1
|
Bernardini I, Quagliariello A, Peruzza L, Martino ME, Dalla Rovere G, Iori S, Asnicar D, Ciscato M, Fabrello J, Corami F, Cecchetto M, Giubilato E, Carrer C, Bettiol C, Semenzin E, Marcomini A, Matozzo V, Bargelloni L, Milan M, Patarnello T. Contaminants from dredged sediments alter the transcriptome of Manila clam and induce shifts in microbiota composition. BMC Biol 2023; 21:234. [PMID: 37880625 PMCID: PMC10601118 DOI: 10.1186/s12915-023-01741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The reuse of dredged sediments in ports and lagoons is a big issue as it should not affect the quality and the equilibrium of ecosystems. In the lagoon of Venice, sediment management is of crucial importance as sediments are often utilized to built-up structures necessary to limit erosion. However, the impact of sediment reuse on organisms inhabiting this delicate area is poorly known. The Manila clam is a filter-feeding species of high economic and ecological value for the Venice lagoon experiencing a drastic decline in the last decades. In order to define the molecular mechanisms behind sediment toxicity, we exposed clams to sediments sampled from different sites within one of the Venice lagoon navigable canals close to the industrial area. Moreover, we investigated the impacts of dredged sediments on clam's microbial communities. RESULTS Concentrations of the trace elements and organic chemicals showed increasing concentrations from the city of Venice to sites close to the industrial area of Porto Marghera, where PCDD/Fs and PCBs concentrations were up to 120 times higher than the southern lagoon. While bioaccumulation of organic contaminants of industrial origin reflected sediments' chemical concentrations, metal bioaccumulation was not consistent with metal concentrations measured in sediments probably due to the activation of ABC transporters. At the transcriptional level, we found a persistent activation of the mTORC1 signalling pathway, which is central in the coordination of cellular responses to chemical stress. Microbiota characterization showed the over-representation of potential opportunistic pathogens following exposure to the most contaminated sediments, leading to host immune response activation. Despite the limited acquisition of new microbial species from sediments, the latter play an important role in shaping Manila clam microbial communities. CONCLUSIONS Sediment management in the Venice lagoon will increase in the next years to maintain and create new canals as well as to allow the operation of the new mobile gates at the three Venice lagoon inlets. Our data reveal important transcriptional and microbial changes of Manila clams after exposure to sediments, therefore reuse of dredged sediments represents a potential risk for the conservation of this species and possibly for other organisms inhabiting the Venice lagoon.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
- Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, E5B 2L7, St Andrews, New Brunswick, Canada
| | - Maria Ciscato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
- Institute of Polar Sciences, CNR-ISP, Foscari University of Venice, Campus Scientifico - CaVia Torino, 155, 30172, Venice-Mestre, Italy
| | - Martina Cecchetto
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Claudio Carrer
- Thetis S.P.a. C/o laboratorio del Provveditorato Interregionale Alle Opere Pubbliche Per Il Veneto, Il Trentino Alto Adige E Il Friuli Venezia Giulia, Venice-Mestre, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy.
- NFBC, National Future Biodiversity Center, Palermo, Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
- NFBC, National Future Biodiversity Center, Palermo, Italy
| |
Collapse
|
2
|
Lv X, Wu C, Hu H, Fu Y, Yan L, Wang Z, Lv G, Wang G, Bai Z. Transcriptome analysis of growth and shell color between two genetic variants of Corbicula fluminea with different shell colors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101056. [PMID: 36736150 DOI: 10.1016/j.cbd.2023.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
To clarify the molecular mechanism of the black and yellow shell coloration, we performed a transcriptome analysis of whole tissue of Corbicula fluminea in Hongze Lake (Jiangsu Province, China). After assembly, 335,247 unigenes were obtained, and 136,804 unigenes were functionally identified using public databases (NR, GO, KEGG, eggnog, and Swissprot). 1567 differentially expressed genes (DEGs) were detected through pairwise comparisons, of which 941 DEGs were up-regulated and 626 were down-regulated in the black-shelled clam. We compared the DEGs between two clams and identified some coloration-related genes. Notably, the black-shelled clam was larger than the yellow-shelled. We speculated that higher digestion and anabolic ability of black-shelled clam might lead to this phenomenon. In contrast, the yellow-shelled clam appeared to be more sensitive to environmental stress. The metabolic energy of the yellow-shelled clam was depleted to maintain or recover from stress, and provide less energy for growth. In summary, our finding provides a theoretical basis for the molecular mechanism of pigmentation and the difference of somatotype in bivalve, as well as promotes the future breeding of more elite varieties.
Collapse
Affiliation(s)
- Xuefeng Lv
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China. https://twitter.com/
| | - Congdi Wu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Honghui Hu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Ling Yan
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhiyan Wang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Gaolun Lv
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
3
|
Iannello M, Mezzelani M, Dalla Rovere G, Smits M, Patarnello T, Ciofi C, Carraro L, Boffo L, Ferraresso S, Babbucci M, Mazzariol S, Centelleghe C, Cardazzo B, Carrer C, Varagnolo M, Nardi A, Pittura L, Benedetti M, Fattorini D, Regoli F, Ghiselli F, Gorbi S, Bargelloni L, Milan M. Long-lasting effects of chronic exposure to chemical pollution on the hologenome of the Manila clam. Evol Appl 2021; 14:2864-2880. [PMID: 34950234 PMCID: PMC8674894 DOI: 10.1111/eva.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to pollutants affects natural populations, creating specific molecular and biochemical signatures. In the present study, we tested the hypothesis that chronic exposure to pollutants might have substantial effects on the Manila clam hologenome long after removal from contaminated sites. To reach this goal, a highly integrative approach was implemented, combining transcriptome, genetic and microbiota analyses with the evaluation of biochemical and histological profiles of the edible Manila clam Ruditapes philippinarum, as it was transplanted for 6 months from the polluted area of Porto Marghera (PM) to the clean area of Chioggia (Venice lagoon, Italy). One month post-transplantation, PM clams showed several modifications to its resident microbiota, including an overrepresentation of the opportunistic pathogen Arcobacter spp. This may be related to the upregulation of several immune genes in the PM clams, potentially representing a host response to the increased abundance of deleterious bacteria. Six months after transplantation, PM clams demonstrated a lower ability to respond to environmental/physiological stressors related to the summer season, and the hepatopancreas-associated microbiota still showed different compositions among PM and CH clams. This study confirms that different stressors have predictable effects in clams at different biological levels and demonstrates that chronic exposure to pollutants leads to long-lasting effects on the animal hologenome. In addition, no genetic differentiation between samples from the two areas was detected, confirming that PM and CH clams belong to a single population. Overall, the obtained responses were largely reversible and potentially related to phenotypic plasticity rather than genetic adaptation. The results here presented will be functional for the assessment of the environmental risk imposed by chemicals on an economically important bivalve species.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Marica Mezzelani
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Morgan Smits
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Luciano Boffo
- Associazione “Vongola Verace di Chioggia”ChioggiaItaly
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Claudio Carrer
- c/o Magistrato alle Acque di Venezia Ufficio Tecnico Antinquinamento Laboratorio CSMOPadovaItaly
| | | | - Alessandro Nardi
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Lucia Pittura
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Maura Benedetti
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Daniele Fattorini
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Francesco Regoli
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Stefania Gorbi
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Massimo Milan
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| |
Collapse
|
4
|
Canli EG, Canli M. Characterization of ATPases in the gill of freshwater mussel (Unio tigridis) and effects of ionic and nanoparticle forms of aluminium and copper. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109059. [PMID: 33901633 DOI: 10.1016/j.cbpc.2021.109059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Mussels are often used to monitor the aquatic systems for different ecological aims, as they are one of the best bioindicator animals. However, the characterization of biomarkers should be known before using them in environmental monitoring and toxicology studies. There is no study to our knowledge on the characterization of Na-ATPase and Ca-ATPase in tissues of freshwater mussel (Unio tigridis). Thus, this study was undertaken to characterize the optimum working conditions of Na-ATPase and Ca-ATPase in the gill of mussels, determining the highest levels of parameters (Na+, Mg2+, Ca2+, ATP, pH, temperature, enzyme amount, incubation time) to obtain maximum activity. The present study also aimed to investigate in vitro effects of ionic and nanoparticle (Al2O3, CuO) forms of aluminium and copper (0, 30, 90, 270 μg/L) on the activities of Na-ATPase and Ca-ATPase. Data showed that there was no ouabain-sensitive ATPase activity in the gill up to 10 mM ouabain concentrations. Na-ATPase and Ca-ATPase activities in the gill of control mussels were 5.124 ± 0.373 and 3.750 ± 0.211 μmol Pi/mg pro./h, respectively. Exposure to different concentrations of nanoparticles did not alter significantly (P > 0.05) the activities of Na-ATPase and Ca-ATPase in vitro, whereas the same concentrations of ionic aluminium and copper significantly decreased (P < 0.05) the enzyme activities. Data emphasized that there were different modes of action between ionic and nanoparticle forms of aluminium and copper. Data also suggested that in vivo studies should also be carried out to estimate better the effects of nanoparticle and ionic forms of metals on ATPases of U. tigridis.
Collapse
Affiliation(s)
- Esin G Canli
- University of Nigde Omer Halisdemir, Faculty of Sciences and Arts, Department of Biology, Nigde, Turkey.
| | - Mustafa Canli
- University of Cukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey
| |
Collapse
|
5
|
Guidony NS, Scaini JLR, Oliveira MWB, Machado KS, Bastos C, Escarrone AL, Souza MM. ABC proteins activity and cytotoxicity in zebrafish hepatocytes exposed to triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116368. [PMID: 33383428 DOI: 10.1016/j.envpol.2020.116368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Chemicals such as triclosan are a concern because of their presence on daily products (soap, deodorant, hand sanitizers …), consequently this compound has an ubiquitous presence in the environment. Little is known about the effect of this bactericide on aquatic life. The aim of this study is to analyze triclosan exposure (24 h) to an in vitro model, zebrafish hepatocytes cell line (ZF-L), if it can be cytotoxic (mitochondrial activity, membrane stability and apoptosis) and if can activate ATP-binding cassette (ABC) proteins (activity, expression and protein/compound affinity). Triclosan was cytotoxic to hepatocytes when exposed to concentrations (1-4 mg/L). The results showed impaired mitochondria function, as well, plasma membrane rupture and an increase of apoptotic cells. We observed an ABC proteins activity inhibition in cells exposed to 0.5 and 1 mg/L. When ABCBs and ABCC2 proteins expression were analyzed, there was an increase of protein expression in both ABC proteins families on cells exposed to 1 mg/L of triclosan. On molecular docking results, triclosan and the fluorescent used as substrate (rhodamine) presented high affinity with all ABC proteins family tested, showing a greater affinity with ABCC2. In conclusion, this study showed that triclosan can be cytotoxic to ZF-L. Molecular docking indicated high affinity between triclosan and the tested pumps.
Collapse
Affiliation(s)
- Nicole Soares Guidony
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - João Luís Rheingantz Scaini
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil; Laboratório de Biologia Computacional, Centro de Ciências Computacionais Universidade Federal do Rio Grande, Avenida Itália, Km 8, 96203-900, Rio Grande, RS, Brazil
| | - Matheus William Bandeira Oliveira
- Laboratório de Biologia Computacional, Centro de Ciências Computacionais Universidade Federal do Rio Grande, Avenida Itália, Km 8, 96203-900, Rio Grande, RS, Brazil
| | - Karina Santos Machado
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil; Laboratório de Biologia Computacional, Centro de Ciências Computacionais Universidade Federal do Rio Grande, Avenida Itália, Km 8, 96203-900, Rio Grande, RS, Brazil
| | - Cláudio Bastos
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Ana Laura Escarrone
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
6
|
Multi-Biomarker Responses of Asian Clam Corbicula fluminea (Bivalvia, Corbiculidea) to Cadmium and Microplastics Pollutants. WATER 2021. [DOI: 10.3390/w13040394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most widespread aquatic organisms in the rivers and estuarine ecosystems, in the world, is Asian clam Corbiculafluminea. This clam, that can adapt to environmental changes, is an invasive species in several areas and it was adopted as a model for toxicity tests. This study evaluated the effects of the exposure to cadmium (Cd), to microplastics (MPs) and their mixtures on C. fluminea. The oxidative stress responses, lipid peroxidation (LPO), changes in the activity of energy-related enzymes and neurotoxicity were assessed on the gill, digestive gland and gonad. The results show that Cd, MPs and their mixtures cause oxidative stress, damage and neurotoxicity. The enzymes superoxide dismutase (SOD), glutathione S-transferase (GST), acetylcholinesterase (AChE) and the LPO levels could be chosen as biomarkers of Cd pollution. Exposure to MPs induced an increase in reduced/oxidized glutathione (GSH/GSSG) ratio and increased AChE activity. The combined exposure to Cd and MPs caused a synergetic effect in gill and gonad, while an antagonism response was recorded in the digestive gland. The results provide new insights for unveiling the biologic effects of heavy metal, microplastics and their mixtures on C. fluminea. Besides, we demonstrated that the Asian clam is a good bioindicator of microplastic pollution that can occur in aquatic environments.
Collapse
|
7
|
Anjos VA, Sandrini JZ, Souza MM. MXR response in sea anemones: Effect of temperature, salinity and copper. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108609. [PMID: 31437513 DOI: 10.1016/j.cbpc.2019.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
Multixenobiotic resistance (MXR) phenotype is a cellular defense which can eliminate toxic substances from cells. Several studies describe the MXR activity after pollutant exposure, but little is known about the interference of abiotic factors in this mechanism. The present study aimed to evaluate MXR activity in sea anemones Bunodosoma cangicum after in vivo and in vitro exposures to different temperatures (15, 20 and 25C) and salinities (15, 30 and 45‰) associated or not with copper (0, 7.8 and 15.6 μg/L). Results showed that low temperature inhibited the MXR activity in vivo and in vitro, while salinity did not alter this activity. Copper could change the response, mainly at different temperatures (15 and 25 °C) - 7.8 μg/L Cu activated in vivo and in vitro and 15.6 μg/L Cu in vitro inhibited MXR activity in relation to same copper concentrations at 20 °C. Results for MXR activity found between in vivo and in vitro exposures were similar among temperature treatments and salinities; however, under hyperosmotic shock, in vivo exposure showed that animals has different response than isolated cells. The animals exposed to salinity 45‰ produced a mucus layer as a defense mechanism, because of this protection the response was different between in vivo and in vitro exposures. Concluding, temperature affects MXR activity independently of the presence of copper and each model of exposure contributes with different type of knowledge (cellular mechanism/systemic response).
Collapse
Affiliation(s)
- Vanessa Abelaira Anjos
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil.
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
El Haj Y, Bohn S, Souza MM. Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31198-31206. [PMID: 31463750 DOI: 10.1007/s11356-019-06256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/16/2019] [Indexed: 05/25/2023]
Abstract
The literature indicates that exotic species have a greater tolerance to environmental stressors compared with native species. In recent decades, the introduction of contaminants into the environment has increased as a result of industrialization. The objective of this study was to verify the resistance of bivalve mollusks from freshwater native (Anodontites trapesialis) and exotic (Limnoperna fortunei) species to chemical contamination using an ex vivo/in vitro approach. Gill and muscle tissues were exposed to two different types of environmental stressors, copper (metal), and Roundup Transorb® (herbicide). The tissues were submitted to a cytotoxicity test in which the lysosomal integrity was assessed, from the adaptation of a method to isolated cells, and multixenobiotic resistance (MXR) test which evaluated cellular defense. In the exotic species, only copper at 9000 μg/L and Roundup Transorb® at 5000 μg/L were cytotoxic. In the native species, copper cytotoxicity at 900 and 9000 μg/L and Roundup Transorb® at 50 and 5000 μg/L were observed. Results were the same in both tissues. The MXR, responsible for the extrusion of contaminants (cell defense), was inhibited in both species when exposed to the contaminants, this cell defense system seems to be more inhibited in the native species, when exposed to both pollutants, indicating greater sensitivity. Therefore, cytotoxicity may be related to the lack of capacity of cellular defense. In relation to lysosomal integrity, the native species was more sensitive to cytotoxic pollutants, where a greater number of experimental conditions of metals and herbicide showed cytotoxicity, as well as more experimental situations inhibited its ability to defend itself.
Collapse
Affiliation(s)
- Yasmin El Haj
- Postgraduate Program in Biology of Continental Aquatic Environments, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil
| | - Sofia Bohn
- Biological Science Graduation, Instituto Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil
| | - Marta Marques Souza
- Postgraduate Program in Biology of Continental Aquatic Environments, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil.
- Instituto Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil.
| |
Collapse
|
9
|
An Assessment of Heavy Metals Toxicity in Asian Clam, Corbicula fluminea, from Mekong River, Pa Sak River, and Lopburi River, Thailand. ScientificWorldJournal 2019; 2019:1615298. [PMID: 31379469 PMCID: PMC6662460 DOI: 10.1155/2019/1615298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/13/2019] [Accepted: 07/04/2019] [Indexed: 11/18/2022] Open
Abstract
High population density and economic development attributing to the changes in water quality in Pa Sak River, Lopburi River, and Mekong River have attracted great attention. This research aimed to determine the pollution of heavy metals in collected clams at three different study sites. Bioaccumulation of heavy metals in Asian clam (Corbicula fluminea) may be likely to cause serious health effects on human beings. The clams sampled from three different rivers (Mekong, Pa Sak, and Lopburi) from Thailand were analyzed for the presence of heavy metals (Zn, Cu, Cd, Cr, Mn, and Pb) with an air-acetylene flame atomic absorption spectrophotometer (AAS). Among the heavy metals studied, Zn was recorded as having the highest concentration (127.33-163.65 μg/g) among the three rivers. The observed mean concentration of Cu was in the range of 84.61-127.15 μg/g followed by Mn (13.96-100.63 μg/g), Cr (5.79-15.00 μg/g), Pb (3.43-8.55 μg/g), and Cd (0.88-1.95 μg/g). Overall, Asian clam from Pa Sak River was found to contain high concentrations of Zn, Cu, Cd, Cr, and Pb compared to Mekong and Lopburi River.
Collapse
|
10
|
Fernanda Moreira L, Juliana Zomer S, Marta Marques S. Modulation of the multixenobiotic resistance mechanism in Danio rerio hepatocyte culture (ZF-L) after exposure to glyphosate and Roundup ®. CHEMOSPHERE 2019; 228:159-165. [PMID: 31029961 DOI: 10.1016/j.chemosphere.2019.04.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The presence of the transmembrane proteins of the ATP-binding cassette (ABC) family, which perform the efflux of several substances, contributes to the survival of aquatic organisms in a contaminated environmental. Those proteins provide a phenotype named the multixenobiotic resistance mechanism (MXR) by performing the efflux of a wide range of endogenous and exogenous compounds (ABCB) and biotransformation products and anionic compounds (ABCC). The aim of the present study was to evaluate the cellular defense pathway of an established culture from zebrafish hepatocytes (ZF-L) after 24 and 48 h of exposure to glyphosate and Original Roundup®, an herbicide used globally. Through abcb4, abcc1, abcc2 and abcc4 gene expression, ABCB and ABCC2 protein expression and ABC pump activity in ZF-L cells exposed to glyphosate and Roundup®. The results showed an increase in ABCB gene and protein expression; however, although ABCC2 showed an increase in gene expression, its protein expression was lower than in the control group. Regarding ABC activity, only exposure to Roundup® at the lowest concentration showed an increase at 48 h, but in the presence of inhibitors, both glyphosate and Roundup® appeared to modulate ABC activity, reducing its inhibition and returning activity to levels without inhibitor.
Collapse
Affiliation(s)
- Lopes Fernanda Moreira
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - Sandrini Juliana Zomer
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - Souza Marta Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
11
|
Bonnail E, Macías F, Osta V. Ecological improvement assessment of a passive remediation technology for acid mine drainage: Water quality biomonitoring using bivalves. CHEMOSPHERE 2019; 219:695-703. [PMID: 30557726 DOI: 10.1016/j.chemosphere.2018.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
A passive treatment plant, located in the Iberian Pyrite Belt (Huelva, Southwest Spain), was designed for acid mine drainage remediation. Since its installation, the improvement of water quality in terms of hydrochemical composition has been demonstrated successfully. However, according to the Water Framework Directive, the treated effluent must have ecological values for potential living. The freshwater clam Corbicula fluminea was chosen to carry out bioassessments (survival, biomarker responses, and metal bioaccumulation in soft tissue) with effluents from the mining site, as well as, products from the passive treatment plant in order to determine the level of quality of that water from the biological point of view in toxicity tests. Results discarded mortality as endpoint for biomonitoring purposes. Only the lipid peroxidation of the cell membrane evidenced significant responses, even in correlation with the pollution degree of each effluent. Regarding bioaccumulation, some elements displayed a strong relationship (Fe, Cu, Co, and Zn) between concentrations in the environment and in the tissue. As final conclusion, the usage of the Asian clam was validated as biomonitor tool in short term exposure to acid mine drainage, and, as early warning responses (72 h), the chosen parameters would be lipid peroxidation and bioaccumulation of a specific set of elements (Fe, Cu, Co, Zn). Ecological water quality levels reached by the passive treatment plant were in agreement with the efficiency of hydrochemical improvements.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), University of Atacama, Chile.
| | - Francisco Macías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, Campus "El Carmen", 21071, Huelva, Spain.
| | - Victoria Osta
- UNESCO UNITWIN/WiCop Department of Physical-Chemistry, University of Cádiz, Campus Río de San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
12
|
Guo X, Feng C. Biological toxicity response of Asian Clam (Corbicula fluminea) to pollutants in surface water and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:56-70. [PMID: 29524903 DOI: 10.1016/j.scitotenv.2018.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
As a typical test species, Asian Clam (Corbicula fluminea) is widely used in the identification and evaluation of freshwater toxicity. This study provides a summary of the research published from 1979 to 2018. The focus was on the bioaccumulation, morphological and behavioral changes, and biochemical index alterations of Corbicula fluminea to target pollutants (i.e., ammonia, metal(loid)s, and organic chemicals) in surface water and sediment. The applications on the evaluation of actual aquatic pollution, determination of toxicological mechanisms, prediction of toxicity, and bioremediation are also specifically discussed. The primary purpose is to facilitate the comprehensive understanding and accurate application of Corbicula fluminea in freshwater ecotoxicological studies.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
13
|
Anjos VA, Sandrini JZ, Martinez CBR, Souza MM. Characterization of MXR activity in the sea anemone Bunodosoma cangicum exposed to copper. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:12-18. [PMID: 28754376 DOI: 10.1016/j.cbpc.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/28/2023]
Abstract
Transmembrane proteins of the ABC family contribute to a multiple xenobiotic resistance (MXR) phenotype in cells, driving the extrusion of toxic substances. This phenotype promotes a high degree of protection against xenobiotics. The present study provides a better understanding of the MXR activity in the podal disk cells of Bunodosoma cangicum exposed to copper, and further establishes the relationship between protein activity (measured by accumulation of rhodamine-B) and bioaccumulation of copper in these cells. Sea anemone cells were exposed for 24h to copper (0, 7.8 and 15.6μg/L) in presence and absence of MXR blocker (verapamil 50μM). Results indicate that copper exposure increases intracellular metal content when ABC proteins were blocked, causing an increase in cellular death. The present study also verified the relationship between MXR activity, ATP depletion, and general metabolic activity (by MTT). MXR activity decreased in treatment groups exposed to copper concentrations of 15.6μg/L and 10mM energy depleting potassium cyanide. Metabolic activity increased in cells exposed to 7.8μgCu/L, but 15.6μgCu/L was similar to 0 and 7.8μg/L. The presence of copper decreased the ABC proteins expression. The present study improves the knowledge of MXR in anemone cells and shows that this activity is closely associated with copper extrusion. Also, the copper exposure is able to modify the metabolic state and to lead to cytotoxicity when cells cannot defend themselves.
Collapse
Affiliation(s)
- Vanessa Abelaira Anjos
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande, do Sul, Brazil
| | | | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande, do Sul, Brazil.
| |
Collapse
|
14
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
15
|
Ben Naceur C, Maxime V, Ben Mansour H, Le Tilly V, Sire O. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:327-333. [PMID: 27490815 DOI: 10.1016/j.ecoenv.2016.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a relevant and accurate tool to estimate the biological hazards of micropollutants in the water.
Collapse
Affiliation(s)
- Chiraz Ben Naceur
- Institut Supérieur des Sciences Appliquées et de Technologie de Mahdia, Université de Monastir, Tunisia
| | - Valérie Maxime
- Université Bretagne Sud, FRE CNRS 3744, IRDL, 56017 Vannes, France
| | - Hedi Ben Mansour
- Institut Supérieur des Sciences Appliquées et de Technologie de Mahdia, Université de Monastir, Tunisia
| | | | - Olivier Sire
- Université Bretagne Sud, FRE CNRS 3744, IRDL, 56017 Vannes, France
| |
Collapse
|
16
|
Anjos VA, Galvão JS, Santos VRS, Souza MM. Mesodesma mactroides Gill Cells Exposed to Copper: Does Hyposmotic Saline Increase Cytotoxicity or Cellular Defenses? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:609-613. [PMID: 27600515 DOI: 10.1007/s00128-016-1911-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Gill cells of filter feeding mollusks have cellular defense mechanisms, such as multixenobiotic resistance (MXR), that allow them to extrude possible contaminants. To analyze the cytotoxicity and cellular defenses of gills in the clam Mesodesma mactroides, gill cells were exposed to copper in both iso- and hyposmotic solutions. Analysis of MXR activity by fluorescence microscopy showed that hyposmotic saline activated defenses, whereas the presence of copper in isosmotic solution inhibited the activation of defenses. Cell viability was decreased in cells exposed to copper in isosmotic saline, but not in cells exposed to hyposmotic saline. We conclude that when cells cannot defend themselves due to decreased MXR, cell death occurs. In addition, gill cells under hyposmotic conditions have a greater capacity for defense and a lower rate of cellular mortality than when they are maintained under isosmotic conditions.
Collapse
Affiliation(s)
- V A Anjos
- Programa de Pós-Graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - J S Galvão
- Curso de Graduação em Tecnologia em Toxicologia Ambiental, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - V R S Santos
- Curso de Graduação em Tecnologia em Toxicologia Ambiental, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - M M Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil.
- Curso de Graduação em Tecnologia em Toxicologia Ambiental, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Av. Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
17
|
Schoonover CM, Wieker J, Pope R, Brown C, Cooper E, DeWitt J, Gunselman S, Jensen C, Stevens W, Yri J, Nezat C, Joyner-Matos J. Development of functional trait biomarkers for trace metal exposure in freshwater clams (Musculium spp.). Comp Biochem Physiol A Mol Integr Physiol 2016; 200:21-34. [DOI: 10.1016/j.cbpa.2016.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/27/2016] [Accepted: 04/09/2016] [Indexed: 11/30/2022]
|
18
|
Milan M, Matozzo V, Pauletto M, Di Camillo B, Giacomazzo M, Boffo L, Binato G, Marin MG, Patarnello T, Bargelloni L. Can ecological history influence response to pollutants? Transcriptomic analysis of Manila clam collected in different Venice lagoon areas and exposed to heavy metal. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:123-133. [PMID: 26945539 DOI: 10.1016/j.aquatox.2016.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Chronic exposure to environmental pollutants can exert strong selective pressures on natural populations, favoring the transmission over generations of traits that enable individuals to survive and thrive in highly impacted environments. The lagoon of Venice is an ecosystem subject to heavy anthropogenic impact, mainly due to the industrial activities of Porto Marghera (PM), which led to a severe chemical contamination of soil, groundwater, and sediments. Gene expression analysis on wild Manila clams collected in different Venice lagoon areas enabled to identify differences in gene expression profiles between clams collected in PM and those sampled in clean areas, and the definition of molecular signatures of chemical stress. However, it remains largely unexplored to which extent modifications of gene expression patterns persists after removing the source of contamination. It is also relatively unknown whether chronic exposure to xenobiotics affects the response to other chemical pollutants. To start exploring such issues, in the present study a common-garden experiment was coupled with transcriptomic analysis, to compare gene expression profiles of PM clams with those of clams collected in the less impacted area of Chioggia (CH) during a period under the same control conditions. Part of the two experimental groups were also exposed to copper for seven days to assess whether different "ecological history" does influence response to such pollutant. The results obtained suggest that the chronic exposure to chemical pollution generated a response at the transcriptional level that persists after removal for the contaminated site. These transcriptional changes are centered on key biological processes, such as defense against either oxidative stress or tissue/protein damage, and detoxification, suggesting an adaptive strategy for surviving in the deeply impacted environment of Porto Marghera. On the other hand, CH clams appeared to respond more effectively to copper exposure than PM animals, proposing that chronic exposure to chemical toxicants either lowers the sensitivity to additional toxicants or blunts the capacity to respond to novel chemical challenges in PM clams.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy.
| | - Valerio Matozzo
- Department of Biology, University of Padova, via G. Colombo 3, 35131 Padova, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | | | - Matteo Giacomazzo
- Department of Biology, University of Padova, via G. Colombo 3, 35131 Padova, Italy; Department of Environmental Sciences University of Quèbec at Trois-Rivières, Canada
| | | | - Giovanni Binato
- Laboratory of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| |
Collapse
|
19
|
Goulart TLS, Boyle RT, Souza MM. Cytotoxicity of the association of pesticides Roundup Transorb® and Furadan 350 SC® on the zebrafish cell line, ZF-L. Toxicol In Vitro 2015; 29:1377-84. [PMID: 26065625 DOI: 10.1016/j.tiv.2015.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
The present study aimed to ascertain the cytotoxicity of pesticides commonly used in rice cultivation, through in vitro assays employing the ZF-L cell line. The in vitro analyses investigated three cellular targets (cell membrane integrity, mitochondrial activity and lysosomal stability) in cells exposed to concentrations of Roundup Transorb® (67.7 μg L(-1), 135.4 μg L(-1) and 270.8 μg L(-1)), Furadan 350 SC® (0.1 μg L(-1), 0.05 μg L(-1) and 0.02 μg L(-1)). We also tested these products in combination. We analyzed the defensive capacity of the cells by measuring the activity of xenobiotic extruder proteins, as well as the expression of these same proteins. Cytotoxic effects of both pesticides were observed individually, as well as with the mixture of both products; including an inhibitory effect on the activity of xenobiotic extrusion. When exposed to the insecticide Furadan, and also the mixture of Furadan and Roundup, there was an increase in the expression of P glycoproteins (P-gps). There was also a negative correlation with cytotoxicity, mainly exhibited by mitochondrial activity and lysosomal integrity, but also with respect to the activity of P-gps. We observed that concentrations below those allowed by law were toxic regarding all parameters tested in this study, with the exception of mitochondrial function. Taken together, our results suggest that toxicity may be due to the surfactants present in the commercial formulations.
Collapse
Affiliation(s)
- T L S Goulart
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - R T Boyle
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - M M Souza
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
20
|
Oliveira LF, Silva SMCP, Martinez CBR. Assessment of domestic landfill leachate toxicity to the Asian clam Corbicula fluminea via biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 103:17-23. [PMID: 24561242 DOI: 10.1016/j.ecoenv.2014.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
In order to evaluate the effects of domestic landfill leachate to bivalves Corbicula fluminea, clams were exposed to different leachate concentrations (v/v): 2, 3, 6 and 10 percent, corresponding to dilutions observed along a stream that receives this effluent, or only to clean water for comparisons. After 5 and 15 days of exposure the activity of the biotransformation enzymes 7-ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST), the multixenobiotic resistance mechanism (MXR) and lipid peroxidation (LPO) in gills and digestive gland and metallothionein (MT) content in gills were evaluated. Differences in biomarkers responses were observed between gills and digestive gland, except for MXR that decreased in both tissues of clams exposed to 6 percent for 5 days. EROD activity in gills was reduced in all leachate concentrations after 5 days and only in 2 percent after 15 days exposure, while an EROD increase was observed in digestive gland after 15 days exposure to 6 percent. GST activity increased only in the gills of clams exposed to 10 percent for 5 days. LPO varied between tissues and different conditions. A significant increase in LPO was observed in the gills, after 5 days exposure to 2 and 6 percent, and in digestive gland after 5 and 15 days exposure to 2 and 3 percent. MT content in the gills increased after 15 days exposure to 2 percent. In conclusion, different leachate concentrations tested here caused biochemical changes in C. fluminea, but due to the observed variability in biomarkers responses among leachate concentrations, it was difficult to determine patterns or thresholds concentrations.
Collapse
Affiliation(s)
- Luciana F Oliveira
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Parana, Brazil
| | - Sandra M C P Silva
- Laboratório de Hidráulica e Saneamento, Departamento de Construção Civil, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Parana, Brazil
| | - Claudia B R Martinez
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Parana, Brazil.
| |
Collapse
|
21
|
Cell damage induced by copper: An explant model to study anemone cells. Toxicol In Vitro 2014; 28:365-72. [DOI: 10.1016/j.tiv.2013.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 11/29/2013] [Indexed: 11/23/2022]
|
22
|
dos Santos KC, Martinez CBR. Genotoxic and biochemical effects of atrazine and Roundup(®), alone and in combination, on the Asian clam Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:7-14. [PMID: 24433785 DOI: 10.1016/j.ecoenv.2013.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
The present study aimed to evaluate biochemical and genotoxic effects of the herbicides atrazine (ATZ) and Roundup(®) (RD) separately, as well as their mixture, on the freshwater clam Corbicula fluminea after 96 h exposure. Animals were exposed to 2 and 10 ppb of ATZ (ATZ2 and ATZ10), 2 and 10 ppm of RD (RD2 and RD10) and the following mixtures: 2 ppb ATZ+2ppm RD (AR2) and 10 ppb ATZ+10 ppm RD (AR10). Activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), as well as the multixenobiotic resistance mechanism (MXR), reduced glutathione concentrations (GSH) and lipid peroxidation (LPO) were measured in gills and digestive gland. DNA damage was determined in clams hemocytes through the comet assay. The gills were more susceptible to the action of the herbicides and the results showed that ATZ2 and ATZ10 caused a significant reduction in EROD and the mixture leads to a significant decrease in EROD and MXR. No significant change in the biotransformation parameters was observed in the digestive gland. Regarding the primary antioxidant defenses, SOD activity increased in the gills of clams exposed to ATZ10 and RD10 and in the digestive gland of animals exposed to RD2 and RD10, CAT activity was significantly reduced only in digestive gland of clams exposed RD10 while GPX increased in the gills after exposure to ATZ2 and RD10. The exposure to RD10 caused a significant increase in LPO in both gills and digestive gland. While the exposure to ATZ and RD separately did not increase DNA damage, the exposure to AR2 and AR10 caused a significant increase in the occurrence of DNA damage. In conclusion, this study showed that both herbicides applied alone caused effects on C. fluminea; ATZ interfered mostly in biotransformation while RD interfered mainly in antioxidant defenses leading to lipid peroxidation. The herbicides mixture showed antagonistic effects on the gills EROD and on lipid peroxidation in gills and digestive gland and synergistic effects on the gills MXR and on DNA damage in the hemocytes.
Collapse
Affiliation(s)
- Kelly Cristina dos Santos
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, Paraná, Brazil
| | - Claudia B R Martinez
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
23
|
Koutsogiannaki S, Franzellitti S, Fabbri E, Kaloyianni M. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:186-195. [PMID: 24316436 DOI: 10.1016/j.aquatox.2013.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3K) and reaching Na(+)/H(+) exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca(2+)-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine-3'-5'-monophosphate (cAMP). Our results also attribute a protective role to cAMP, since pre-elevated intracellular cAMP levels inhibited the signal induced by each exposure. Finally, since aquatic invertebrates have been the most widely used monitoring organisms for pollution impact evaluation in marine environments and taking under consideration the positive correlation obtained between the studied parameters, we can suggest the simultaneous use of these oxidative stress parameters offering an effective early warning system in biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Silvia Franzellitti
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna, Italy
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
24
|
Heavy metals affect regulatory volume decrease (RVD) in nematocytes isolated from the jellyfish Pelagia noctiluca. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:199-206. [DOI: 10.1016/j.cbpa.2013.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/20/2022]
|
25
|
Li Y, Zhang B, Li H, Yang L, Ye B, Wang W, Rosenberg M. Biomarkers of lead exposure among a population under environmental stress. Biol Trace Elem Res 2013; 153:50-7. [PMID: 23536264 DOI: 10.1007/s12011-013-9648-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/15/2013] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate the relationship between blood lead and serum creatinine and blood lead and serum urea nitrogen levels as biomarkers of lead exposure from subjects living in a historic polymetallic mining area in China. Elevated levels were found for blood lead, serum creatinine, and serum urea nitrogen in the mining area with mean values at 245.65 μg/l, 74.16 μmol/l, and 12.79 mmol/l, which were significantly higher than those in the control area, respectively. Moreover, the coefficients between paired results for blood lead and serum creatinine and blood lead and serum urea nitrogen were positively statistically significant (serum creatinine vs. blood lead, r = 0.35, p < 0.05; serum urea nitrogen vs. blood lead, r = 0.48, p < 0.05). With respect to the effects of sex and age on the blood lead, serum creatinine, and serum urea nitrogen levels, data analysis revealed there was a tendency for higher blood lead, serum creatinine, and serum urea nitrogen levels in females than in males, and the levels of blood lead, serum creatinine, and serum urea nitrogen increased among older residents. We conclude that females and the older population in the mining area are more susceptible to lead exposure. Blood lead, serum creatinine, and serum urea nitrogen can be useful biomarkers of lead exposure among populations under environmental stress.
Collapse
Affiliation(s)
- Yonghua Li
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Boyle RT, Oliveira LF, Bianchini A, Souza MM. The effects of copper on Na(+)/K (+)-ATPase and aquaporin expression in two euryhaline invertebrates. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:387-390. [PMID: 23275976 DOI: 10.1007/s00128-012-0949-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
We used immunocytochemical and fluorometric techniques to show that gill cells of two marine invertebrates, the crab Neohelice granulata (osmoregulator) and the clam Mesodesma mactroides (osmoconformer), increase the expression of membrane transporters [Na(+)/K(+)-ATPase and aquaporin (AQP1)] after whole-animals exposure (96 h) to sublethal concentrations of copper in water of salinity 30 ppt, when both clams and crabs are isosmotic with respect to the environmental medium. A plausible interpretation of our findings is that this increased expression in membrane transporters may serve as an attempt to ameliorate the deleterious effects of copper on the mechanisms involved in ion and volume regulation in gill cells.
Collapse
Affiliation(s)
- R T Boyle
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | | | | | | |
Collapse
|