1
|
Guillante T, Fonseca JDS, Costa PG, Bianchini A, Robaldo RB, Zebral YD. Sex-biased response of pollution biomarkers in fish: Insights from the killifish Poecilia vivipara. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106613. [PMID: 37352752 DOI: 10.1016/j.aquatox.2023.106613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Copper ions (Cu) are one of the most frequent trace-contaminants found in Brazilian waters and, although considered as an essential element, in high concentrations can accumulate and induce toxicity. Biomarkers are important tools that can be used to assess these impacts, but to be considered trustworthy, they have to be previously tested in target organisms through laboratory studies under controlled conditions. However, many of these experiments are conducted using only males, as it is believed that the hormonal variation of females can bias the results, increasing data variability. Notwithstanding, few studies have actually tested this hypothesis, highlighting the importance of considering and measuring the role of sex in ecotoxicological studies. The aim this study was to evaluate the influence of sex on biomarkers classically used in environmental monitoring programs using the fish Poecilia vivipara as model. For this, females and males were exposed for 96 h to two Cu concentrations (9 and 20 μg/L) and a control group. In liver and gills, Cu accumulation, total antioxidant capacity (TAC) and lipid peroxidation (LPO) were evaluated. In addition, samples of peripheral blood were used for neutrophil to lymphocyte ratio determination, a measure of the onset of secondary stress. Results show that Cu hepatic accumulation did not differ between females and males, but higher levels of this metal were observed in exposed animals compared to control fish. Additionally, interactive effects were observed for hepatic LPO, as males showed elevated oxidative damage in comparison to females. Moreover, Cu exposure elevated hepatic LPO relative to control only in males, but this increase in oxidative damage was not accompanied by changes in liver TAC. On the other hand, differences in branchial Cu accumulation and LPO were not observed. Conversely, control females showed elevated TAC in comparison to control males, but Cu exposure eliminated this difference. Cu exposure also induced an increase in the N:L ratio, indicating the presence of a secondary stress response unrelated to sex. Ultimately, the findings of this study demonstrate that sex can influence the response of biomarkers that are typically used in ecotoxicological investigations in a multifaceted manner. As a result, using animals from a singular sex in such studies may result in consequential outcomes, potentially leading to underestimation or overestimation of results.
Collapse
Affiliation(s)
- Tainá Guillante
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | | | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
2
|
Wu SM, Shu LH, Liu JH. Anti-oxidative functions of mt2 and smtB mRNA expression in the gills and brain of zebrafish (Danio rerio) upon cadmium exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1709-1720. [PMID: 27329524 DOI: 10.1007/s10695-016-0251-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
There were not any past studies about metallothionein isoforms (smtB and mt2) having anti-oxidative functions on zebrafish after Cd2+ exposure. On the other hand, the anti-oxidative enzymatic factors such as superoxide dismutase (sod), glutathione peroxidase (gpx1a), and catalase (cat) are used as references to investigate whether the smtB and mt2 have anti-oxidative responses on the gills and brain of zebrafish after 1-6 h of 0 and 1.78 μM Cd2+ exposure. The anti-oxidative system such as sod, cat, and gpx1a mRNA expressions demonstrated a cascade response upon Cd2+-induced oxidative stress in the present study. Interestingly, the smtB mRNA expression levels increased by 3.2- to 6.1-fold, and mt2 raised by 4.1- to 11.3-fold in gills at 1 and 3 h after exposure to Cd2+, respectively. On the other hand, the smtB mRNA levels increased by 10.6- to 58.6-fold, but mt2 mRNA levels increased by 2.3- to 11.1-fold in brain at 1 and 3 h after exposure to Cd2+, respectively. In addition, both tissues showed increased apoptosis levels at 3 h, and recovery after 6 h of Cd2+ exposure. From the results, we suggest that both mt2 and smtB play a role in anti-oxidation responses within 6 h after exposure to Cd2+. In conclusion, the smtB mRNA levels have a higher response than mt2 in the brain, but both mRNA expressions appear to have a similar pattern in the gill. We suggest that smtB plays an important role to defend oxidative stress in the brain of adult zebrafish upon acute Cd2+ exposure.
Collapse
Affiliation(s)
- Su Mei Wu
- Department of Aquatic Biosciences, National Chiayi University, 300 University Road, Chiayi, 600, Taiwan.
| | - Li-Hsin Shu
- Department of Aquatic Biosciences, National Chiayi University, 300 University Road, Chiayi, 600, Taiwan
| | - Jia-Hao Liu
- Department of Aquatic Biosciences, National Chiayi University, 300 University Road, Chiayi, 600, Taiwan
| |
Collapse
|
3
|
Wu SM, Tsai JW, Tzeng WN, Chen WY, Shih WY. Analyzing the effectiveness of using branchial NKA activity as a biomarker for assessing waterborne copper toxicity in tilapia (Oreochromis mossambicus): A damage-based modeling approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 163:51-59. [PMID: 25854698 DOI: 10.1016/j.aquatox.2015.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Branchial Na(+)-K(+)-ATPase (NKA) activity has been suggested as a promising biomarker for assessing metal stress in aquatic organisms. However, studies that systematically show the effectiveness of using NKA activity to detect metal exposure and toxicity at the individual level are limited. In this study, we aimed to determine whether branchial NKA activity mechanistically responds to the accumulation of waterborne copper (Cu) and accounts for observed toxicity over time under environmentally-relevant and aquafarming Cu exposure levels (0.2, 1 and 2 mg L(-1)). Temporal trends in Cu accumulation and the corresponding responses of branchial NKA activity resulting from Cu exposure were investigated in laboratory experiments conducted on juvenile tilapia (Oreochromis mossambicus), a freshwater teleost that shows potential as a bioindicator of real-time and historical metal pollution. We used the process-based damage assessment model (DAM) to inspect the time course of Cu toxicity by integrating the compensation process between Cu-induced inhibition and repair of branchial NKA activity. NKA activity acted as a sensitive biomarker for Cu exposure and accumulation in tilapia, which showed induced impairment of osmoregulation and lethality when they were exposed to environmentally relevant levels (0.2 mg L(-1)), but not to higher exposure levels (1 and 2 mg L(-1)) in aquaculture farms or contaminated aquatic ecosystems. This study highlights the benefits and limitations of using branchial NKA activity as a sensitive biomarker to assess the health status of a fish population and its ecosystem.
Collapse
Affiliation(s)
- Su-Mei Wu
- Department of Aquatic Biosciences, National Chiayi University, No. 300 University Rd., Chiayi 600, Taiwan
| | - Jeng-Wei Tsai
- Department of Biological Science and Technology, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 404, Taiwan.
| | - Wen-Nan Tzeng
- Department of Aquatic Biosciences, National Chiayi University, No. 300 University Rd., Chiayi 600, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung 807, Taiwan
| | - Wan-Yu Shih
- Department of Science Education and Application, National Taichung University of Education, No. 140, Minsheng Rd., Taichung 403, Taiwan
| |
Collapse
|
4
|
Nakayama SMM, Ikenaka Y, Muzandu K, Choongo K, Yabe J, Muroya T, Ijiri S, Minagawa M, Umemura T, Ishizuka M. Geographic information system-based source estimation of copper pollution in Lake Itezhi-tezhi and metal-accumulation profiles in Oreochromis spp. from both field and laboratory studies. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:119-129. [PMID: 23052357 DOI: 10.1007/s00244-012-9802-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
The Copperbelt region, upstream of the Kafue River, including Lake Itezhi-tezhi (ITT), in Zambia has extensive copper (Cu) mines. In our field study, geographic information system analysis in lake sediment indicated that the northern part of the lake, i.e., the Copperbelt region, could be the source of Cu pollution. Concentrations of Cu in stomach contents between fish species were not significantly different. However, Oreochromis spp. liver showed significantly greater Cu concentrations than those in other fish species. Log liver [Cu], standard length, and nitrogen stable isotope ratio were positively correlated only in Oreochromis spp. In the laboratory study, O. niloticus and O. latipes were exposed to Cu for 4 days, and recovery phases ≤ 28 days were examined. O. niloticus showed significantly greater concentrations of Cu compared with O. latipes at all sampling points. Significantly greater concentrations of Hg in Schilbe intermedius liver than for other fish species were observed, whereas O. macrochir showed significantly greater concentrations of cadmium. In conclusion, the northern part of the lake could be the source of Cu pollution in Lake ITT. Diet may not be the reason for high Cu accumulation in Oreochromis spp. Results from both field and laboratory studies imply that Oreochromis spp. contain high concentrations of Cu under normal physiological conditions.
Collapse
Affiliation(s)
- Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tellis MS, Alsop D, Wood CM. Effects of copper on the acute cortisol response and associated physiology in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:281-9. [PMID: 21964321 DOI: 10.1016/j.cbpc.2011.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study was to determine the effects of chronic waterborne copper (Cu) exposure on the acute stress-induced cortisol response and associated physiological consequences in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 30 μg Cu/L in moderately hard water (120 mg/L as CaCO(3)) for 40 days, following which time the acute cortisol response was examined with a series of stressors. At 40 days, a 65% increase in Cu was observed in the gill, but no accumulation was observed in the liver, brain or head kidney. Stressors such as air exposure or confinement did not elicit an increase in circulating cortisol levels for Cu-exposed fish, in contrast to controls. However, this inhibitory effect on the acute cortisol response appeared to have few implications on the ability of Cu-exposed fish to maintain ion and carbohydrate homeostasis. For example, plasma Na(+), Ca(2+) and glucose levels as well as hepatic glycogen levels were the same post-stress in control and Cu-exposed fish. Trout were also challenged with exposure to 50% seawater for 48 h, where Cu-exposed trout maintained plasma Na(+), glucose and hepatic glycogen levels. However, Cu-exposed fish experienced decreased plasma K(+) levels throughout the Cu exposure and stress tests. In conclusion, chronic Cu exposure resulted in the abolition of an acute cortisol response post-stress. There was no Cu accumulation in the hypothalamus-pituitary-interrenal axis (HPI axis) suggesting this was not a direct toxic effect of Cu on the cortisol regulatory pathway. However, the lack of an acute cortisol response in Cu-exposed fish did not impair the ability of the fish to maintain ion and carbohydrate homeostasis. This effect on cortisol may be a strategy to reduce costs during the chronic stress of Cu exposure, and not endocrine disruption as a result of toxic injury.
Collapse
Affiliation(s)
- Margaret S Tellis
- Department of Biology, McMaster University, 1280 Main St. W. Hamilton ON, Canada L8S 4K1.
| | | | | |
Collapse
|
6
|
Tsai JW, Huang YH, Chen WY, Liao CM. Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:561-572. [PMID: 21494834 DOI: 10.1007/s10661-011-1988-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/23/2011] [Indexed: 05/30/2023]
Abstract
Long-term metal exposure risk assessment for aquatic organism is a challenge because the chronic toxicity of chemical is not only determined by the amount of accumulated chemical but also affected by the ability of biological regulation or detoxification of biota. We quantified the arsenic (As) detoxification ability of tilapia and developed a biologically based growth toxicity modeling algorithm by integrating the process of detoxification and active regulations (i.e., the balance between accumulated dose, tissue damage and recovery, and the extent of induced toxic effect) for a life span ecological risk prediction. Results showed that detoxification rate (k (dex)) increased with increasing of waterborne As when the accumulated metal exceeded the internal threshold level of 19.1 μg g( - 1). The k (dex) values were comparable to or even higher than the rates of physiological loss and growth dilution in higher exposure conditions. Model predictions obtained from the proposed growth toxicity model were consistent with the measured growth data. The growth toxicity model was also used to illustrate the health condition and growth trajectories of tilapia from birth to natural death under different exposure scenarios. Results showed that temporal trends of health rates and growth trajectories of exposed fish in different treatments decreased with increasing time and waterborne As, revealing concentration-specific patterns. We suggested that the detoxification rate is critical and should be involved in the risk assessments framework. Our proposed modeling algorithm well characterizes the internal regulation activities and biological response of tilapia under long-term metal stresses.
Collapse
Affiliation(s)
- Jeng-Wei Tsai
- Institute of Ecology and Evolutionary Biology, China Medical University, Taichung, Taiwan 40402, Republic of China
| | | | | | | |
Collapse
|
7
|
De Boeck G, Smolders R, Blust R. Copper toxicity in gibel carp Carassius auratus gibelio: importance of sodium and glycogen. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:332-7. [PMID: 20684062 DOI: 10.1016/j.cbpc.2010.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In general, copper is primarily an osmoregulatory toxicant to fish and Cu toxicity is thought to be related to the rate of sodium loss. Looking at a previous research it is striking that gibel carp, Carassius auratus gibelio, do not seem so susceptible to the first ionoregulatory shock phase of Cu exposure, but rather build up physiological disturbances slowly until mortality occurs. Since it was noted that gibel carp experience severe hypoxia under Cu exposure, we hypothesised that, besides the Na loss, the slow depletion of liver glycogen stores contributed equally to the collapse of physiological integrity. It is clear from our results that glycogen stores are being depleted in Cu exposed fish and that dead fish suffered more extensive glycogen losses compared to surviving fish, with liver glycogen levels of 125+/-8 mg g(-1) in dead fish compared to 230+/-13 mg g(-1) in surviving fish. However, changes in liver glycogen did not contribute significantly to mortality, while changes in whole body sodium and the rate of sodium loss did. Whole body Na levels dropped from 1111+/-48 microg g(-1) dry weight in control fish to 850+/-54 microg g(-1) in surviving fish and to 607+/-24 microg g(-1) in fish that had died resulting in Na loss rates of 1.25+/-0.22 microg g(-1) h(-1) and 3.39+/-0.19 microg g(-1) h(-1) in surviving and dead fish respectively. Our results support the finding that the rate of Na loss largely determines Cu toxicity in fish, even in resistant species.
Collapse
Affiliation(s)
- Gudrun De Boeck
- Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | |
Collapse
|
8
|
Craig PM, Hogstrand C, Wood CM, McClelland GB. Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics 2009; 40:23-33. [PMID: 19789285 DOI: 10.1152/physiolgenomics.00089.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although copper (Cu) is an essential micronutrient for all organisms, in excess, waterborne Cu poses a significant threat to fish from the cellular to population level. We examined the physiological and gene expression endpoints that chronic waterborne Cu exposure (21 d) imposes on soft-water acclimated zebrafish at two environmentally relevant concentrations: 8 microg/l (moderate) and 15 microg/l (high). Using a 16,730 65-mer oligonucleotide customized zebrafish microarray chip related to metal metabolism and toxicity to assess the transcriptomic response, we found that 573 genes in the liver responded significantly to Cu exposure. These clustered into three distinct patterns of expression. There was distinct upregulation of a majority of these genes under moderate Cu exposure and a significant downregulation under high Cu exposure. Microarray results were validated by qPCR of eight genes; two genes, metallothionein 2 (mt2) and Na(+)-K(+)-ATPase 1a1 (atp1a1), displayed increased expression under both Cu exposures, indicative of potential genetic endpoints of Cu toxicity, whereas the remaining six genes demonstrated opposing effects at each Cu exposure. Na(+)-K(+)-ATPase enzyme activity decreased during Cu exposure, which may be linked to Cu's competitive effects with Na(+). Whole body cortisol levels were significantly increased in Cu-exposed fish, which prompted an analysis of the promoter region of all significantly regulated genes for glucocorticoid (GRE) and metal (MRE) response elements to dissociate metal- and stress-specific gene responses. Of the genes significantly regulated, 30% contained only a GRE sequence, whereas 2.5% contained only a consensus MRE. We conclude that the indirect effects of Cu exposure regulate gene expression to a much greater degree than the direct effects.
Collapse
Affiliation(s)
- Paul M Craig
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|