc transporter ZnT8. SLC30A8 haploinsufficiency protects against type 2 diabetes (T2D), suggesting that ZnT8 inhibitors may prevent T2D. We show here that, while adult chow fed Slc30a8 haploinsufficient and knockout (KO) mice have normal glucose tolerance, they are protected against diet-induced obesity (DIO), resulting in improved glucose tolerance. We hypothesize that this protection against DIO may represent one mechanism whereby SLC30A8 haploinsufficiency protects against T2D in humans and that, while SLC30A8 is predominantly expressed in pancreatic islet beta cells, this may involve a role for ZnT8 in extra-pancreatic tissues. Consistent with this latter concept we show in humans, using electronic health record-derived phenotype analyses, that the 'C' allele of the non-synonymous rs13266634 SNP, which confers a gain of ZnT8 function, is associated not only with increased T2D risk and blood glucose, but also with increased risk for hemolytic anemia and decreased mean corpuscular hemoglobin (MCH). In Slc30a8 KO mice, MCH was unchanged but reticulocytes, platelets and lymphocytes were elevated. Both young and adult Slc30a8 KO mice exhibit a delayed rise in insulin after glucose injection, but only the former exhibit increased basal insulin clearance and impaired glucose tolerance. Young Slc30a8 KO mice also exhibit elevated pancreatic G6pc2 gene expression, potentially mediated by decreased islet zinc levels. These data indicate that the absence of ZnT8 results in a transient impairment in some aspects of metabolism during development. These observations in humans and mice suggest the potential for negative effects associated with T2D prevention using ZnT8 inhibitors.
Collapse
Affiliation(s)
- Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Karin J. Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Slavina B. Goleva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kritika Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Christopher A. Lopez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Eric P. Skaar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Lea K. Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David R. Powell
- Lexicon Pharmaceuticals Incorporated, 8800 Technology Forest Place, The Woodlands, Texas 77381
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
4
|
Bosma KJ, Syring KE, Oeser JK, Lee JD, Benninger RKP, Pamenter ME, O'Brien RM. Evidence that Evolution of the Diabetes Susceptibility Gene SLC30A8 that Encodes the Zinc Transporter ZnT8 Drives Variations in Pancreatic Islet Zinc Content in Multiple Species. J Mol Evol 2019; 87:147-151. [PMID: 31273433 PMCID: PMC6699160 DOI: 10.1007/s00239-019-09898-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 11/28/2022]
Abstract
Pancreatic islet zinc levels vary widely between species. Very low islet zinc levels in Guinea pigs were thought to be driven by evolution of the INS gene that resulted in the generation of an isoform lacking a histidine at amino acid 10 in the B chain of insulin that is unable to bind zinc. However, we recently showed that the SLC30A8 gene, that encodes the zinc transporter ZnT8, is a pseudogene in Guinea pigs, providing an alternate mechanism to potentially explain the low zinc levels. We show here that the SLC30A8 gene is also inactivated in sheep, cows, chinchillas and naked mole rats but in all four species a histidine is retained at amino acid 10 in the B chain of insulin. Zinc levels are known to be very low in sheep and cow islets. These data suggest that evolution of SLC30A8 rather than INS drives variation in pancreatic islet zinc content in multiple species.
Collapse
Affiliation(s)
- Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - Jason D Lee
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1N 6N5, Canada
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 8415 MRB IV, 2213 Garland Ave, Nashville, TN, 37232-0615, USA.
| |
Collapse
|